
Assignment 2 (Advanced)

Note: This assignment ismandatory for Computing MSc and optional for Computing BEng/MEng.

Overview

In this assignment you will implement Neural Networks from scratch and practice writing backprop-
agation by yourself. The goals of this advanced assignment are as follows:

• understand Neural Networks and their layered architectures,
• understand and implement backpropagation,
• implement dropout to regularize network,
• effectively find the best hyperparameters for the Neural Network architecture.

You will implement a two-layer network in amodular way, i.e. implement the forward and backward
pass of a linear layer (with ReLU activations), implement a Softmax classifier with gradients and add
dropout as regularizer to the network. Finally, you will use the modules implemented to build multi-
layer networks for object classification on CIFAR10 and emotion classification on FER-2013. All imple-
mentations should be completed in Python. WedoNOTprovide any code inMatlab or other program-
ming languages.

Deliverables are the implementations to all questions and a report. Read this manual THOROUGHLY.

Deadline: 06/03/2018midnight

Setup

Wedo recommendyouworkon theUbuntuworkstations in the lab. This assignmentandall codewas
tested for Linux and Mac OS machines. We cannot guarantee compatability with Windows machine
and cannot promise any support if you do choose to work on a Windowsmachine.

Working on DoC lab workstations (recommended)

You can also work from home and use the lab workstations. See this list of CSG workstations to ssh
into one of the machines. You can create a shared project in \vol\bitbucket for your group and
use GitHub/GitLab as version control.

Virtual Environemnt (recommended) We recommend using virtual environment for the project.
You can use the script install_lab_env.sh to install the virtual environment and all needed de-
pendencies. Note: This does NOT install TensorFlow or PyTorch. You will need to do this yourself.
This is the easiest way to work either on the lab machines or locally.

1

https://www.cs.toronto.edu/~kriz/cifar.html
https://arxiv.org/pdf/1307.0414.pdf
https://www.doc.ic.ac.uk/csg/facilities/lab/workstations
http://docs.python-guide.org/en/latest/dev/virtualenvs/

Start the terminal and you can install the virtual environment as follow:

1 # Go to assignment folder
2 cd assignment2_advanced
3
4 # Change permissions to execute bash script
5 chmod 755 install_lab_env.sh
6
7 # Create virtual environment 'env' and install requirements
8 # This can take several minutes to finish
9 ./install_lab_env.sh

You only need to execute chmod 755 install_lab_env.sh and ./install_lab_env.sh once.

Once the lab environment is installed, you can work with it as follows:

1 # Go to assignment folder
2 cd assignment2_advanced
3
4 # Activate the virtual environment
5 source ./env/bin/activate
6
7 # Work on assignment ...
8 ##############
9 # Work on Qx #
10 ##############
11 # ... when you are done:
12
13 # Exit the virtual environment
14 deactivate

When your environment is activated, you can also install other packages with pip.

Setting up the CUDA environment This is only needed for the bonus Q6. CUDA is installed on the
DoC network. You should add the following in the .bashrc file of your home folder (~/.bashrc).

1 export CUDA_HOME=”/vol/cuda/9.0.176”
2 export PATH=”$CUDA_HOME/bin:$PATH”
3 export CUDA_ROOT=${CUDA_HOME}/bin
4 export LD_LIBRARY_PATH=”${CUDA_HOME}/lib64:$LD_LIBRARY_PATH”
5 export CPATH=”${CUDA_HOME}/include:$CPATH”

Activate the settings by running source ~/.bashrc.

2

Tensorflow/PyTorch For bonus Q6, you will need to install either TensorFlow or PyTorch. Install it
within your environment:

1 cd assignment2_advanced
2 source ./env/bin/activate
3
4 # Install Tensorflow (https://www.tensorflow.org/install/)
5 pip install --upgrade tensorflow-gpu
6
7 # OR
8
9 # Install PyTorch (http://pytorch.org/)
10 pip3 install http://download.pytorch.org/whl/cu90/torch-0.3.0.post4-

cp35-cp35m-linux_x86_64.whl
11 pip3 install torchvision
12
13 deactivate

Once you installed everything, you can activate your environment and work on the questions as fol-
lows:

1 # Go to assignment folder
2 cd assignment2_advanced
3
4 # Activate the virtual environment
5 source ./env/bin/activate
6
7 # Work on assignment ...
8 ##############
9 # Work on Qx #
10 ##############
11 # ... when you are done:
12
13 # Exit the virtual environment
14 deactivate

Anaconda You are allowed to use Anaconda for Python package, dependency and environmentman-
agement on the lab machines. Install Anaconda according to the installation instructions. If so, you
need to give us instructions what requirements are needed to run your code.

3

https://www.tensorflow.org/install/
http://pytorch.org/
https://conda.io/docs/
https://conda.io/docs/user-guide/install/index.html

Working locally

If you decide to work locally on your machine, then you will need to give us explicit instructions how
to run your code. Anything we cannot run will result to your points of the question reduced by 30%.

Python>=3.5: All provided code has been tested on Python versions 3.5 or 3.6. Make sure to install
Python version 3.5 or 3.6 on your localmachine. Otherwise, youmight encounter errors and the tests
might notwork! If you areworking onMacOSX, you canuseHomebrew tobrew install python3.

Virtual Environment Similarly to the settings given for the CSG machines, you can create a virtual
environment and install the requirements.

Anaconda You are allowed to use Anaconda for Python package, dependency and environmentman-
agement. Install Anaconda according to the installation instructions.

Tensorflow/PyTorch For Q6, you will need to install either TensorFlow or PyTorch.

Working remotely on Google Cloud

We provide $75 credits for Google Cloud for each group intended for groups who would like to do Q6.
We do not provide any instructions for setting up on Google Cloud, so it is your responsibility to set
up everything. Please email Linh (linh.tran@imperial.ac.uk) for the credits and further instructions.

Working on assigngment

Download the data

CIFAR-10 You can use datasets/get_cifar10.sh to download the dataset CIFAR10 (~ 163 MB). Al-
ternatively, you can also download CIFAR10 at CIFAR-10 dataset. You will need it for Q4. The CIFAR-10
dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are
50000 training images and 10000 test images.

1 cd assignment2_advanced/datasets
2 sh get_cifar10.sh

FER013 You can use datasets/get_fer2013.sh to download FER2013 (~ 40MB) or download it via
https://www.doc.ic.ac.uk/~dlt10/Fer2013pu.zip. You will need it for Q5.

The data consists of 48x48 pixel grayscale images of faces. The faces have been automatically regis-
tered so that the face is more or less centered and occupies about the same amount of space in each
image. The task is to categorize each face based on the emotion shown in the facial expression in to
one of seven categories (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral).

4

https://brew.sh/
https://conda.io/docs/
https://conda.io/docs/user-guide/install/index.html
https://www.tensorflow.org/install/
http://pytorch.org/
linh.tran@imperial.ac.uk
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.doc.ic.ac.uk/~dlt10/Fer2013pu.zip

1 cd assignment2_advanced/datasets
2 sh get_fer2013.sh

Loading the data

Weprovide youwith the functionget_CIFAR10_data() fromsrc/utils/data_utils.py to load
the CIFAR data.

For FER2013 you should write your own code to load the labels and images in memory.

Q1: Linear and ReLU Layers (5 out of 100 points)

InQ1, you have to implement the forward andbackward passes for linear layers andReLUactivations.
For this question, open the file src/layers.py and implement the following:

1. Implement the linear function (function linear_forward).
2. Implement the linear backward pass (function linear_backward).
3. Implement the forward pass for the ReLU activation function (function relu_forward).
4. Implement the backward pass for the ReLU activation function (function relu_backward).

NoteWe mean by linear layer a layer which applies a linear transformation to the incoming data 𝑋
(𝑦 = 𝑊𝑥 + 𝑏) and ReLU activation as applying rectified linear unit function element-wise on input
data 𝑋 (𝑅𝑒𝐿𝑈(𝑋) = max(0, 𝑋)).

Test your implementationOnce you have finished the implementations, you can test it with

1 # Go to assignment folder
2 cd assignment2_advanced
3 # activate environment
4 source ./env/bin/activate
5 # execute tests for Q1
6 python -m test.test_layers TestLinearLayer
7 python -m test.test_layers TestReLULayer
8 # deactivate environment
9 deactivate

These tests were written with python unittest and should help you verifying your implementations.

You should see the following output if all implementations are correct:

1 python -m test.test_layers TestLinearLayer

5

https://docs.python.org/3/library/unittest.html

2
3 ==
4 Testing linear backward function:
5 ==
6 dX relative error: 3.97401818799e-11
7 dW relative error: 3.91757851635e-10
8 db realtive error: 4.88680423566e-12
9 .
10 ==
11 Testing linear forward function:
12 ==
13 Relative difference 1.08483901729e-08
14 .
15 --
16 Ran 2 tests in 0.029s
17
18 OK
19 python -m test.test_layers TestReLULayer
20
21 ==
22 Testing relu backward function:
23 ==
24 dX relative difference: 3.27563658113e-12
25 .
26 ==
27 Testing relu forward function:
28 ==
29 Relative difference: 2.72727259342e-08
30 .
31 --
32 Ran 2 tests in 0.003s
33
34 OK

Otherwise, the tests will show you some failures:

1 ==
2 Testing linear backward function:
3 ==
4 dX relative error: 4.04756324381e-11
5 dW relative error: 3.91757851635e-10
6 db realtive error: 1.0
7 F

6

8 ==
9 Testing linear forward function:
10 ==
11 Relative difference 1.0
12 F
13 ==
14 FAIL: test_output_linear_backward (__main__.TestLinearLayer)
15 --
16 Traceback (most recent call last):
17 File ”/tmp/assignment2/test/test_layers.py”, line 63, in

test_output_linear_backward
18 self.assertTrue(db_e <= 5e-10)
19 AssertionError: False is not true
20
21 ==
22 FAIL: test_output_linear_forward (__main__.TestLinearLayer)
23 --
24 Traceback (most recent call last):
25 File ”/tmp/assignment2/test/test_layers.py”, line 36, in

test_output_linear_forward
26 self.assertTrue(e <= 5e-08)
27 AssertionError: False is not true
28
29 --
30 Ran 2 tests in 0.006s
31
32 FAILED (failures=2)

Deliverable

In order to obtain 5 points, youmust:

• Complete linear_forward, linear_backward (2.5 points)

• Complete relu_forward, relu_backward (2.5 points)

We will run further tests to verify the code you submitted is correct.

Q2: Dropout (5 out of 100 points)

In Q2, inverted dropout will be implemented. The forward (dropout_forward) and backward
(dropout_backward) passes are to be implemented in src/layers.py.

7

Dropout As known from the lecture, dropout is used as regularisation in Neural Networks. Given
probability 𝑝, neurons are dropped with probability 𝑝, therefore keeping neurons with probability
𝑞 = 1 − 𝑝.

The principle of dropout implicates that every single neuron has the same probability to be turned
off.

Given: * ℎ(𝑋) = 𝑋𝑊 + 𝑏 is a linear transformation of a 𝑑𝑖-dimensional input𝑋 in a 𝑑ℎ-dimensional
output space.

• 𝑎(ℎ) is the activation function

the application of dropout on the i-th neuron is resulting in an output 𝑜𝑖:

𝑜𝑖 = 𝑚𝑖 ⋅ 𝑎(
𝑑𝑖

∑
𝑘=1

𝑤𝑘𝑥𝑘 + 𝑏) (1)

where M = 𝑚1, … , 𝑚𝑑ℎ
is a 𝑑ℎ-dimensional vector of Bernoulli distributed variables.

If we are applying dropout to the training phase, we need to perform a scaling of the inputs by 𝑞. This
is crucial because all neurons see all their inputs at test time and we need to make sure the outputs
of test neurons are identical to their expected outputs at training time. Thus:

• Train phase: 𝑜𝑖 = 𝑚𝑖 ⋅ 𝑎(∑𝑑𝑖
𝑘=1 𝑤𝑘𝑥𝑘 + 𝑏)

• Test phase: 𝑜𝑖 = 𝑞 ⋅ 𝑎(∑𝑑𝑖
𝑘=1 𝑤𝑘𝑥𝑘 + 𝑏)

Inverted Dropout As described above, the dropout scheme presented needs to scale the activations
by q at test time. Since the test performance is critical, it is also preferable to leaving the forward
pass unchanged at test time. Therefore, in most implementations inverted dropout is employed to
overcome the undesirable property of the original dropout.

The scale factor is the inverse of the keep probability: 1
1−𝑝 = 1

𝑞

and thus we have changed our passes for train and test to the following:

• Train phase: 𝑜𝑖 = 1
𝑞 ⋅ 𝑚𝑖 ⋅ 𝑎(∑𝑑𝑖

𝑘=1 𝑤𝑘𝑥𝑘 + 𝑏)

• Test phase: 𝑜𝑖 = 𝑎(∑𝑑𝑖
𝑘=1 𝑤𝑘𝑥𝑘 + 𝑏)

For amore detailed explanation of dropout and inverted dropout, have a read at Analysis of Dropout.

Test your implementationOnce you have finished the implementations, you can test it with

1 # Go to assignment folder
2 cd assignment2_advanced
3 # activate environment
4 source ./env/bin/activate

8

https://pgaleone.eu/deep-learning/regularization/2017/01/10/anaysis-of-dropout/

5 # execute tests for Q2
6 python -m test.test_layers TestDropoutLayer
7 # deactivate environment
8 deactivate

Deliverables

In order to obtain 5 points, youmust:

• Complete dropout_forward, dropout_backward in src/layers.py

Wewill run further tests to verify the code you submitted is correct.

Q3: Softmax Classifier (5 out of 100 points)

For this task, open the file src/classifiers.py and implement the softmax loss and gradients
(function softmax). You are supposed to include an additional term for improving the numerical
stability.

Notation The input is defined as 𝑋 = [𝑥𝑖, … , 𝑥𝑁] with 𝑥𝑖 ∈ ℝ𝑑, 𝑖 = 1, … , 𝑁 . The corresponding
labels are defined by𝑌 = [𝑦1, … , 𝑦𝑁]with 𝑦𝑖 ∈ [0, … , 𝐶). Further, we defineweights as𝑊 ∈ ℝ𝐶𝑥𝑁

and bias as 𝑏 ∈ ℝ𝐶.

Logits Assume ̂𝑦𝑖 contains computed scores for each class, e.g. ̂𝑦𝑖 = 𝑊𝑥𝑖 + 𝑏. In probability theory,
̂𝑦 is interpreted as un-normalized log probabilities and are called logits. These logits are input for the

softmax loss function for your implementation.

Softmax function The softmax function 𝜎 is defined by:

𝜎𝑗(̂𝑦𝑖) = 𝑒�̂�𝑖[𝑗]

∑𝑘 𝑒�̂�𝑖[𝑘] , 𝑗 = 1, … , 𝐶 (2)

The softmax function “squashes” a C-dimensional vector ̂𝑦𝑖 to a C-dimensional vector that add up to
1.

In probability theory, the output of the softmax function can be used to represent a categorical dis-
tribution and the predicted probability for the j-th class is given by:

𝑃(𝑦𝑖 = 𝑗| ̂𝑦𝑖) = 𝑒�̂�𝑖[𝑗]

∑𝑘 𝑒�̂�𝑖[𝑘] , 𝑗 = 1, … , 𝐶 (3)

Looking at the equation, the softmax classifier can be interpreted as the (normalized) probability as-
signed to the correct label 𝑦𝑖 given an input ̂𝑦.

9

Softmax loss If you have a look at lecture slides 15-16 of secondNN lecture, youwill get the definition
of the softmax function, as well as its usage as loss function: negative log likelihood cost.

Concretely, the negative log-likelihood for a single 𝑥𝑖 is defined as:

𝐿𝑖 = − log(𝜎𝑗(̂𝑦𝑖)[𝑦𝑖]) (4)

For a given batch X, the loss consist of the average negative log-likelihood of all samples:

𝐿 =
∑𝑁−1

𝑗=0 𝐿𝑗
𝑁 (5)

Why average negative log-likelihood? If you are using a first order optimisation algorithm, such as
gradient ascent, using the average likelihood as you objective function stabilises the behaviour of
algorithm as the sample size changes.

Numerical issues When calculating the Softmax function in practice, both 𝑒�̂�𝑖[𝑗] and ∑𝑘 𝑒�̂�𝑖[𝑘] can
be very large due to the exponentials. Dividing large numbers can be numerically unstable, therefore
a normalisation trick is used:

𝜎𝑗(̂𝑦𝑖) = 𝑒�̂�𝑖[𝑗]

∑𝑘 𝑒�̂�𝑖[𝑘] = 𝐾 ⋅ 𝑒�̂�𝑖[𝑗]

𝐾 ⋅ ∑𝑘 𝑒�̂�𝑖[𝑘] = 𝑒�̂�𝑖[𝑗]+𝑙𝑜𝑔(𝐾)

∑𝑘 𝑒�̂�𝑖[𝑘]+𝑙𝑜𝑔(𝐾) (6)

The value 𝐾 can be chosen and will not change any of the results but can improve the numerical
stability of the computation. A common choice for 𝐾 is set to 𝑙𝑜𝑔(𝐾) = − max ̂𝑦𝑖.

Note In the implementation you have to deal with one-hot encodings of labels instead of the labels
described in this manual.

Test your implementationOnce you have finished the implementations, you can test it with

1 # Go to assignment folder
2 cd assignment2_advanced
3 # activate environment
4 source ./env/bin/activate
5 # execute tests for Q3
6 python -m test.test_classifiers
7 # deactivate environment
8 deactivate

10

Deliverables

In order to obtain 5 points, youmust:

• Complete softmax in src/classifiers.py

Wewill run further tests to verify the code you submitted is correct.

Q4: Fully-Connected Neural Network (10 out of 100 points)

In this task you will implement a fully-connected neural network with arbitrary number of hidden
layers, ReLU activation, softmax classification and optional dropout. For this question, you will need
to implement FullyConnectedNet in src/fcnet.py. This task is about reusing your implementa-
tions from Q1 to Q3. In addition, you will add a L2 regularizer.

Sanity checks Once finished with the implementation, you can test your implementation with:

1 # Go to assignment folder
2 cd assignment2_advanced
3 # activate environment
4 source ./env/bin/activate
5 # execute tests for Q4
6 python -m test.test_fcnet
7 # deactivate environment
8 deactivate

This sanity check computes the initial loss for a two-layer fully-connected neural networks with dif-
ferent regularisation factors [0, 3.14].

Do the initial losses seem reasonable? For gradient checking, the relative errors should be around
1e-6 or less.

SolverWe provide a solver for the FullyConnectedNet that you have implemented. Open the file
src/utils/solver.py and read through it to familiarize yourself with the API. We also provide you
SGD as optimiser to use for the solver in src/utils/optim.py.

Overfit the network Another sanity check is to try to overfit a small dataset (CIFAR10) of 50 images.
Complete src/overfit_fcnet.py for this task. You will need to play with the learning rate and
initialisation, but you should be able to overfit and achieve 100% training accuracy within 20 epochs.

You can run overfit_fcnet.py as follows:

1 cd assignment2_advanced
2 source ./env/bin/activate
3 python -m src.overfit_fcnet

11

Plotting The solver saves accuracy of training and validation which you can plot. Here is an example
to do so. Include plotting of the models you train if applicable.

1 import matplotlib.pyplot as plt
2 # declare model and solver and train the model
3 # model = [...]
4 # solver = [...]
5 # solver.train()
6 # Run this cell to visualize training loss and train / val accuracy
7
8 plt.subplot(2, 1, 1)
9 plt.title(”Training loss”)
10 plt.plot(solver.loss_history, ”o”)
11 plt.xlabel('Iteration')
12
13 plt.subplot(2, 1, 2)
14 plt.title('Accuracy')
15 plt.plot(solver.train_acc_history, '-o', label='train')
16 plt.plot(solver.val_acc_history, '-o', label='val')
17 plt.plot([0.5] * len(solver.val_acc_history), 'k--')
18 plt.xlabel('Epoch')
19 plt.legend(loc='lower right')
20 plt.gcf().set_size_inches(15, 12)
21 plt.show()

Train a two-layer fully-connected networks for CIFAR10 Having finished the sanity checks, use
src/train_fcnet.py to train a two-layered fully-connected network on CIFAR10 which achieves
at least 45 % accuracy on the validation set. This should be easily achieved and you do not need to
search extensively for the hyperparameters. Report the parameters used (update rule, learning rate,
decay, epochs, batch size) and include the plots in your report. You can run train_fcnet.py as
follows:

1 cd assignment2_advanced
2 source ./env/bin/activate
3 python -m src.train_fcnet

Deliverables

In order to obtain 10 points, youmust:

• Complete src/fcnet.py (8 points)

• Complete src/overfit_fcnet.py (1 points)

12

• Complete src/train_fcnet.py (1 points)

We will run further tests to verify the code you submitted is correct.

Q5: Hyper-parameter Optimisation with FER2013 (10 out of 100 points)

In this question, you will optimise the hyper-parameters of a fully-connected neural network with
FER2013.

Firstly, similarly to the given implementation of SGD, you should implement SGD with momentum.
For that, open src/utils/optim.py and complete the function sgd_momentum.

Secondly, select a performance measure which will be used to compare the performance of the dif-
ferent parameters on the validation set.

You should use stochastic gradient descent with momentum for all experiments.

Optimise the hyper-parameters as follows:

• Select a reasonablenetworkarchitectureas startingpoint andexplain themotivation tochoose
so. Define a momentum and a learning rate. You can also extend the code to have a different
stopping criterion or a different learning rate update schedule.

• Optimise the learning rate (disable regularisation). Explain how you found a good initial value
for learning rate. Include the plot for training loss and report training and validation classifica-
tion error.

• Use dropout and report if there is any improvement in the validation performance.
• You have implemented dropout and L2 as ways of regularisation. Use L2 and compare the per-
formance with dropout.

• Optimise the topology of the network, i.e. the number of hidden layers and the number of neu-
rons in each hidden layer.

Saving your model Save your best trained model for FER2013 in assignment2 and provide a func-
tion to load and test the model, so that we can test the performance of your model on a secret test
set. The performance of your model account to up to 10 points.

Deliverables

• Complete src/utils/optim.py

• Saved best model

• Function to load and test your model

All points will be given according to the performance of your model.

The test function should be saved to src/test.pywith the following structure:

13

1 def test_fer_model(img_folder, model=”/path/to/model”):
2 ”””
3 Given a folder with images, load the images (in lexico-graphical

ordering
4 according to the file name of the images) and your best model to

predict
5 the facial expression of each image.
6 Args:
7 - img_folder: Path to the images to be tested
8 Returns:
9 - preds: A numpy vector of size N with N being the number of

images in
10 img_folder.
11 ”””
12 preds = None
13 ### Start your code here
14 ### End of code
15 return preds

Q6: Do something extra! (15 bonus points!)

Note Even though you can get up to 15 bonus points for this question, beware that the maximum
number of points you can reach is 100!

For this question, you have to train a Convolutional Neural Network (CNN) on the FER2013 image
dataset. You canuse either TensorfloworPyTorchdeep learning libraries. You canalsouse anyhigher
level API with the above backend (e.g., Keras). You are expected to justify the choice of the hyperpa-
rameters (e.g., depth, filters, stride, zero-padding).

Tip: While searching for the “optimal” architecture, keep the sample complexity of your model in
mind!

Deliverables

• Test the performance of the network with the optimal set of parameters on the test set and
report the confusion matrix, classification rate and F1 measure per class.(2 points)

• Compare the performance of your CNNwith the feedforward NN in the previous question. Jus-
tify the results. (7 points)

• You should provide a function to load and test yourmodel, alongwith clear instructions onhow
to use it. You will be graded based on the performance of your model on our private test set (6

14

points).

The test function should be saved to src/test.pywith the following structure:

1 def test_deep_fer_model(img_folder, model=”/path/to/model”):
2 ”””
3 Given a folder with images, load the images (in lexico-graphical

ordering
4 according to the file name of the images) and your best model to

predict
5 the facial expression of each image.
6 Args:
7 - img_folder: Path to the images to be tested
8 Returns:
9 - preds: A numpy vector of size N with N being the number of

images in
10 img_folder.
11 ”””
12 preds = None
13 ### Start your code here
14 ### End of code
15 return preds

In case your code does not run, 2 points will be deducted.

Report (55 out of 100 points)

We expect you to submit a report with the theoretical solution to the questions. Do not explain code,
but rather explain how forward and backward passes of certain layers and classifiers work, how you
put your network together (i.e. architecture) and what strategies you used for hyper-parameter op-
timisation. Further, all results should be reported and described in the report. Finally, please limit
your report to nomore than 5 pages of text.

The report should include:

• Q1: Explain the forward and backward pass of linear layers and relu activations. (2 points)
• Q2: Explain the forward and backward pass of dropout. (2 points)
• Q3: Explain the computation of softmax and its gradient (2 points)
• Q4:

– Architecture + parameters used to overfit a small subset of the CIFAR-10 data, plots of loss
and accuracy of train and test set (2 points)

15

– Architecture + parameters used to achieve at least 50 % accuracy on CIFAR-10 as well as
plots of loss and accuracy of train and test set (2 points)

• Q5
– Explanation of how the network was fine-tuned, what strategies were employed. Include
plots of accuracy, loss and F1 if appropriate. (6 points for each step , 30 points in total)

– Test the performance of the network trained with the optimal set of parameters on the
test set and report the confusion matrix, classification rate and F1 measure per class. (5
points)

Two additional questions need to be also answered in the report:

A1. Assume that you train a neural network classifier using the dataset of the previous coursework.
You run cross-validation and you compute the classification error per fold. Let’s also assume that
you run a statistical test on the two sets of error observations (one from decision trees and one from
neural networks) and you find that one algorithms results in better performance than the other.
Can we claim that this algorithm is a better learning algorithm than the other in general? Why? Why
not? (5 points)

A2. Suppose that we want to add some new emotions to the existing dataset. What changes should
bemade in decision trees and neural networks classifiers in order to include new classes? (5 points)

Quality of Presentation (10 out of 100 points)

You can get up to 10 points for the quality and presentation of your report.

Summary of Grading

You can get a total of 100 points:

• Q1 (5 points)
• Q2 (5 points)
• Q3 (5 points)
• Q4 (10 points)
• Q5 (10 points)
• Q6 (15 bonus points)
• Report (55 points)
• Quality of presentation (10 points)

16

Submit your work

Submit your code

You need to zip your entire folder assigment2_advanced and submit this and your report. Name it:

assignment2_advanced_code_team_<#team>.zip

Errors and Feedback

Did you find an error and/or typo in this document? Or you have any feedback, recommendations
or comments on this new assignment? Please email Linh (Q1-Q5) or Markos (Q6), every feedback is
welcomed!

Acknowledgement

We are grateful to entire Stanford Vision Lab for their course CS291n: Convolutional Neural Networks
for Visual Recognition, all their notes andassignments. We reused someof their scripts for this course.
Overall, it served as guidance and helped a lot to design this assignment.

17

linh.tran@imperial.ac.uk
m.georgopoulos@imperial.ac.uk
http://vision.stanford.edu/teaching.html
http://cs231n.github.io/
http://cs231n.github.io/

	Assignment 2 (Advanced)
	Overview
	Setup
	Working on DoC lab workstations (recommended)
	Working locally
	Working remotely on Google Cloud

	Working on assigngment
	Download the data
	Loading the data

	Q1: Linear and ReLU Layers (5 out of 100 points)
	Q2: Dropout (5 out of 100 points)
	Q3: Softmax Classifier (5 out of 100 points)
	Q4: Fully-Connected Neural Network (10 out of 100 points)
	Q5: Hyper-parameter Optimisation with FER2013 (10 out of 100 points)
	Q6: Do something extra! (15 bonus points!)
	Report (55 out of 100 points)
	Quality of Presentation (10 out of 100 points)
	Summary of Grading
	Submit your work
	Submit your code

	Errors and Feedback
	Acknowledgement

