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Abstract— Most of existing models for facial behavior analysis
rely on generic classifiers, which fail to generalize well to
previously unseen data. This is because of inherent differences
in source (training) and target (test) data, mainly caused by
variation in subjects’ facial morphology, camera views, and so
on. All of these account for different contexts in which target
and source data are recorded, and thus, may adversely affect
the performance of the models learned solely from source data.
In this paper, we exploit the notion of domain adaptation and
propose a data efficient approach to adapt already learned
classifiers to new unseen contexts. Specifically, we build upon
the probabilistic framework of Gaussian processes (GPs), and
introduce domain-specific GP experts (e.g., for each subject).
The model adaptation is facilitated in a probabilistic fashion, by
conditioning the target expert on the predictions from multiple
source experts. We further exploit the predictive variance of
each expert to define an optimal weighting during inference. We
evaluate the proposed model on three publicly available data sets
for multi-class (MultiPIE) and multi-label (DISFA, FERA2015)
facial expression analysis by performing adaptation of two
contextual factors: “where” (view) and “who” (subject). In our
experiments, the proposed approach consistently outperforms:
1) both source and target classifiers, while using a small number
of target examples during the adaptation and 2) related state-of-
the-art approaches for supervised domain adaptation.

Index Terms— Domain adaptation, Gaussian processes,
multiple AU detection, multi-view facial expression recognition.

I. INTRODUCTION

THE human face is believed to be the most powerful
channel for non-verbally conveying behavioral traits,

such as personality, intentions and affect [1], [2]. Throughout
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the ages, people have learned to communicate the behavioral
traits to their environment via their facial expressions. Facial
expressions can be described at different levels [3]: The
more prevalent approaches focus on identifying either the
exact facial affect (emotions) or the activations of facial
muscles, named action units (AUs). According to [4] these
orthogonal approaches are just different measurements
for facial expressions. A comprehensive system that can
be used to unify the different measurements is the facial
action coding system (FACS) [5]. FACS defines 30+
unique AUs and several categories of head/eye movements,
which can be used to describe every possible facial
expression.

Due to its practical importance in medicine, marketing and
entertainment, automated analysis of facial expressions has
received significant attention over the last two decades [6].
Despite rapid advances in computer vision and machine learn-
ing, the majority of the models proposed so far for facial
expression analysis rely on generic classifiers. With the term
‘generic’ we refer to simple classifiers that are trained on
all available data, which is assumed to encode all possible
variations of the population. Hence, the performance of these
classifiers is expected to degrade when applied to previously
unseen data [7]. Such a scenario is the case when we try
to infer the facial expression of a new subject whose level
of expressiveness deviates substantially from the ones of the
training subjects.

Besides the subject identity, there are also other sources
of variation that can significantly affect the performance of
generic classifiers. These sources can well be grouped accord-
ing to the W5+ context design [8], which describes the target
behavior in terms of the context questions ‘who’, ‘where’,
‘how’, ‘what’, ‘when’ and ‘why’. Ideally, an appropriate model
for facial expression analysis should take into account all
the above contextual factors during training. However, due
to the lack of appropriate data, such an approach is not
feasible. Thus, the majority of the work has focused only on
building personalized classifiers for answering the question
‘who’ [8]–[11], or on combining illumination invariant fea-
tures with multi-view learning techniques for addressing the
question ‘where’ (variations in head-pose and illumination)
[12]–[17]. Although these approaches showed improvement
over generic classifiers, there remain a number of challenges
to address. In particular, multi-view learning requires a large
number of images in various poses, which are typically not
readily available. Furthermore, for building personalized clas-
sifiers, access to an adequate collection of images of the target
person is essential. Consequently, existing approaches perform
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re-weighting of previously learned classifiers to fit the target
data (e.g., [10]), or training of new models using additional
target data. However, they are both sub-optimal since they
require re-training of the original models.

A better solution would be to develop mechanisms that
can adapt the learned models to the context of the examined
situation. In this article, we propose a first step in this
direction. In particular, we present an approach that can
be used to adapt the context questions where (view) and
who (subject), for facial expression recognition (FER) and
AU detection, respectively. More specifically, we explore the
problem of domain adaptation, where the distribution of the
(facial) features varies across domains (i.e., contexts such
as the view or subject), while the output labels (i.e., the
emotion expression or the AU activations) remain the same.
In the case of the context question ‘where’, this boils down
to adapting the frontal classifier to a non-frontal view using
only a small number of expressive images from the target
view. Similarly, in the case of the subject adaptation (‘who’),
the model adaptation is performed by using as few annotated
images of target subject as needed to gain in the prediction
performance (e.g., AU detection). Thus, our aim is to find
a data-efficient approach to adapt previously trained generic
models for facial behavior analysis, and overcome the burden
of computation-wise costly model relearning.

The proposed model is a generalization of Gaussian
processes (GPs) [18], and the product of expert
models [19], [20], to the domain adaptation scenario.1 More
specifically, instead of adjusting the classifier parameters
between the domains, as in [10], [11], and [21]–[23], we
propose the use of domain-specific GP experts that model
the domain specific attributes. The modeling power of GPs
allows us to model the desired attributes in the target domain,
in a data-efficient manner. This is crucial for the training
of the target expert since the available annotated data are
usually scarce. Moreover, instead of minimizing the error
between the distributions of the original source and target
domain data, as in [10] and [23], we use Bayesian domain
adaptation [24] and facilitate the adaptation of the classifier
by conditioning the target expert on the predictions from
multiple source experts. The final prediction for the adapted
classifier is obtained as a weighted combination of the
predictions from the individual experts. The weighting is
facilitated by measuring the confidence of each classifier.
Contrary to [25] that represents the confidence heuristically
as the agreement between a positive and a negative classifier,
in our probabilistic formulation during the adaptation we
exploit the variance in the GP predictions when combining
the source and target domains [26]. This results in a confident
classifier that minimizes the risk of potential negative transfer
(i.e., the adapted model performing worse than the model
trained using the adaptation data only). Finally, in contrast to
transductive adaptation approaches (e.g., [10]) that need to be
retrained completely, adaptation of our model is efficient and

1We use the non-parametric probabilistic framework of GPs as a basis
for our model because it is particularly suited for learning highly non-linear
mapping functions that can generalize from a small amount of training data.

Fig. 1. The proposed GPDE model. The learning consists of training the
multiple source (sk , k = 1, · · · , M) and the target (t) GP experts (in this case,
each subject is treated as an expert), using the available labeled training data
pairs (x, y) – the input features (e.g., facial landmarks) and output labels
(e.g., AU activations), respectively. Adaptation (dashed lines) for the target
data is performed via conditioning the latent functions, f , of the target GP
on the source experts (t|s). During inference, we fuse the predictions from
the experts (μ{t,(t |s)}) by means of their predictive variance (V {t,(t |s)}), with
the role of a confidence measure.

requires no retraining of the source model. An outline of the
proposed model is depicted in Fig. 1. The contributions of
this work can be summarized as follows:

• To the best of our knowledge, this is the first work in
the field of facial behavior modeling that can simulta-
neously perform adaption to multiple outputs (i.e., AUs).
In our experiments, the proposed approach can effectively
perform adaptation of 12 AUs, while existing models
in the field attempt only adaptation for each output
independently.

• Our proposed model exploits the variance in the predicted
expression in order to utilize a measure of confidence
for weighting the importance of each expert. This is
in contrast to majority of the models that are purely
discriminative and, thus, do not provide a probabilistic
measure of ‘reliability’ for their predictions.

• Our approach is data efficient since it can perform the
adaptation using only a small number of target labeled
data. Through extensive experiments, we show empiri-
cally that it can generalize better than generic classifiers
learned from the available source and/or target (training)
data only, by using as few as 50 target samples for the
adaptation.

• Our experiments demonstrate that the prediction mech-
anism based on the weighted combination of the source
and target experts acts as a guard against negative transfer,
allowing the model to explore the full capacity of the
appropriate domain.

In our previous work [27], each output was constrained
to have the same variance in its predictions. In this article,
we relax this assumption by allowing each output to have
a different confidence in the output. In case of AUs, this is
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a more realistic scenario since the proposed classifier may
be more confident in predicting some AUs than the others.
Hence, the weighting of the GP experts is decoupled across
the multiple outputs, which results in more robust predictions
when dealing with imbalanced datasets. Additional within- and
cross-dataset experimental evaluations demonstrate the cases
where the proposed re-weighted predictions are advantageous
over [27].

II. RELATED WORK

In this section, we first review the related work in facial
behavior analysis. Then we discuss relevant machine learning
approaches for domain adaptation.

A. Domain Adaptation in Facial Behavior Analysis

An important issue for the facial behavior analysis, and, in
particular, the analysis of AUs, remains the poor generaliz-
ability to previously unseen data / contexts. Most works have
attempted to address this issue by normalizing the data based
on person-specific attributes (e.g., removing the global neutral
expression from an expressive image), as in [28]. However,
recent advances in the field focus on employing standard
domain adaptation techniques in order to build personalized
classifiers for the test subjects. A widely used algorithm for
adaptation is the kernel mean matching (KMM) [29], which
directly infers resampling weights by matching training and
test distributions. The authors in [10] employed the KMM
to learn person-specific AU detectors. This is attained by
modifying the SVM cost function to account for the mismatch
in the distribution between source and target domain, while
also adjusting the SVM’s hyper-plane to the target test data.
Although effective, this transductive learning approach is
inefficient since for each target subject a new classifier has
to be relearned during inference. Likewise, the authors in [23]
proposed a supervised extension to the KMM. Specifically,
they used the labeled examples from both domains in order
to align the source and target distributions in a class-to-class
manner. The reweighted source data along with the target data,
form the input features that are used to train several classifiers.

Apart from KMM, adaptation can be also attained by com-
bining the knowledge from multiple classifiers or by sharing
the parameter space between source and target classifiers.
In [22], a two-step learning approach is proposed for person-
specific pain recognition and AU detection. First, data of each
subject are regarded as different source domains, and are used
to train weak Adaboost classifiers. Then, the weak classifiers
are weighted based on their classification performance on the
available target data. A second boosting is applied on the best
performing source classifiers to derive the final set of weak
classifiers for the target data. In [11] and [21], the Adaboost
classifiers are replaced with the linear SVMs. First, indepen-
dent AU classifiers are trained from the source domain data.
Then, the support vector regression is employed to associate
the input features with the classifiers’ parameters. Finally,
the unlabeled target domain data are fed into the learned
regressors, in order to obtain the target-specific classifiers
parameters.

Recently, an attempt closer to our proposed method has been
presented in [25]. The authors suggested to train target-specific
classifiers by exploiting the confidence in the predictions from
the source classifiers. In their approach, the confidence is
represented by the agreement in the predictions between a
pair of SVM classifiers, trained to distinguish the positive and
negative samples in the source data. The confident classifiers
are then employed to obtain ‘virtual’ labels for a portion of
the target data, which can be used to train a target-specific
detector.

Note that, apart from [22], all the works mentioned above
operate in the unsupervised setting. While this requires less
effort in terms of obtaining the labels for the target sub-
sample, its underlying assumption is that target data can be
well represented as a weighted combination of the source
data. However, in order for this to work effectively, it is
usually required to have access to lots of data from the
target domain. Even when this is the case, in real world this
assumption can easily be violated (e.g., due to variations in
subject’s expressiveness, illuminations, etc.), resulting in poor
performance of the adapted classifier.

In this work, we adopt a supervised approach that needs
only a small amount of annotated data from target domain
to perform the adaptation. This, in turn, allows us to define
both target and source experts, assuring that the performance
of the resulting classifier is not constrained by the distribution
of the source data, as in unsupervised adaptation approaches.
Contrary to transductive learning approaches such as [10],
our approach requires adaptation of the target expert solely,
without the need to relearn the source experts, resulting in
an efficient adaptation process. Moreover, compared to our
approach, only [25] provides a measure of confidence in the
predicted labels. Yet, even in [25] the confidence is obtained in
a heuristic manner and is not directly related to the prediction
of the classifier. On the contrary, we model the confidence in
a principled manner by means of predicted variance. Finally,
note that the proposed approach and the methods mentioned
above differ from those recently proposed for transfer learning,
e.g., [30]. The goal of the latter is to adapt a classifier learned
for instance for one AU to another, which is different from
the adaptation task addressed here and is out of the scope of
this work.

B. Domain Adaptation

Domain adaptation is a well studied problem in machine
learning (for an extensive survey, see [31]). In general, the
adaptation problem stems from the change in the distributions
of the input features and/or output labels between the two
domains. The goal of domain adaptation is to match the
differing distributions in order to learn a machinery that
works sufficiently well on the test (target) data. Recent work
has shown that the study of the causal relations between
the data could be further useful on understanding how the
distributions change across domains [32], [33]. The adaptation
can be performed either in an unsupervised or a (semi-)
supervised setting, based on the availability of labeled target
domain data. The (semi-)supervised setting is more appropriate
to our target task, since the available labels can be used
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to enhance the classification performance. One of the first
attempts toward this directions has been presented in [34].
The authors proposed to replicate the input features to produce
shared and domain-specific features, which are then fed into a
generic classifier. Although straightforward, this approach has
been proven effective for the adaptation task. Reference [35]
learns a transformation that maximizes similarity between data
in the source and target domains by enforcing data pairs
with the same labels to have high similarity, and pairs with
different labels to be dissimilar. Then, a k-NN classifier is
used to perform classification of target data. Reference [36]
is an extension of this approach to multiple source domains.
The input data are assumed to be generated from category-
specific local domain mixtures, the mixing weights of which
determine the underlying domain of the data, classified using
an SVM classifier. Similarly, [37] learns a linear asymmet-
ric transformation to maximally align target features to the
source domain. This is attained by introducing max-margin
constraints that allow the learning of the transformation matrix
and SVM classifier jointly. Reference [38] extends the work
in [37] by introducing additional constraints to the max-
margin formulation. More specifically, unlabeled data from
the target domain are used to enforce the classifier to produce
similar predictions for similar target-source data. While these
methods attempt to directly align the target to source features,
several works attempted this through a shared manifold. For
instance, [39] learns a non-linear transformation from both
source and target data to a shared latent space, along with
the target classifier. Likewise, [40] finds a low-dimensional
subspace, which preserves the structure across the domains.
The subspace is facilitated by projections that are learned
jointly with the linear classifier. The structure preservation
constraints are used to ensure that similar data across domains
are close in the subspace.

All of the methods mentioned above tackle the adaptation
problem in a deterministic fashion. Thus, they do not provide
a measure of confidence in the target predictions. By contrast,
our approach is fully probabilistic and non-parametric due to
the use of GPs, and is more related to recent advances in the
literature [24], [41], [42] that perform the domain adaptation
in a Bayesian fashion. Specifically, in [41] a discriminative
framework is proposed to couple data from different domains
in a shared subspace. Task-specific projections are learned
simultaneously with the classifiers in order to couple all the
task from the multiple domains in the obtained subspace.
In [24], the predictive distribution of a GP trained on the
source data is used as a prior for the joint distribution of the
source and target domains. The information from the source
domain can be analytically propagated to the inference of the
target data by simply following the conditional properties of
the GPs. Similarly, in [42] the authors proposed a two-layer GP
that jointly learns separate discriminative functions from the
source and target features to the labels. The intermediate layer
facilitates the adaptation step and a variational approximation
is employed to integrate out this layer, and propagate the
information from the source to the target classifier.

Compared to the aforementioned work, our approach has
the following key differences: in [41], the authors learn the

classifier on a subspace shared among the data from source
and target domains. This can be problematic in cases where
access to target domain data is confined, since it bias the
manifold toward explaining the variations from the source
domain. In contrast to [24], our proposed approach defines
a target specific expert, which is then combined with the
source domain experts. The benefit of this is that the resulting
classifier is not limited by the distribution of the source
data. Also, in contrast to [42], the training of the experts
is performed independently, and thus, we need not retrain
the source classifier. Taken together, these differences bring
significant improvements in estimation of the target tasks, as
shown in our experiments.

III. PROBLEM FORMULATION

We consider a supervised setting for domain adaptation,
where we have access to a large collection of labeled source
domain data, S, and a smaller set of labeled target domain
data, T . Let X and Y be the input (features) and output
(labels) spaces, respectively. Hence, X(s) = {x(s)

ns }Ns
ns=1 and

X(t) = {x(t)
nt }Nt

nt =1, with x(s)
ns , x(t)

nt ∈ R
D , and Nt � Ns . In our

case, the different domains can be different views or subjects.
On the other hand, Y (s) = { y(s)

ns }Ns
ns=1 and Y (t) = { y(t)

nt }Nt
nt =1

correspond to same labels for both source and target domains.
Each vector y{s,t}

n contains the binary class labels of C classes.
In order to avoid the burden of learning approximate solutions
with GP classification, we formulate the predictions as a
regression problem where:

y(v)
nv

= f (v)(x(v)
nv

) + ε(v), (1)

where ε(v) ∼ N (0, σ 2
v ) is i.i.d. additive Gaussian noise, and

the index v ∈ {s, t} denotes the dependence on each domain.
The objective is to infer the latent functions f (v), given the
training dataset D(v) = {X(v), Y (v)}. By following the frame-
work of GPs [18], we place a prior on the functions f (v),
so that the function values f (v)

nv
= f (v)(x(v)

nv ) follow a
Gaussian distribution p(F(v)|X(v)) = N (F(v)|0, K (v)). Here,
F(v) = { f (v)

nv
}Nv
nv=1, and K (v) = k(v)(X(v), X (v)) is the kernel

covariance function, which is assumed to be shared among
the label dimensions. In this work, we use the radial basis
function (RBF) kernel

k(x, x′) = σ 2
f exp

(
− 1

2�2 ‖x − x′‖2
)
, (2)

where {�, σ f } are the kernel hyper-parameters. The regression
mapping can be fully defined by the set of hyper-parameters
θ = {�, σ f , σv }. Training of the GP consists of finding the
hyper-parameters that maximize the log-marginal likelihood

log p(Y (v)|X(v), θ (v)) = −1

2
tr

[
(K (v) + σ 2

v I)−1Y (v)Y (v)T
]

− C

2
log |K (v) + σ 2

v I | + const. (3)

Given a test input x(v)∗ the predicted function eval-
uation f (v)∗ is given from the GP predictive distri-
bution by conditioning on the training data D(v) as
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p( f (v)∗ |x(v)∗ ,D(v)) = N (μ(v)(x(v)∗ ), V (v)(x(v)∗ )) with

μ(v)(x(v)∗ ) = k(v)∗
T
(K (v) + σ 2

v I)−1Y (v) (4)

V (v)(x(v)∗ ) = k(v)∗∗ − k(v)∗
T
(K (v) + σ 2

v I)−1k(v)∗ , (5)

where k(v)∗ = k(v)(X (v), x(v)∗ ) and k(v)∗∗ = k(v)(x(v)∗ , x(v)∗ ).
For convenience we denote μ

(v)∗ = μ(v)(x(v)∗ ) and
V (v)∗∗ = V (v)(x(v)∗ ). Under this general formulation, we
have the choice to learn either (i) independent functions f (v)

or (ii) a universal function f that couples the data from
the two domains. However, neither option allows us to
explore the idea of domain adaptation: In the former we learn
domain-specific models, while in the latter we simplify the
problem by concatenating the data from the two domains. An
alternative would be to merge the two approaches in order
to achieve a better generalization, while also being able to
model domain specific attributes. Such a combined approach
would allow us to obtain more robust predictions.

IV. DOMAIN CONDITIONED GPS

In the following, we introduce the notion of domain adap-
tation in the framework of GPs. Then, we present a novel
methodology to merge the above mentioned learning scenarios,
in order to obtain a universal classifier with good gener-
alization abilities and capable of modeling domain specific
attributes for the target tasks.

A. GP Adaptation

A straightforward approach to obtain a model capable
of performing inference on data from both domains is to
assume the existence of a universal latent function with a
single set of hyper-parameters θ . Thus, the authors in [24]
proposed a simple, yet effective, three-step approach for GP
adaptation (GPA):

1) Train a GP on the source data with marginal likelihood
p(Y (s)|X(s), θ) to learn the hyper-parameters θ . The
posterior distribution is then given by Eqs. (4–5).

2) Use the obtained posterior distribution of the source
data, as a prior for the GP of the target data
p(Y (t)|X (t),D(s), θ).

3) Correct the posterior distribution to account for the target
data D(t) as well.

Now the conditional prior of the target data (given the
source data) in the second step is given by applying Eqs. (4–5)
on X(t)

μ(t |s) = K (s)
st

T
(K (s) + σ 2

s I)−1Y (s) (6)

V (t |s) = K (s)
t t − K (s)

st
T
(K (s) + σ 2

s I)−1 K (s)
st , (7)

where K (s)
t t = k(s)(X(t), X (t)), K (s)

st = k(s)(X(s), X (t)), and
the superscript t|s denotes the conditioning order. Given the
above prior and a test input x(t)∗ , the correct form of the
adapted posterior after observing the target domain data is:

μ
(s)
ad (x(t)∗ ) = μ(s)∗ + V (t |s)∗

T
(V (t |s) + σ 2

s I)−1(Y (t) − μ(t |s))
(8)

V (s)
ad (x(t)∗ ) = V (s)∗∗ − V (t |s)∗

T
(V (t |s) + σ 2

s I)−1V (t |s)∗ , (9)

with V (t |s)∗ = k(s)(X (t), x(t)∗ ) − k(s)(X(s), X(t))
T
(K (s) +

σ 2
s I)−1k(s)(X(s), x(t)∗ ).

Eqs. (8–9) show that final prediction in the GPA is the
combination of the original prediction based on the source
data only, plus a correction term. The latter shifts the mean
toward the distribution of the target data and improves the
model’s confidence by reducing the predictive variance. Note
that we originally constrained the model to learn a single latent
function f for both conditional distributions p(Y (v)|X(v)) to
derive the posterior for the GPA. However, this constraint
implies that the marginal distributions of the data p(X(v)) are
similar. This assumption violates the general idea of domain
adaptation, where by definition, the marginals may have sig-
nificantly different attributes (e.g., input features from different
observation views). In such cases, GPA could perform worse
than an independent GP trained solely on the target data D(t).
One possible way to address this issue is to retrain the
log p(Y (t)|X(t),D(s), θ) of the GPA w.r.t. θ [24]. This option
will compensate for the differences in the distributions by
readjusting the hyper-parameters. However, it comes with the
price of retraining of the model. Furthermore, it does not allow
for modeling domain-specific attributes since the predictions
are still determined mainly from the source distribution.

B. GP Domain Experts (GPDE)

In the proposed approach, we assume that each expert is
a GP that operates only on a subset of data, i.e., D(s),D(t).
Hence, we can follow the methodology presented in Sec. III
in order to train domain-specific GPs and learn different
latent functions, i.e., hyper-parameters θ (v). Within the current
formulation we treat the source domain as a combination
of multiple source datasets (e.g., subject-specific datasets)
D(s) = {D(s1), . . . ,D(sM )}, where M is the total number of
source domains (datasets).

1) Training: Given the above mentioned data split and
assuming conditional independence of the labels from each
domain given the corresponding input features, the marginal
likelihood can be approximated by

p(Y {s,t}, |X{s,t}, θ {s,t})

= p(Y (t)|X(t), θ (t))

M∏
k=1

pk(Y (sk)|X(sk), θ (s)). (10)

We share the set of hyper-parameters θ (s) across all the source
domains. The intuition behind this is that in each source
domain we may observe a different conditional distribution
p(Y (sk)|X(sk)), yet after exploiting all the available datasets
we can model the overall conditional p(Y (s)|X (s)) with a
single set of hyper-parameters θ (s). However, this does not
guarantee that we are also able to explain the target conditional
p(Y (t)|X(t)) with the same hyper-parameters. Recall that in
our domain adaptation scenario the marginals of the labels
are the same p(Y (t)) = p(Y (s)). However, both the mar-
ginal distribution of the features p(X(t)) and the conditional
distribution of the labels p(Y (t)|X(t)) have changed in the
target domain. Thus, we also search for θ (t) for modeling
the domain-specific attributes. Similar to Sec. III learning of
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the hyper-parameters is performed by maximizing

log p(Y {s,t}, |X {s,t}, θ {s,t}) = log p(Y (t)|X(t), θ (t))

+
M∑

k=1

log pk(Y (sk)|X(sk), θ (s)),

(11)

where each log-marginal is computed according to Eq. (3).
The above factorization, apart from facilitating learning of
the domain experts, allows for efficient GP training even with
larger datasets, as shown in [19]. Note that the source experts
can be learned independently from the target, which allows
our model to generalize to unseen target domains without
retraining.

2) Predictions: Once we have trained the GPDE, we need
to combine the predictions from each expert to form an overall
prediction. To achieve so, we build upon the approach in [20],
where we further readjust the predictions from the source
experts using the conditional adaptation from GPA. Hence,
the predictive distribution is given by

p( f (t)∗ |x(t)∗ ,D) =
M∏

k=1

p
βsk
k ( f (t)∗ |x(t)∗ ,D(sk),D(t), θ (s))

· pβt ( f (t)∗ |x(t)∗ ,D(t), θ (t)), (12)

where βsk , βt control the contribution of each expert. In this
work we equally weight the experts and normalize them such
that βt +∑

βsk = 1, as suggested in [19]. The predictive mean
and variance are then given by

μ
gpde∗ = V gpde∗

[
βt V

(t)∗
−1

μ(t)∗ +
∑

k
βsk V (sk)

ad

−1
μ

(sk)
ad

]
(13)

V gpde
∗ =

[
βt V

(t)∗
−1 +

∑
k
βsk V (sk)

ad

−1]−1
. (14)

At this point the contribution of the GPDE becomes clear:
Eq. (13) shows that the overall mean is the sum of the
predictions from each expert, weighted by their precision
(inverse variance). Hence, the solution of the GPDE will favor
the predictions of more confident experts. On the other hand,
if the quality of a domain expert is poor (noisy predictions
with large variance), GPDE will weaken its contribution to
the overall prediction.

C. Weighted GP Domain Experts for Imbalanced Outputs

In the analysis we conducted so far, we treated the multi-
ple outputs as i.i.d. samples from a joint Gaussian distribu-
tion. Hence, we assumed a shared covariance matrix among
the multiple output dimensions, which results in the same
weighting/variance in Eqs. (13–14). This assumption becomes
unrealistic in cases where we have to deal with imbalanced
data in the output, e.g., AUs with different occurrence patterns.
Thus, it is important in each expert to account for a different
variance per output. To address this, we follow the approach
presented in [43] and [44], and introduce a weighting matrix
to the log-marginal likelihood of each expert in Eq. (11),

so that

log p(Y (v)|X(v), θ (v))

= −1

2
tr

[
(K (v) + σ 2

v I)−1Y (v)�(v)Y (v)T
]

− C

2
log |K (v) + σ 2

v I | + Nv

2
log |�(v)| + const, (15)

where �(v) = diag(λ
(v)
1 , · · · , λ

(v)
C ). This is equivalent to learn-

ing a GP with covariance function k(v)(·, ·) = k(v)(·, ·)/λ(v)
c

for each output dimension c. The term 1/λ
(v)
c accounts for the

different variances in the output dimensions and gives more
flexibility to the model, since more representative input-output
mappings can be learned.

Note, however, that the predicted variance of a probabilistic
model depends highly on the training data. A GP domain
expert can have access to data with zero activations for a
certain output, while other outputs may frequently co-occur
together. This suggests that there exists an intrinsic structure
between the outputs, which we do not account for within the
GPDE. To ameliorate this, we re-parameterize λ

(v)
c as

1

λ
(v)
c

= w
(v)
c∑

c w
(v)
c

, (16)

where w
(v)
c is the new parameter to learn. As we can see from

Eq. (16), the variance of each output is now proportional to
the amount of the total variance. Such a re-parameterization
correctly enforces the total variance of the GP to be dis-
tributed to the various outputs. It can be also regarded as
a straightforward way to rectify the assumption of having
i.i.d. outputs, since now frequently co-occurring outputs will
be assigned similar weights, and, hence, a similar covariance
function. We name this approach as weighted Gaussian process
domain experts (wGPDE), to differentiate it from the single
variance GPDE.

1) Re-Weighted Predictions: By propagating the weighting
matrix � to the predictive distribution of the proposed
wGPDE, we can derive the re-weighted predictions for the
c-th output

μ
gpde∗c = V gpde∗c

[
βtλ

(t)
c V (t)∗

−1
μ(t)∗c

+
∑

k
βsk λ

(sk)
c V (sk)

ad

−1
μ

(sk)
adc

]

(17)

V gpde
∗c =

[
βtλ

(t)
c V (t)∗

−1 +
∑

k
βsk λ

(sk)
c V (sk)

ad

−1]−1
. (18)

By comparing Eqs. (13–14) to Eqs. (17–18) we see that
the combined predictions from all the experts depend on the
predicted variance of each output. This allows the re-weighted
experts to be confident (higher contribution to the overall
prediction) for certain outputs, while remaining ‘silent’ for
outputs that have not seen. On the contrary, Eqs. (13–14)
assign the same weight to all outputs, a fact that increases the
bias in the predictions. Algorithm 1 summarizes the adaptation
procedure of the proposed (w)GPDE.

V. EXPERIMENTS

A. Datasets

We evaluate the proposed model on acted and
spontaneous facial expressions from three publicly available
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Algorithm 1 Domain Adaptation With (w)GPDE

Fig. 2. Example images from MultiPIE (top), DISFA (middle) and
FERA2015 (bottom) datasets.

datasets: MultiPIE [45], Denver Intensity of Spontaneous
Facial Actions (DISFA) [46] and BP4D [47] (using the pub-
licly available data subset from the FERA2015 [48] challenge).
Specifically, MultiPIE contains images of 373 subjects depict-
ing acted facial expressions of Neutral (NE), Disgust (DI),
Surprise (SU), Smile (SM), Scream (SC) and Squint (SQ),
captured at various pan angles. In our experiments, we used
images from 0◦, −15◦ and −30◦. DISFA is widely used in
the AU-related literature, due to the large amount of (subjects
and AUs) annotated images. It contains video recordings of
27 subjects while watching YouTube videos. Each frame is
coded in terms of the intensity of 12 AUs on a six-point
ordinal scale. In our experiments, we treated each AU with
intensity larger than zero as active. FERA2015 database
includes videos of 41 participants. There are 21 subjects in
the training and 20 subjects in the development partition.
Each video is annotated in terms of occurrence of 11 AUs.
Example images of the three datasets are given in Fig. 2.

B. Features

We use both a set of geometric features derived from the
facial landmark locations, as well as appearance features.
Specifically, DISFA and FERA2015 datasets come with frame-
by-frame annotations of 66 and 49 facial landmarks, respec-
tively, while a set of 66 annotated points for MultiPIE were
obtained from [49]. After removing the contour landmarks
from DISFA and MultiPIE annotations, we end up with the
same set of 49 facial points for all three datasets. These were
then registered to a reference face (average face per view
for MultiPIE, and average face for DISFA and FERA2015)
using an affine transformation. We then extract Local Binary
Patterns (LBP) histograms [50] with 59 bins from patches

centered around each registered point. Hence, we obtain
98D (geometric) and 2891D (appearance) feature vectors,
commonly used in modeling of facial affect. For the high
dimensional appearance features, in order to remove potential
noise and artifacts, and also reduce the dimensionality, we
applied PCA, retaining 95% of the energy, which resulted in
approximately 200D appearance feature vectors.

C. Evaluation Procedure

We evaluate (w)GPDE on both multi-class (FER on
MultiPIE) and multi-label (multiple AU detection on DISFA
and FERA2015) scenarios. We also assess the adaptation
capacity of the model with a single (view adaptation)
and multiple (subject adaptation) source domains. For the
task of FER, images from 0◦, −15◦ and −30◦ served
interchangeably as the source domain, while inference was
performed via adaptation to the remaining views. For the AU
detection task, the various subjects from the training data
were used as multiple source domains, and adaptation was
performed each time to the tested subject.

To evaluate the model’s adaptation ability, we strictly follow
a training protocol, where for each experiment we vary the
cardinality of the training target data (we always use all the
available source domain data). For MultiPIE, we first split
the data in 5-folds (4 training, 1 testing and iterate over
all folds) and then, we keep increasing the cardinality as:
Nt = 10, 30, 50, 100, 200, 300, 600, 1200. For DISFA we
follow a leave-one-subject-out approach (26 training source
subjects and 1 target test subject at a time). For FERA2015 we
followed the original partitioning suggested in [48] (20 train-
ing source subjects from the training partition, while each
of the 20 subjects in the development partition served as an
individual target domain). From the test subject’s sequence
in DISFA and FERA2015 the first 500 frames were used as
target training data (with increasing cardinality Nt = 10, 30,
50, 100, 200, 500), while inference was performed on the rest
frames of the sequence. This is in order to avoid the target
model overfitting the temporally neighboring examples of
the test subject. For the FER experiments, we employ the
classification ratio (CR) as the evaluation measure, while
for the AU detection we report the F1 score and the area
under the ROC curve (AUC). Both F1 and AUC are widely
used in the literature as they quantify different characteristics
of the classifiers performance. Specifically, F1, defined as
F1 = 2·Precision · Recall

Precision + Recall , is the harmonic mean between the
precision and recall. It puts emphasis on the classification
task, while being largely robust to imbalanced data (such
as examples of different AUs). AUC quantifies the relation
between true and false positives, showing the robustness of a
classifier to the choice of its decision threshold.

D. Models Compared

We compare the proposed approach with the two generic
models GPsource and GPtarget . The former is trained solely
on the source data, while the latter on the target data used
for the adaptation. We also compare to the modeled trained
on the concatenation of the source and target training data,
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TABLE I

LEARNING AND INFERENCE COMPLEXITY OF THE GP-RELATED
METHODS FOR DOMAIN ADAPTATION. THE COMPLEXITY

FOR TRAINING GPsource IS O(N3
s ). GPA [24] AND THE

PROPOSED (w)GPDE CAN BENEFIT FROM OFFLINE

LEARNING OF THE EXPENSIVE SOURCE CLASSIFIER.
FOR ATL-DGP [42] C IS THE NUMBER OF

CLASSES AND M THE NUMBER OF

INDUCING POINTS. NOTE
THAT Nt � Ns

i.e., GPs+t . Additionally, we compare to the state-of-the-art
models based on GPs for supervised domain adaptation, i.e.,
the GPA [24] and the asymmetric transfer learning with deep
GP (ATL-DGP) [42]. The GPA is an instance of the proposed
GPDE, with only a source expert (no target) and predictions
given by Eqs. (8)–(9). ATL-DGP employs an intermediate
GP to combine the predictions of GPsource and GPtarget . In
Table I, we summarize the learning and inference complexity
of all the GP-related methods. It is worth noting that GPA [24]
and the proposed (w)GPDE can benefit from offline learning
of the expensive source classifier, GPsource. GPA can perform
directly the adaptation during inference. Hence, it is the most
efficient method of all. However, the fact that it does not
update the kernel’s hyper-parameters after observing the target
training data is the reason why it is expected most of the time
to perform worse than the concatenated model, i.e., GPs+t .
Adaptation in the proposed (w)GPDE depends only on the
amount of available target training data Nt , and thus, it is
very efficient since Nt � Ns . On the other hand, GPs+t and
ATL-DGP [42] need to go through the source data in order to
perform the adaptation. Hence, even with few target training
data, their efficiency is bounded from the cardinality of the
source domain.

Apart from the GP-based adaptation techniques, we
compare to the deterministic max-margin domain trans-
fer (MMDT) [37], that adjusts the SVM classifier to the
domain adaptation scenario, and kernelized Bayesian transfer
learning (KBTL) [41] that finds a shared subspace appro-
priate for the classification of various tasks (domains) in a
probabilistic manner. Finally, we compare to state-of-the-art
methods from the field of action unit analysis, i.e., the dynamic
SVM (dynSVM) [28] that performs the adaptation by neutral
calibration (e.g., removing the average, per subject, neutral
image from the input data), and the confidence preserving
machine (CPM) [25] that reweights the source classifier based
on a confidence measure, before applying it to the data from
the target subject. Implementations of dynSVM and CPM were
not available, thus, the reported results were taken from the
authors’ websites. The parameters of the compared methods
were tuned based on a cross-validation strategy. The proposed
(w)GPDE is a non-parametric model with no free parameters
to tune.

1) View Adaptation From a Single Source (‘Where’): In this
experiment, we demonstrate the effectiveness of the proposed
approach when the distributions between source and target
domain (0◦, −15◦ and −30◦) differ in an increasing non-linear
manner. For this purpose we evaluate all considered algorithms
in terms of their ability to perform accurate FER as we move
away from the source pose. Notice that the weighted version
of our method, i.e., wGPDE is not evaluated on the current
experiment since FER is an intrinsic single output problem,
and hence, there are no additional variances to be modeled.
Furthermore, in this scenario we only considered the geometric
features as inputs to the compared models since they have been
proved efficient to model the global phenomena of the facial
expressions [17].

Table II summarizes the results. The generic classifier
GPsource exhibits the lowest performance, due to the fact
that it has only been trained on source domain images. It is
important to note the fluctuations in the classification rate
when the source and target domain vary. We can clearly see
that when the frontal pose, i.e., 0◦ is used as the source
domain, the symmetric nature of the face helps towards
achieving a satisfactory performance on the target domains.
Yet, the performance degrades when the symmetry is severely
violated, e.g., 0◦ → −30◦. When −15◦ and −30◦ serve as the
source domain, these symmetric attributes cannot be uncovered
from the generic GPsource. Hence, we observe a significantly
lower performance for the target frontal view (around 55%).
The above results clearly indicate the inefficiency of a generic
classifier to deal with data of different characteristics.

On the other hand, the GPtarget when trained with as few
as 30–50 data points, in most of the cases, achieves similar
performance to the GPsource since it benefits from modeling
domain-specific attributes. A further increase in the cardinality
of the target training data results in a significant improvement
in the classification rate. This is even more pronounced in the
scenario we have illustrated above, i.e., the target frontal view.
As we can see the generic classifier when trained on the 0◦ can
reach the CR of 84.06%, compared to the achieved 53.82%
and 56.56% when trained on −15◦ and −30◦, respectively.

The performance of the concatenated model, i.e., GPs+t

is influenced from both the source and the target data, as
was expected. When we have access to only few training
target data, GPs+t is influenced more from the source domain.
Hence, in situations where GPsource performs poorly, we
observe a negative transfer, and thus, GPs+t cannot reach the
performance of the target classifier, even with the inclusion
of more target data. On the contrary, when both GPsource

and GPtarget achieve high performance, the GPs+t manages
to surpass both of them.

A similar trend can be observed in the performance of the
adaptation methods, where the inclusion of 10–30 labeled data
points from the target domain is adequate to shift the learned
source classifier towards the distribution of the target data.
The GPA uses the extra data to condition on the generic
classifier GPsource and increase its prediction performance.
Thus, it can reach its highest performance in situations where
the generic classifier GPsource is already sufficient for the
FER task (i.e., −15◦ and −30◦). However, in most cases
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TABLE II

AVERAGE CLASSIFICATION RATE ACROSS 5-FOLDS ON MULTIPIE. THE VIEW ADAPTATION IS PERFORMED WITH INCREASING
CARDINALITY OF LABELED TARGET DOMAIN DATA (10 − 1200)

it cannot achieve higher performance than the GPs+t . This
is expected since the latter learns the hyper-parameters on
the concatenation of both source and target domains. On the
contrary, GPA performs inference with the parameters learned
using only the data from the source domain. ATL-DGP on
the other hand follows the learning strategy of the GPs+t ,
since it facilitates a joint learning scheme where GPsource and
GPtarget are fused together in an intermediate latent space,
via conditioning, in a deep architecture. The advantage of the
latter is evidenced by the highest achieved accuracy in the
situations where the source classifier performs averagely, i.e.,
0◦ → −30◦, −15◦ → 0◦ and −30◦ → 0◦ for Nt = 10–50.
However, the joint training scheme of ATL-DGP limits its
adaptation ability, due to the high effect of the source prior.
A further disadvantage of ATL-DGP’s joint learning is that it
requires retraining of both source and target classifiers every
time the target distribution changes.

An opposite pattern (compared to ATL-DGP) can be
observed in the performance of both MMDT and KBTL.
Both of these methods achieve, to some extent, to reach the
accuracy of the generic GPtarget classifier, when more and
more target data become available. On the contrary their
performance is problematic when dealing with quite few
labeled target data, i.e., Nt < 50. In such cases, the parametric
nature of MMDT does not allow for effective learning of the
projections from the target to the source domain, and hence,
the learned classifier fails to poor results. Similarly, KBTL
cannot recover accurate projections from the target domain
data to a low-dimensional space. The latter has a negative
impact on the accuracy of KBTL.

Finally, the proposed GPDE, exhibits the most stable
performance for varying cardinality of labeled target data.

This can be attributed to the fact that it uses the notion
of experts to unify GPsource and GPtarget into a single
classifier. To achieve so, GPDE measures the confidence of
the predictions from each expert (by means of predictive
variance), in contrast to GPA (uses source expert only) and
ATL-DGP (uses an uninformative prior). This property of
GPDE is more pronounced in the highly non-linear adaptation
scenarios of 0◦ → −30◦, −30◦ → 0◦ and −15◦ → 0◦ for
Nt > 200, where GPtarget achieves the highest classification
ratio. GPDE performs similarly to the target expert while,
GPA and ATL-DGP underestimate the prediction capacity of
the target-specific classifier, and thus, attain lower results. The
only situations where GPDE achieves inferior performance are
the cases where GPsource performs poorly. Thus, as expected,
GPDE cannot attain a reliable adaptation without having
access to latent factors, opposed to ATL-DGP.

2) Subject Adaptation From Multiple Sources (‘Who’): In
this section, we evaluate the models in a multi-label classifica-
tion scenario, where the adaptation is performed from multiple
source domains. This is also a natural setting to demonstrate
the importance of modeling different variances per output
dimensions with the proposed wGPDE. In contrast to the view
adaptation scenario for FER, herein we report results for both
geometric and appearance features, since different AUs are
better explained from different type of features.

Overall, this is a more challenging setting, since the
datasets are comprised of naturalistic facial expressions, and
the recorded subjects are experiencing the affect in different
ways and levels. The difficulty of the task can be seen in
Fig. 3, where the subject-specific classifier GPtarget trained
with 10–30 labeled data points, achieves a higher average
F1 score than the generic classifier GPsource, which is trained
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Fig. 3. Average F1 score for joint AU detection with subject adaptation on DISFA (top) and FERA2015 (bottom) with increasing number of target domain
data. The results are reported when using geometric (left) and appearance (right) features.

on all available source subjects. The importance of this
outcome gets more clear if we consider that it holds for
both DISFA and FERA2015, when using either geometric or
appearance features. This suggests that, no matter the nature of
the inputs, personalized AU detectors are superior to generic
classifiers, even when limited data are available. Another
factor that is worth mentioning is that the average results are
obtained over a large set of AUs (i.e., 12 AUs for DISFA
and 11 AUs for FERA2015). This fact, not only constitutes
the results more reliable, but it also implies that even a small
increase in the average performance (e.g., 1-2%) can be
attributed to an improved performance over several AUs.

By continuing our analysis of Fig. 3 we observe that the
adaptation models, i.e., GPA, GPDE and wGPDE achieve
superior F1 score compared to the generic GPtarget , under
all scenarios. The latter implies that images from source and
target subjects contain complementary information regarding
the depicted facial expressions. Hence, the target classifier
does not consist anymore an upper bound limit for the adap-
tation. This can be explained from the multi-modal nature of
the problem , since we can have different AU combinations
per sequence, contrary to the universal expressions appearing
in the view adaptation scenario. Thus, expressions that are
present only on the source sequences, can be used to improve
the AU detection task for the target subject. Note also that
the classifier trained on the concatenation of the source and

target domains, i.e., GPs+t , outperforms almost all models
on DISFA. However, this is not the case on FERA2015
dataset, where the subject differences are more pronounced
due to the high resolution images. Hence, GPs+t fails to the
performance achieved by either GPsource or GPtarget classifier.
The proposed GPDE and wGPDE benefit from modeling the
target-specific information and can attain a better adaptation
compared to GPA. Another reason for the difference in the
performance between the proposed model and GPA is that the
latter treats all training subjects as data from a single, broader,
source domain. Hence, GPA smooths out the individual dif-
ferences and lessens the contribution of the target domain, as
the variations of the target data can be explained, on average,
by the source domain.

Finally, the importance of modeling individual variances
becomes evident by comparing the attained scores from
wGPDE and GPDE. In 3 out of 4 scenarios, wGPDE achieves
superior performance with more pronounced results on DISFA
dataset when geometric features are used (see Fig. 3(a)).
On the other hand, when appearance features are used, as
we can see in Fig. 3(b) both wGPDE and GPDE perform
similarly. This can be explained by the fact that images from
DISFA are not of high resolution. Hence, the local patches
cannot explain adequately all the important variations that
differ among the various outputs (i.e., AUs). However, as we
can see in Fig. 3(d) this is not the case with the high-resolution
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TABLE III

F1 SCORE AND AUC FOR JOINT AU DETECTION ON DISFA AND FERA2015. SUBJECT ADAPTATION WITH Nt = 50

images from FERA2015. The input appearance features are of
better quality, and thus, wGPDE can more accurately model
the individual variances per output, and thus, attain higher
scores.

For a better understanding of the efficacy of the adaptation
task, in Table III we report the detailed results per AU
for the case of Nt = 50. Note that this setting is not
always the most beneficial for our proposed approach. In
most scenarios the gap in the performance between (w)GPDE
and the other methods increases as we include more target
data. However, we demonstrate the performance on Nt = 50
because AU annotations are expensive and laborious. Thus,
such a setting is a more reasonable choice for adaptation for
the current task. The proposed (w)GPDE under the current
setting, and using the geometric features as input (upper half of
Table III), attains an average F1 improvement on both DISFA
and FERA2015 of 2%. This small increase in the average
performance translates to an improved F1 score on 6/12 and
8/11 AUs, respectively. The robustness of (w)GPDE is further
supported by both per AU and average AUC. We can see that
(w)GPDE achieves higher AUC even in the AUs that reports
inferior F1 score, resulting in 9/12 and 10/11 improved AUs on
DISFA and FERA2015, respectively. Thus, it is evident that
(w)GPDE constitutes a more reliable classifier, under these
settings. Regarding the appearance features (lower half of
Table III) the average improvement of (w)GPDE is marginal,
especially on FERA2015. Yet, if we look again individually at
each AU, we observe that the proposed model attains increased
F1 score on 6/12 (8/12 in terms of AUC) and 7/11 (11/11 in
terms of AUC), on DISFA and FERA2015, respectively.

By comparing wGPDE to GPDE we can further observe
that modeling of individual variances results in improved
average performance, which translates to an improvement on
certain AUs. An indicative example is the increase in F1 of
AUs 1, 2, 5, 6 on DISFA, especially when using the geometric

features. On all these 4 AUs, the standard GPDE fails to reach
the performance of the generic GPtarget classifier. However,
the proposed weighting allows the GPDE to model output-
specific attributes, or ‘pair’ the variances that are associated
with co-occurring outputs, e.g., AUs 1, 2. Similar pattern can
be observed in the results for AU2, for geometric, and AUs
2, 4, 6, for appearance features on FERA2015. Especially for
AUs 4, 6 the increase in F1 is further supported by an increase
in AUC of 2% and 4%, respectively.

We next compare the proposed (w)GPDE to the state-of-the-
art models from the literature on AU analysis, which attempt
to perform the adaptation. We compare to the supervised
dynSVM [28] and the semi-supervised CPM [25]. dynSVM
attempts to perform the adaptation at the feature level (combi-
nation of geometric and appearance features), where the input
data from each subject (domain) are normalized by removing
the dynamics of the expression. CPM on the other hand
tries to adjust the classifier to the target domain. It achieves
so by taking into account the confidence/agreement in the
predictions of source soft classifiers, when assessing the target
data.

Table IV summarizes the results. At first we can see that
the proposed wGPDE outperforms both dynSVM and CPM on
both DISFA and FERA2015. The improvement over dynSVM
on DISFA is marginal. However, the authors in [28], before
applying the dynSVM, attempted to re-balance the data in
order to account for the mismatch in the distribution of
activated AUs. This explains the superior performance of
dynSVM on less frequently occurring AUs, i.e., AUs 9, 15, 20
on DISFA and AUs 14, 23 on FERA2015. On the other hand,
CPM reports lower results, both on average and per AU, on
both datasets. This is partly attributed to the fact that CPM
is a semi-supervised method and uses soft labels (i.e., the
predictions of the source classifier) as ground truth labels
for the target data during training. Another reason for its
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TABLE IV

F1 SCORE FOR JOINT AU DETECTION ON DISFA AND FERA2015. COMPARISON TO STATE-OF-THE-ART.
SUBJECT ADAPTATION FOR wGPDE HAS BEEN PERFORMED WITH Nt = 50

Fig. 4. Quantification of the confidence in the probabilistic predictions
in terms of NLPD for DISFA (left) and FERA2015 (right) with increasing
number of target domain data.

low performance is the ‘virtual’ way that CPM utilizes to
measure the confidence. In contrast, the proposed wGPDE
has a well determined probabilistic way to correctly estimate
the confidence in the predictions of the various experts. This
allows the wGPDE to weight the contribution of each expert
in the final classification, which results in more accurate
predictions.

3) Assessing the Confidence in the Predictions: Herein, we
assess the ability of (w)GPDE to measure the confidence in
the output labels, by means of the predicted variance. To this
end, we use the negative log-predictive density (NLPD) as
an evaluation measure. It is commonly used in probabilistic
models, since it takes into account the predictive variance.
In Fig. 4 we see the NLPD for the baseline generic classifiers,
i.e., GPsource, GPtarget and GPs+t , and for the proposed
(w)GPDE, on both DISFA and FERA2015 datasets. First of
all we observe that all the models (apart from the GPtarget

on DISFA and GPs+t on FERA2015) increase their vari-
ance in the predictions (NLPD is increasing), as we include
more training target data. This, however, is expected since
by increasing the training set, we observe more variations
in the input data (different AU combinations). Hence, the
variance in the outputs also increases. In the case of DISFA,
(Fig. 4(left)) the target expert becomes more confident for
Nt > 10. We attribute this to the nature of the videos in
DISFA, which contain less frequently varying expressions over
time. Thus, the generic personalized classifier has seen most of
the available variations – on average – which results in reduced
uncertainty. On the other hand, the events on FERA2015 are
shorter, hence, more frequent variations. Thus, the relevant
NLPD at first decreases, but as more data become available
(more AU combinations) the uncertainty increases. Eventually,
in both situations the generic GPtarget becomes less confident
than GPsource. In contrast, this is not the case for the GPs+t

classifier on FERA2015. The weird behavior of GPs+t is
an indication that it focuses on universal characteristics and
variations on the face, which are irrelevant to the task of AU
detection. Hence, the more data it sees, the more confident it
becomes, yet it still predicts with low F1 score, as can be also
seen from Fig. 3(d).

By comparing GPDE to wGPDE, we observe a similar
modeling behavior. However, GPDE without the weighting
can only produce a single variance for all outputs. This has
a negative impact on the NLPD, since the model is equally
confident for all the outputs. Thus, GPDE results in being
over-confident, even for false predictions. On the other hand,
the weighting term allows the wGPDE to produce different
variance for each predicted output.

The above claims for the difference between GPDE and
wGPDE are better explained from Fig. 5. In Fig. 5(top)
we see an example where both GPDE and wGPDE predict
the exact same labels (almost the same predicted means).
However, GPDE (Fig. 5(left)) suffers from heavier tails. This
results in less accurate estimation of the mass probability for
AUs 1, 2, 10, 12, which can be interpreted by also a higher
NLPD. The same behavior of heavier tails can be observed in
another example in Fig. 5(bottom). However, now GPDE and
wGPDE disagree on their predictions for AUs 6, 17. wGPDE
can better estimate the probability mass for the quite uncertain
AUs 6, 17, which results in their correct prediction compared
to the unweighted GPDE.

4) Cross Dataset Adaptation: Herein, we evaluate the
robustness of the models when performing the subject adap-
tation, in a more challenging scenario. We perform two
different cross-dataset experiments, FERA2015→DISFA and
DISFA→FERA2015.2 Note that if the same subjects were
present on both datasets we could also address the question
‘what’, by modeling the causal factor that elicited the depicted
facial expressions across the datasets. Since we lack the appro-
priate data, we focus only on the question ‘who’. We evaluate
the models’ performance on 7 AUs (i.e., 1, 2, 4, 6, 12, 15, 17)
that are present in both datasets. We employ the geometric
features, since the images from the two datasets differ signifi-
cantly in resolution. However, even the geometric features are
being affected by factors, such as, facial pose and size. This
imposes a further difficulty on the alignment of the input facial
features.

By analyzing the results in Fig. 6 we can draw two
quick conclusions. First, FERA2015 is a more representative
dataset for the task of AU detection. The generic classifier

2‘A→B’ denotes the training on dataset A and testing on dataset B.
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Fig. 5. Probabilistic prediction of joint AU activations on FERA2015 from GPDE (left) and wGPDE (right). The reported tails account for the predicted
standard deviation. Shorter tails correspond to more confident predictions. Both GPDE and wGPDE are trained with Nt = 50.

TABLE V

CROSS-DATASET EVALUATIONS ON 7 AUs PRESENT IN BOTH DISFA AND FERA2015 DATASETS. THE MODELS ARE TRAINED ON FERA2015
AND TESTED ON DISFA DATASET (F → D), AND THE OTHER WAY AROUND (D → F). SUBJECT ADAPTATION WITH Nt = 50

Fig. 6. Cross-dataset evaluations. Average F1 score of the 7 common AUs
present in both DISFA and FERA2015 datasets. The models are trained on
data from FERA2015 and tested on data from DISFA (left), and the other
way around (right). The reported results are obtained with geometric features
and increasing cardinality of labeled target domain data.

GPsource in Fig. 6(left) achieves similar performance to the
adaptation models in Fig. 3(a). This does not hold for the
generic GPsource in the DISFA→FERA2015 experiment. The
latter is further supported by the performance of GPtarget and
GPs+t , which by including information from the target data
they can significantly outperform the generic GPsource on the
DISFA→FERA2015 adaptation. The second finding is related
to the advantage of the joint modeling of the AUs. This is

illustrated in the performance of the generic GPtarget in both
cross-dataset evaluations. We can see that the average results
are lower than the corresponding ones from Table III.

Regarding the performance of the adaptation methods we
observe that in the FERA2015→DISFA scenario, all the
compared models benefit from the presence of the additional
target domain data. More interestingly, (w)GPDE consistently
outperforms GPA and reaches the average performance of
the corresponding AUs in the within dataset evaluations from
Table III. The importance of wGPDE is not obvious in this
scenario. However, in the DISFA→FERA2015 adaptation,
wGPDE manages to correctly model the individual variances
in the target data, and hence, achieves better performance than
the generic GPtarget (contrary to the simple GPDE).

Finally, the detailed results per AU for the cross dataset
adaptation are presented in Table V. It is clear that the pro-
posed approach, not only outperforms its counterparts on the
current experiment, but also achieves improved performance
on most of the AUs (particularly in FERA2015→DISFA),
compared to the within dataset evaluations. This is an indicator
of the quality of the achieved adaptation, since the model
becomes less sensitive to the input source data. On the other
hand, the subject normalization of dynSVM does not attain a
sufficient adaptation.
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VI. DISCUSSION AND CONCLUSIONS

From the conducted experiments on various adaptation
scenarios, we made several important observations: the source
classifier trained on a large number of data can easily be
outperformed by the classifier trained on as few as 50 examples
from the target domain. Furthermore, the existing adaptation
approaches try to adapt the target domain to the source
domain by assuming that the two distributions can be matched.
Yet, when more target data become available, a generic tar-
get classifier can largely outperform the existing adaptation
approaches. To address the aforementioned challenges, we
have presented a method that exploits successfully the non-
parametric probabilistic framework of GPs to perform domain
adaptation for both multi-class and multi-label classification
of human facial expressions. In contrast to existing adaptation
approaches, which leverage solely the source distribution dur-
ing adaptation, the proposed approach defines a target expert
to model domain-specific attributes, and reduce that way the
effect of negative transfer. As a purely probabilistic model,
(w)GPDE explores also the variance in the predictions. The
latter consists an accurate measure of confidence, and as such,
it can be used to reevaluate the predictions from the various
experts to achieve an improved classification performance.

To conclude, in the current work we demonstrated
the advantages of the proposed (w)GPDE by performing
adaptation of two contextual factors: ‘who’ (subject) and
‘where’ (view). In our future work we plan to explore the
remaining contextual factors (i.e., ‘when’, ‘why’, ‘what’ and
‘how’), simultaneously to attain a general framework for
adaptation. Although the ‘when’ and ‘how’ factors can easily
be incorporated in our framework, by accounting for the
temporal and multi-modal (e.g., video and audio) information
in the sequences, respectively, adaptation of the other factors
is more difficult, especially due to the lack of appropriate data.
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