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Abstract—

Joint modeling of the intensity of multiple facial action units (AUs) from face images is challenging due to the large number of AUs
(30+) and their intensity levels (6). This is in part due to the lack of suitable models that can efficiently handle such a large number of
outputs/classes simultaneously, but also due to the lack of suitable data the models on. For this reason, majority of the methods resort
to independent classifiers for the AU intensity. This is suboptimal for at least two reasons: the facial appearance of some AUs changes
depending on the intensity of other AUs, and some AUs co-occur more often than others. To this end, we propose the Copula regression
approach for modeling multivariate ordinal variables. Our model accounts for ordinal structure in output variables and their non-linear
dependencies via copula functions modeled as cliques of a conditional random fields. The copula ordinal regression model achieves
the joint learning and inference of intensities of multiple AUs, while being computationally tractable. We demonstrate the effectiveness
of our approach on three challenging datasets of naturalistic facial expressions and we show that the estimation of target AU intensities
improves especially in the case of (a) noisy image features, (b) head-pose variations and (c) imbalanced training data. Lastly, we show
that the proposed approach consistently outperforms (i) independent modeling of AU intensities and (ii) the state-of-the-art approach for
the target task and (iii) deep convolutional neural networks.

F

————————————————————————-

1 INTRODUCTION

Human facial expressions are typically described in terms of variation
in configuration and intensity of facial muscle actions defined using
the Facial Action Coding System (FACS) [8]. Specifically, the FACS
defines a unique set of 30+ atomic non-overlapping facial muscle ac-
tions named Action Units (AUs) [37]. It also provides rules for scoring
the intensity of each AU in the range from absent to maximal intensity
on a six-point ordinal scale, denoted as neutral<A<B<C<D<E.
Thus, using FACS, human coders can manually code nearly any
anatomically possible facial expression, decomposing it into specific
AUs and their intensities. However, this process is tedious and error-
prone due to the large number of AUs and the difficulty in discerning
their intensities [38]. On the other hand, automated estimation of the
AU intensity is challenging for many reasons such as the subject-
specific facial morphology and expressiveness level [45], as well as
the changes in lighting and the head-pose variation.

Co-occurrences of the intensity levels of different AUs are another
important factor that affects their coding/automated estimation. For
instance, the criteria for intensity scoring of AU7 (lid tightener) are
changed significantly if AU7 appears with a maximal intensity of
AU43 (eye closure), since this combination changes the appearance
as well as timing of these AUs [8]. Furthermore, co-occurring AUs
can be non-additive, in the case of which one AU masks another,
or a new distinct set of appearances is created [8]. As an example
of the non-additive effect, AU4 (brow lowerer) appears differently
depending on whether it occurs alone or in combination with AU1
(inner brow raise). When AU4 occurs alone, the brows are drawn
together and lowered, while in AU1+4, the brows are drawn together
but are raised due to the activation of AU1. This, in turn, significantly
affects their appearance. Moreover, some AUs are often activated
together, e.g. AU12 and AU6 in the case of smiles, but with different
intensities depending on the type of smile (e.g., genuine vs. posed [2]).

Therefore, modeling dependencies among (the intensities of) multiple
AUs is expected to result in models that are more robust to noisy
features and imbalanced training data, leading to a more accurate
estimation of the target AU intensities [30], [47].

To date, most of the work on automated analysis of AUs has
focused on detection of the presence/absence of AUs (e.g., [7], [34],
[38]) instead of their full range intensity estimation. Furthermore, few
methods attempted joint modeling of AUs activations (e.g., [9], [31],
[65], [79]). However, these methods can deal only with the binary
classification problems, and, thus, are not applicable to the joint
estimation of intensity of multiple AUs. Because the AU intensity
estimation is a relatively new problem in the field, few works have ad-
dressed it so far. Most of these works perform independent estimation
of the AU intensity using either classification-based approach [37],
[39], [47] or regression-based approach [21]. To the best of our
knowledge, the only methods that attempt joint estimation of multiple
AUs intensity are reported in [22], [30], [50]. The methods [30], [50]
perform a two stage joint modeling of AU intensity. Specifically, in
[50], the scores of the pre-learned regressors, such as Support Vector
Regression, are fed into a set of Markov Random Field trees, used
to model dependencies of subsets of AUs. Similarly, [30] models AU
dependencies using a Dynamic Bayesian Network (DBN) approach,
which feeds as inputs the AU-specific spectral regressors. The current
state-of-the-art approach for the joint modeling of the AU intensity
[22] formulates a generative MRF model, called Latent Tree (LT).
In contrast to the two works mentioned above, this method can deal
with the highly noisy and missing input features due to its generative
component. Nevertheless, there are several critical limitations of
the proposed approaches. The model outputs in [50] are treated as
continuous, despite the fact that the intensity levels are defined on
an ordinal (discrete) scale. Furthermore, in performing the two-stage
learning, [30], [50] fail to allow the input features to influence the
learned AU dependencies. Although defined in a probabilistic manner,
the LT approach [22] relies on a set of heuristics for the model to be
computationally tractable for more than few AUs. Also, Explicitly
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Fig. 1: Joint modelling of AU intensities. The marginals (a, b) are computed AU separately and are directly used in independent models
for predictions. The intensities thresholds are shown in solid black lines. Note that the AU1 marginal model here is incapable of predicting
levels 1&3. Yet, due to the strong association between AU1&2 , the joint model overcomes this by learning a joint distributions, described
by copulas, each pair of AUs. This joint distribution is represented by a sparse graph of AU relations in which the edge potentials, defined by
bivariate copula functions, and the node potentials, defined by ordinal regressors, are jointly learned.

modeling the relations between co-occurrences has been addressed
recently for binary detection (e.g., for object detection [32]), and not
for multi-level intensities. The proposed Copula Ordinal Regresion
(COR) model addresses these limitations. We model the AU intensity
relations by allowing them to be non-linearly related - in contrast
to present models that account only for linear dependencies. We do
so by means of copula functions, known for their ability to capture
highly non-linear dependencies through a simple parametrization.
The notion of the copula functions has previously been explored
for modeling of structured output [71] for AU intensity estimation.
However, this model has two limitations. First, the AU intensity is
modelled in a homoscedastic manner. More precisely, the full range
of AU intensities is modelled with the same correlation parameter.
This is suboptimal since AU dependencies can be very different
for facial expressions with high and low intensity. Secondly, the
potentials of the CRF are optimized independently and the inference is
performed globally. This makes the optimization efficient but higher-
order dependencies are ignored by that model.

Contributions. To address the primary challenge of computational
modeling of variable and complex dependencies that exist among
intensities of multiple AUs, we propose the Copula Ordinal Re-
gression model for joint AU intensity estimation. Specifically, we
propose to use the powerful framework of copula functions [58] to
efficiently model dependencies of intensities among AUs. Copula
functions generalize the notion of linear correlation to more flexible
dependency structures specified using simple parametric functional
families (copula families). The key advantage of copula models
is that they retain representational and computational efficiency by
decoupling the modeling of dependencies from the modeling of
marginal densities, as detailed in Sec.3.2. The basic idea is that
one starts with state-of-the-art independent (marginal probability)
AU models and then captures the intrinsic AU dependence (joint
probability) through copula functions, while guaranteeing that the
marginals remain unaltered. This presents a distinct advantage over all
previously surveyed models that tightly couple the marginal and joint
model specification/estimation, resulting in often intractably complex
models.

Even though copulas model dependencies using compact para-
metric functions, it is still necessary to estimate their parameters
from data. To this end, we propose a new Conditional Random Field
(CRF) model in Sec.3.2 and the accompanying learning and inference
strategies in Sec.3.5. The CRF-based model considers sparse, graph-
induced, cliques of AUs (inferred from data and illustrated in Fig.5),
where dependencies in each clique are modeled using an independent

copula model. The joint CRF model is then estimated using a new,
efficient block descent algorithm that intuitively combines optimiza-
tion of dependencies (copula association parameters) with learning of
independent marginal model parameters (the intensity levels of each
AU from the corresponding covariates, i.e., the locations of a set of
fiducial facial points). Furthermore, we introduce the heteroscadastic
association for Copula regression. The association is directly learned
from the data and depends on the level of intensity of the target AUs.
To avoid the typically challenging evaluation of the CRF partition
function, we propose to use piece-wise optimization [32], [62], of the
CRF. In this way, the higher order dependencies are considered while
the optimization kept tractable. The joint inference in this model is
then accomplished using a fast loopy belief approximation method on
the learned CRF model. Below we emphasize the main contributions
of the proposed work:

• We propose a novel structured CRF model for joint learning
of multiple ordinal outputs. The data structure is seamlessly
embedded via an undirected graphical model, capturing the
ordinal structure in AU intensity levels via ordinal unary
cliques, and non-linear dependencies between the network
outputs via the copula binary cliques. We show that this model
better estimates the intensities of the target AUs, especially
from scarce and highly im-balanced data.

• The proposed work introduces novel methodology for multi-
class multi-output ordinal learning. While this approach relies
on ideas from ordinal modeling, it uses the copula framework
to tackle the challenging problem of intensity estimation of
multiple AUs. Furthermore, we propose the pice-wise CRF
optimization to achieve efficient learning and inference. We
also demonstrate the robustness against noisy image features
and head-pose variations by evaluating the model on noisy
datasets with a relative low resolution (Shoulder Pain) and by
testing and comparing the models on only nonfrontal images
in the test data.

• We show that the proposed approach significantly outperforms
the state-of-the-art approaches ( [22], [23], [50], [71]) and
deep CNNs ( [13], [43], [80]) to the target problem in the
experiments on three challenging benchmark datasets for
modeling of AU intensity levels, FERA2015 [68], DISFA [39]
and Shoulder Pain [35].

2 RELATED WORK

Over the past decades, there has been extensive research in computer
vision on facial expression analysis [52], [53], [70]. Here we will
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present a brief review of the previous work on AU intensity estimation
and other related methods that are applicable to this problem. As
already mentioned before, most past work addresses the problem
of either facial affect detection or AU detection. The problem of
automatic AU intensity estimation has been tackled by few works
only recently. Predecessors of this line of research were works on
temporal dynamics of AUs. These works aimed to encode tempral
segments - onset, apex, and offset of AUs - rather than actual intensity
of AUs. examples of such works are [19], [20], [51], [69].

AU intensities estimation can be divided into traditional shape and
appearance based models and models that rely on deep convolutional
neural networks. Recently, it was shown that in order to achieve state-
of-the-art results in a series of important computer vision applications,
such as face recognition/verification and facial expression analysis,
it is important to provide an enhanced representation of the face
that contains the locations of several key facial landmarks [53].
However, recent advances in deep neural networks (DNN), and,
in particular, convolutional models (CNNs) [13], have allowed to
completely remove or highly reduce the dependence on physics-based
models and/or other pre-processing techniques, by enabling the ’end-
to-end’ learning in the pipeline directly from input images. While the
effectiveness of these models has been demonstrated on many general
vision problems [27], [61], [63]. These models have been applied
on baseline tasks such as expression recognition AU detection [25],
[33], [80] and AU intensity estimation [13] have been investigated.
All of them, however, follow the traditional ’blind deep learning’
paradigm that relies on large labeled training datasets (e.g., 100K+
samples in [44]). Yet, in the facial data domain, obtaining accurate
and comprehensive labels is typically prohibitive. For instance, it takes
more than an hour for an expert annotator to code AUs intensity for 1
minute of face video. Even then, the annotations are highly biased and
have low inter-annotator agreement. Coupled with large variability in
imaging conditions, facial morphology, dynamics of expressions, this
has resulted in the lack of suitable large datasets for effective deep
model learning. Therefore, not surprisingly, appearance based models
are still superior to CNNs for the task on AU intensity estimation. In
what follows, we will review the related work for both, regression-
based and classification-based methods for AU intensity estimation.
We will also include the work on CNNs and compare the performance
of those models.

Classification

The majority of the existing works attempt to recognize AUs inde-
pendently. This is done by either static of dynamic models. Static
models typically tackle the problem as discriminative classification,
in which each video frame is evaluated independently. Examples
are: Neural Network [24], Adaboost [4], and SVMs [36]. Dynamic
models also capture the temporal transition between adjacent frames
in a sequence. For instance, Dynamic Bayesian Network (DBN) with
appearance features [66]. Other variants of DBN are based on Hidden
Conditional Random Fields for AU detection [72]. While the methods
above are used for AU-detection, it is however needed to treat the AU
intensity estimation problem as 6-class classification. For example,
the authors of [38] employed six one-vs.-all binary SVM classifiers.
Alternatively, a single multi-class classifier (e.g. ANN, Boosting or
SVM) could be used. The second Facial Expression Recognition
and Analysis Challenge (FERA15 [68]) proposed a sub-challenge
for AU intensity prediction, where most of the proposed systems
are based on independent multi-class classifier. For example, [41]
applied feature fusion (appearance and geometry) with a multi-kernel
Support Vector Machine. Similarly, [17] applies decision-level fusion
strategies for AU intensity estimation. Instead, [3] focused on robust
features extraction with the goal to improve the performance for cross
domain experiments.

Regression
AU intensity estimation is nowadays often posed as a regression
problem. Regression methods penalise incorrect labelling proportion-
ally to the difference between ground truth and prediction. Such
consideration of the labels is absent in most of the classification based
methods. Examples include Support Vector Regression [14], [18],
[54]. [54] aims to learn an regression based model by applying logistic
regression on SVM scores. Instead, [21] used Relevance Vector
Regression to obtain a probabilistic prediction. [18] use the confidence
of a (binary) classifier to estimate AU intensity. The rationale is that
the lower the intensity is, the harder the classification will be. For
example, Doubly Sparse Relevance Vector Machine (DSRVM) [23]
was proposed for pain intensity estimation. In this work, features
are locally extracted from a pre-defined grid of rectangular regions
in face images registered in frontal pose. Hence, this technique is
not suitable for images with large head pose variations, typical of
real world scenarios, since the 2D registration process unavoidably
induces pixel artifacts and texture discontinuities. Furthermore, some
researchers are critical of the grid-based feature extraction, suggesting
that the sub-regions are not necessarily well aligned with meaningful
facial features [16].

Multi-Output Detection
A common limitation of most above mentioned independent methods
is that they construct single classifier or regressors that ignore the re-
lations among AUs. Multi-Output-Detection (MLD) attempts to learn
robust classifiers by exploiting efficiently the output dependencies.
For an extensive overview, the reader is referred to [60], [67]. MLD
can also be grouped in two categories: binary and multi-class classifi-
cation. Only a few work in MLD addresses the problem of joint AU-
detection. For example, [76] investigate the multi-label AU detection
problem by embedding the data on low dimensional manifolds which
preserve AU dependencies. In [65], the authors propose to extract
the most discriminative features for each AU individually and then
jointly model the AUs in a multi-task framework. In similar fashion,
[82] uses a Bayesian network to model the co-existent and mutual-
exclusive semantic relations among AUs from the labels. The work
of [73] applied a Restricted Bolzman Machine for classification in
which the top layer captures the global relationships among the AUs.
[48] aims to train a Multilayer perception classifier with landmarks as
targets and expressions as the source data. In this work, AUs can be
seen as jointly modeled latent states. These methods have the common
problem that joint events occur less frequently which results in an
sparse label space. To address this problem, [59] proposed compressed
sensing and group-wise sparsity priors on AUs. Alternatively, joint
patch learning for AU detection has been recently used to jointly learn
dependencies among groups of AUs [64], [79], [81] While applicable
for joint AU-detection, the methods above do not perform multi-class
classification.

Multi-Output Classification
In contrast to the methods above, the proposed COR Framework can
be seen as a Multi-output-multi-class (MOMC) learning approach,
where the relations of different pairs of AUs are learned directly with
the copula model. Only very little related work exists for MOMC
AU intensity estimation. Recently, [42] proposed multi-task learning
for AU intensity estimation where a metric with shared properties
among multiple outputs is learned, resulting in less parameters to learn
and a reduction of over fitting. However, this method is not directly
applicable to larger datasets since the complexity scales squared with
the number of samples. In similar fashion, [77] derived the back-
propagation algorithm of the neural networks for multi-label classifi-
cation. Both methods have the problem that as the dimensionality and
the number of outputs increase, they become computationally hard
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Fig. 2: Average negative conditional log likelihood (NCLL) for
copula model on different datasets. 2 for all pairs of AUs using
different copulas on all three datasets.

to solve and common structures are more difficult to identify. For
example, [13] proposed a deep convolutional neural network (CNN)
for joint AU-intensity estimation. CNNs have been recently very
successful in very different visual tasks, especially for detection. How-
ever, the performance obtained by this DNN is worse than the baseline
model using a simple SVM classifier on geometrical features. One
reason for this low performance is the absence of fully annotated data
which makes it difficult to apply DNNs/CNNs successfully. In order to
deal with little data and spares co-occurrence, [30] employs a two-step
approach: the outputs of SVMs learned for each AU independently
are used to model AU dependencies via Dynamic Bayesian Network
(DBN). Despite of being simple to train, two stage approaches result
in suboptimal solutions [50]. In similar fashion, [50] constructs a
MRF-tree-like model for joint intensity estimation of AUs. In this
work, the dependency graph is limited to a tree structure which does
not represent true dependencies among all features. Moreover, this
approach also uses two steps learning - by first obtaining the intensity
scores for each AU independently, followed by graph optimization.
This is again suboptimal as it results in loss of information from the
feature level. More recently, [22] proposed Latent-Trees (LT) for joint
AU-intensity estimation. LT is a probabilistic model in which a tree-
structure is learned by maximizing the log-likelihood of training data
while maintaining model complexity low. In comparison to single-
target-regression methods, LT have better generalization capabilities
and it is more effective due to the learned structure that captures
higher-order dependencies among the high-dimensional input features
and multiple target AU intensities.

To the best of out knowledge, the work proposed here is the first
to estimate AU intensities jointly using a single objective function. By
applying ordinal constrains on the node potential and describing the
edges using bivariate copula functions we prevent the model to fall in
a local minimum and reduce the number of parameter. This results in
the state-of-the-art model for AU intensity estimation.

3 METHODOLOGY

Let us denote the training set as D = {Y,X}. Y =
[y1, . . . ,yi, . . . ,yN ]T is comprised of N instances of multivariate
outputs stored in yi = {y1

i , . . .y
q
i , . . .y

Q
i }, where Q is the number

of AUs, and yqi takes one of {1, ..., Lq} discrete intensity levels of the
q-th AU. Furthermore, X = [x1, . . . ,xi, . . . ,xN ]T are input features
(e.g., facial points) that correspond to the combinations of labels in
Y. Thus, our goal is to simultaneously estimate the combination of
the intensity levels yq of Q AUs, given the facial features x. In
what follows, we first introduce the ordinal regression framework
for modeling single output (Q = 1). We then introduce the copula
framework for modeling joint distributions, and formulate our model
for joint learning and inference of intensity levels of multiple AUs.

3.1 Ordinal Regression

Let l ∈ {1, . . . , Lq} be the ordinal label for the intensity level of
the q-th AU. In the ordinal regression framework notation [1], we
define the latent projection yq∗ ∈ < as a function of covariates x, and
then relate this latent projection to the ordinal level (yq) through the
threshold bounds:

yq∗ = βqxT + εq,yq = l iff ψq
l−1 < yq

∗ ≤ ψq
l , (1)

where x ∈ <D , βq is the ordinal projection vector, ψql is the
lower bound threshold for count level l (ψq0 = −∞ < ψq1 <
ψq2 ... < ψqL−1 < ψqL = +∞). The error (noise) terms εq capture
the idiosyncratic effects of all omitted variables for the q-th AU.
They are assumed to be identically distributed across the intensity
levels, each with a univariate continuous marginal distribution func-
tion F (zq) = Pr(εq < zq). In the case of the normal distribu-
tion with zero mean and variance (σq)2, the marginal distribution
function is defined as the normal cumulative density function (cdf)
F (zq) = Φ(zq) =

∫ zq
−∞N (ξ; 0, 1)dξ. Then, classification in ordinal

regression models is performed using the following ordinal likeli-
hood [1]:

l∗ = argmax
l=1...L

Pr(yq = l|x) = argmax
l=1...L

F(zql )− F(zql−1), (2)

where zqk =
(ψ
q
k
−βqxT)

σq
are the cumulative probits. The model

parameters are then stored in ϕq = {ψq1 , ψ
q
2 , . . . , ψ

q
L−1, β

q, σq}.

3.2 Copula Model

A copula is a method for generating a stochastic dependence relation-
ship in the form of a multivariate distribution of random variables with
pre-specified marginals [55]. Formally, a copula C(u1, u2, . . . uQ):
[0, 1]Q → [0, 1] is a multivariate distribution function on the unit cube
with uniform marginals [74]. Several copulas have been proposed and
they can be grouped into two type of copula families that are Gaussian
and Achimedean copulas. The Gaussian copula is constructed from a
multivariate normal distribution by using the probability integral trans-
form of the multivariate gaussian. While there is no simple analytical
formula for the copula function, it can be upper or lower bounded, and
approximated using numerical integration. Archimedean are widely
used in applications due to their simple form and closed form solution.
There are three Archimedian copulas [12] in common use: Clayton,
Frank and Gumbel. The Clayton copula (Fig.2d) is an asymmetric
Archimedean copula, exhibiting greater dependence in the negative
tail than in the positive. For two dimensions, this copula is given by:

CClyton
θ (u, v) = max((u−θ + v−θ − 1)−

1
θ ) (3)

The Frank copula (Fig.2b) is a symmetric Archimedean copula and
has a diagonal probability density. It can be expressed as:

CFrank
θ (u, v) = −1

θ
ln (1 +

(exp (−θu)− 1)(exp (−θv)− 1)

exp (−θ)− 1
) (4)
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The Gumbel (Fig.2c) copula is an asymmetric Archimedean copula,
exhibiting greater dependence in the positive tail than in the negative.
This copula is given by:

CGumbel
θ (u, v) = exp{−

[
(− lnu)θ + (− ln v)θ

] 1
θ } (5)

Copulas are selected by choosing a particular member of a given
family of Archimedean copulas to fit a data set. Archimedean Copulas
are described in a closed form analytic expression for the joint
probability of choice across observational units, using a standard
and direct maximum likelihood inference procedure. The Gaussian
has no closed form solution and the joint probability is normally
approximated (by MCMC). For this reason, work we focus for this
Framework on Archimedian Copulas.

The main idea of copulas related to that of histogram equalization:
for a random variable yq with (continuous) cdf F , the random variable
uq := F (yq) is uniformly distributed on the interval [0, 1]. Using
this property, the marginals can be separated from the dependency
structure in a multivariate distribution [5]. This is given by Sklar’s
theorem [58].
Theorem 1 (Sklar, 1973) Given uq random variables with cdfs Fi,
q = i, . . . , Q, and joint distribution Fi on yi, . . . , yQ, there exist a
unique copula C such that for all uq:

C
(
u1, . . . , uQ

)
= F

(
F−1

1 (u1), . . . , F−1
Q (uQ)

)
(6)

Conversely, given any distribution functions F1, ..., FQ and copula C,

F (y1, . . . , yQ) =C(F1(y1), . . . , FQ(yQ)), (7)

is a Q-variate distribution function on y1, . . . , yQ with marginal
distribution functions F .

This result allows us to construct a joint distribution by specifying
the marginal distributions and the dependency structure separately
[5]. This offers one the critical flexibility necessary for any multi-
variate output context: it is possible to simultaneously model com-
plex marginal densities with potentially arbitrary multivariate output
dependency structures without the need to specify the two in some
complexly intertwined, hard-to-interpret and hard-to-learn model.
Note that while the copula representation separates the two contexts
(marginal and joint) the two remain tied through Eq. 6.

When the random variables are discrete, as is the case with the
AU intensity levels, only a weaker version of Theorem 1 holds:
there always exists a copula that satisfies Eq. 7, but it is no longer
guaranteed to be unique [58]. Nevertheless, we can still construct the
joint distribution for discrete variables as:

Pr(y1 = l1, . . . , yQ = lQ) =

Pr(ψl1−1 < y1
∗ < ψl1 , . . . , ψlQ−1 < yQ∗ < ψlQ)

=
1∑

c1=0

. . .
1∑

cQ=0

(−1)c1+...+cQF (z1
l1−c1 , ..., z

Q

lQ−cQ
)

=
1∑

c1=0

. . .
1∑

cQ=0

(−1)c1+...+cQCθ(u
1
l1−c1 , ..., u

Q

lQ−cQ
)

(8)

where uqlq−cq = F (zqlq−cq ), cq ∈ {0, 1}, is defined in Sec.3.1,
and θ are the copula parameters, as defined below. It is important
to note two critical aspects here. First, Eq. 8 captures dependency
structures among the discrete outputs by correlating their error terms
ε1, . . . , εQ via the copula. Second, the joint density model induced by
the copula is conditioned on the covariates x, as explained in [12], i.e.,
F (y1, . . . , yQ) ← F (y1, . . . , yQ|x). This, in contrast to the models
in [30], [50] that rely solely on the AU labels, allows the covariates to
directly influence the dependence structure of AUs.

Under this formulation, the probability of a particular label com-
bination y is determined by the volume of the axis-parallel hyperrect-
angular subregion of [0, 1]Q induced by vertices (u1

l1 , . . . , u
Q

lQ
) and

(u1
l1−1, . . . , u

Q

lQ−1
) corresponding to that label combination. For the

copula introduced in Eq. 8, this involves evaluation of 2Q cdfs. As an
example, for Q = 2 the model this reduces to:

Pr(y1 = l1, y2 = l2) = F (z1
l1
, z2
l2

)
+F (z1

l1−1, z
2
l2−1)− F (z1

l1−1, z
2
l2

)− F (z1
l1
, z2
l2−1)

(9)

This evaluation becomes computationally expensive and impractical
for Q > 5 due to the number of cdfs (2Q) that need be evaluated.
In Sec. 3.3, we propose a computationally more astute model, which
avoids the exponential explosion induced by arbitrary Q.

One specific benefit of copulas is that they can model different
forms of (non-linear) dependency using simple parametric models
for C(·). In this paper, we limit our consideration to the commonly
used Frank copula [11] from the class of Archimedean copulas.
The dependence parameter θ ∈ (−∞,+∞)\{0}, and the perfect
positive/negative dependence is obtained if θ → ±∞. When θ → 0,
we recover the set of independent ordinal models of Eq.2 correlating
to C(u, v) = u · v. Although various copula functions (e.g., Clay-
ton, Gumbel, etc.) are available for modeling different dependence
structures, we choose Frank copula in this paper for two reasons.
First, it has a simple closed-form, in contrast to, e.g. , the Gaussian
copula [5], which, in general, requires the intractable computation
of multivariate Gaussian cdfs. Second, Frank copula is particularly
suitable for the target task as it allows modeling of both positive and
negative dependencies, while also capturing dependency in both the
left and right tails (i.e., when different AUs are activated either at
low intensity, or at high intensity levels together). However, we also
provide qualitative results for the Clython, Gumbel and Independent
Copula.

3.3 Copula Ordinal Regression

As mentioned in Sec.3.2, the joint modeling of multiple AUs using
the model in Eq.8 is possible. However, this becomes prohibitively
expensive as the number of outputs (i.e., AUs) increases. For instance,
for 10 AUs and 6 intensity levels, as commonly coded in face datasets,
this would involve 610 evaluations of the copula function. We mitigate
this by approximating the learning of the joint pdf in Eq.8 using the
bivariate joint distributions capturing dependencies of AU pairs.

To this end, we use the Conditional Random Field (CRF) [29]
framework. Formally, we introduce a random field with an associated
graph G = (V, C), where nodes v ∈ V, |V | = Q, correspond to indi-
vidual AUs and cliques c ∈ C correspond to subsets of dependent AUs
modeled using the copula functions. The joint probability distribution
of Q intensity random variables is then defined as:

P (y|x,Ω) =
1

Z

∏
c∈C

Ψ(yc|x) (10)

Ψ(yc|x) = exp

∑
r∈V

lnφr(y
r
i |xi) +

∑
(rs)∈E

lnφrs(y
r
i , y

s
i |xi)


(11)

where Z is the partition function, yc is the subset of random variables
in clique c, Ψ(·) is the conditional potential on the labels in this
clique, explained below, and Ω = {ϑ, θ} are the model parameters.1

In this setting specifically, we only consider unary and binary cliques,
modeling individual independent AUs and pairs of AUs. In other
words, C = V ∪ E, where E is the set of edges in G. Hence,

Ψ(yc|x) =


φr → Pr(yr|x),

c = r ∈ V
unary clique

φrs → Pr(yr, ys|x)γ ,
c = (r, s) ∈ E
pairwise clique

(12)

1For simplicity, we often drop the dependency on Ω in notations.
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where the unary term is the traditional independent AU ordinal
regression model defined in Sec. 3.1 and the pairwise term is specified
in Eq. 9. Note that the unary terms depend only on the ϑr parameters
of the ordinal regression model, while the edge potentials depend also
on the copula association parameter θrs that models the dependency
of (r, s) pair of outputs. Furthermore, the weight γ is chosen so as to
balance the magnitude of the cliques.

While modeling only bivariate distributions may seem a natural
way of representing the joint distribution, we model also the marginals
via the unary potentials for two reasons. First, while the marginals
focus on independent classification of target AU intensity, the bivariate
copulas focus on encoding the dependence between the intensity
levels of two AUs. Thus, by including the copulas in the potential
function, a more discriminative classifier for the AU intensity levels is
expected. Second, in the case when there is no dependence between
AUs, in an ideal case θrs → 0, and Frank copula converges to the
independence copula [11]. Yet, due to numerical instability, parameter
estimation can be fragile in this case, leading to poor performance of
the learned classifier. We control this by having the marginals in the
unary potentials.

The most critical aspect in evaluation of the joint distribution in
Eq. 11 is computation of the partition function. This is an np-complete
problem, and thus, exact inference in general case is intractable. This
is true in our case as it involves the integration over all possible
AUs and their intensity levels, i.e, typically 610 computations. We
decompose the graph into smaller subgraphs and apply exact inference
in an iterative manner on each. By using the notion of the negative
log likelihood, our learning objective can be written as:

NCL = −
N∑
i=1

{log(Ψ(yi|x))− log(Z)} (13)

Here, N is the number of training instances.

3.4 Estimation of the AU pairs.
We propose the Copula Framework in 3 different configurations:

3.4.1 COR-F
Copula Ordinal Regression with a fully connected MRF is the most
general model and serves as a baseline for the more advanced
configurations. The graph is build by Q×(Q−1)/2 bivariate copulas
and Q nodes.

3.4.2 COR-IT
Modeling all bivariate copulas is impractical as not all AU exhibit a
dependence pattern (e.g., AU16 (lower lip depressor) and AU17 (chin
raiser) do not co-occur). In CRF and MRF models, the cliques (i.e., the
edges) are typically determined from the precision matrix rather than
from the correlation matrix S. This is because the precision matrix
unravels partial correlations among the variables, while the correlation
matrix focuses on marginal correlations [15]. Important advantage of
using partial correlations to infer AU dependencies is that, in contrast
to marginal correlations, AUs that are correlated through another AU
are ignored, therefore, avoiding the redundant modeling. We apply the
graphical lasso [10] on the precision matrix from the labels to get a
sparse graph containing only bivariate potentials of AU pairs with a
certain dependence. The lasso is defined as follows:

(Υ, S̃) = min
Υ�0
− ln det(Υ) + tr(SΥ) + κ‖Υ‖1, (14)

where κ is the regularization parameter.2 Finally, the edge set E is
defined by keeping the edges satisfying the condition: E = {(r, s) :

2We used the glasso Matlab code from [10].

|Υr,s| > δ}. δ = 0.05 is chosen so that only the pairs of AUs
with strong partial correlations are kept, resulting in a model with
significantly fewer parameters [40] depicted in Fig. 5. The aim is
to learn a graph directly from the features rather than predefining it
from the labels. This reduces the number of model parameters during
training by not accounting for the ‘weak’ dependencies among AUs.

3.4.3 COR-HIT
The COR model mentioned above are limited to a homoscedastic
association over the full intensity range. However, AU dependencies
varies significantly when showing the same facial expression with
different intensity. The heteroscadastic model (COR-HIT) tackles this
problem by extending the linear ordinal projection with heteroscedas-
ticity. Another limitation of the COR-IT is that the graph structure
is fixed after initialization. In the COR-HIT model, we use a sparse
l1 regularization on the edge potentials and learn the graph structure
iteratively and directly form the training data. The association for each
pair of AUs is computed as follows:

θ(~x) = xTh+ h0 (15)

The COR-HIT model is then derived by updating the association
parameter θ with the feature dependent function θ(~x). Lastly, the
parameter ~h and h0 are jointly learned by minimizing the objective
function.

3.5 Learning and Inference

Algorithm 1: Copula Ordinal Regression Learning

Input: Training data D = {(xi, yi)}Ni=1

Result: Model parameters Ω = {ϕ, θ}
initialization;
∀(r, s) ∈ E → θrs = sign(corr(yr, ys))

∀r ∈ V → ϕr = arg min
ϕ′

−
N∈AUr∑
i=1

Lr(ϕ)

while score increases do
ϕ-step: optimize ϕr using subset of active frames
for r ∈ V do
Lr(ϕr) =

∑
i

1[yri>0] lnφr(y
r
i |xi, ϕr)

ϕr = arg min
ϕ′

− Lr(ϕ) + λrRϕr

θ-step: optimize θrs using jointly active frames
for (r, s) ∈ E do
Lrs(θrs) = 1[yri ,y

s
i>0] lnφrs(y

r
i , y

s
i |xi, θ′)

θrs = arg min
θ′

− Lrs(θ′) + λrsRθrs

Pruning-step: remove edges with low weights
if wrs ∼ 0 then

E ← E \ {ers}
Evaluation-step:
Use Alg. 2 to get predictions and compute ICC on
validation set. 1 is the indicator function it is 1 if the
argument to that function is true.

The parameter optimization in the model is performed by min-
imizing NCL (Eq.13) w.r.t. Ω. For this, we employ the Conjugate
gradient method with line search [46].
Re-parametrization. The gradient-based learning proposed above
has to be accomplished while respecting two sets of constraints: (i)
the order constraints on ψ: {ψj−1 ≤ ψj for j = 1, . . . , L}, and (ii)
the positive scale constraint on σ: {σ > 0}. To avoid constrained
optimization, we introduce a re-parametrization of ψ using displace-
ment variables δk, where ψj = ψ1 +

∑j−1
k=1 δ

2
k for j = 2, . . . , L− 1.

The positiveness constraint for σ is simply handled by introducing the
free parameter σ0 where σ = σ2

0 . Thus, the unconstrained parameters
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Algorithm 2: Copula Ordinal Regression Inference
Input: Parameter.: Ω = {ϕ, θ} , G = {E, V }

Data: X = {xi}Ni=1

Result: Predictions: Yp = {ypi }
N
i=1

for i : 1 to N do
Compute Potentials
∀r ∈ V → nr = φr(y

r
i |xi, ϕr) (eq. 19)

∀(r, s) ∈ E → ers = φrs(y
r
i , y

s
i |xi, θ′) (eq. 20)

if Observations yo are provided then
Compute Conditional MAP solution (using LBP)
y∗ = arg min

y
Ψ(y|yo, V, E)

else
Compute MAP solution (using LBP)
y∗ = arg min

y
Ψ(y|V,E)

of the ordinal marginals are {β, ψ1, δ1, . . . , δL−2, σ0}, and they are
defined separately for each of the Q ordinal marginals, and stored in
ϕ.
Training: During training, we seek to find optimal parameters Ω∗ by
solving the regularized optimization problem:

Ω∗ = arg min
Ω∗

NCL(ϕ, θ) + λ1Rϕ + λ2Rθ (16)

λ1Rϕ =
∑
r

λrRϕr =
∑
r

λr1 ‖βr‖2 (17)

λ2Rθ =
∑
rs

λrsRθrs =
∑
r,s

λrs2

√
‖wrs‖2 + ‖θrs‖−2 (18)

Where NCL is given by Eq.13, Rϕ is the standard L2 regularizer of
the projection β and σ0 of each unary.Rθ is the L1 sparsity regularizer
for each binary. The contribution of this regularization is two folded.
First, the model converges rather to a sparse solution in which the
binary weight parameter wrs = 0 . Secondly, the regularization
ensures that the absolute value of θ is not zero, if w 6= 0. This
makes the copula function stable and prevent the convergence to
an independent model. In COR, λr1 and λr,s2 are the regularization
parameter and no specific regularization is necessary for the threshold
parameters as they are automatically adjusted according to the score
βx>.

Solving for the parameters Ω = {ϕ, θ} directly is possible, how-
ever, by noticing that the copula parameters θ are independent of the
node potentials in the NCL, we can alternate between optimization
of the marginals ϕ and the copula association θ. In this way, we
detangle learning of the marginal model parameters from the joint
copula parameters. Consequently, we reduce chances of falling into a
local minimum due to the large number of parameters to be learned
simultaneously. To this end, we propose a block-descent two-step
optimization. We briefly describe the learning strategy.

The learning strategy is described in Alg. 1. Initially, we form
an independence model by setting E = ∅ that treats each AU
independently. After learning the parameters of the ordinal marginals
{ϕ}, we consider a fully connected graph. We divide the parameter
learning into two steps in which we optimize the θ and ϕ parameter
independently.

θ-step: During the θ-step, we cycle through E and independently
optimize the parameters of the bivariate copula function on a subset
of E for each pair (r, s) ∈ E. This subsets is defined by the node
(r, s) and the parent nodes of node r and node s. Note that this can
be performed efficiently using parallel parameters estimation and the
validation parameter θr and θrs can also be found independently for

(a) Sparse Graph (b) ϕ10-Step (c) θ10,12-Step

Fig. 3: Optimization steps of the COR learning algorithm. The
dependencies are defined on (a) the sparse Graph. In (b) the ϕ step,
the potential of the taget node (AU10) is conditionaly independent of
all remaining nodes (AU17,AU14), given the adjacent nodes (AU6,
AU12). The same rule is applied for in the θ (c) the edge potentials.

each subgraph using a validation set.

ϕ-step: Given the newly estimated copula parameters, in the ϕ-
step, we minimize the objective function in Eq.16 w.r.t. the parameters
of the ordinal marginals, i.e., ϕ. Specifically, we optimize the marginal
parameters of each AU (ϕq) by using the unary and edge potentials
where the target AU is present. We do so in parallel for all AUs. After
the ϕ-step, we refine the association parameters θ.

We continue iterating between these two steps until convergence
of the model performance on the validation set. We used the ICC(3,1)
as for evaluation of the model performance during training. In our
experiments, the algorithm converged in less than 5 iterations.

The advantage of the proposed learning approach over direct
optimization is three-fold: (i) the estimation of the association and
marginal parameters can be parallelized, thus leading to the com-
putational complexity similar to that of marginal models. (ii) In the
ϕ-step, we tune the regularization parameter λ separately for each
AU and each Copula, using the balanced intensity levels for that
AU (i.e., a subset of N training examples where the number of 0
intensity levels is balanced with the intensity 1). (iii) We can evaluate
the model structure after each iteration and drop edges if either the
weight parameter w or the association parameter θ converges to zero.
This leads to a dynamic graph structure that can be efficiently learned.
Note that in the case of the joint optimization, a single λ need be used,
since cross-validation of AU-specific λ is infeasible. This process is
summarized in Alg.1. φr is the conditional negative log likelihood of
unary r and φrs the conditional log likelihood of binary rs. In all
configurations of the COR framework, the potentials are defined as
follows:

φr(y
r
i |xi) =

exp(sr(y
r
i |xi))∑

y′
exp(sr(y′|xi))

(19)

φrs(y
r
i , y

s
i |xi) =

exp(srs(y
r
i , y

s
i |xi))∑

y′1,y
′
2

exp(srs(y′1, y
′
2|xi))

(20)

Here, i is the frame number, sr is the score function for node r,
parameterized by ϕr and srs is the score function for edge rs,
parameterized by θrs. These score functions are defined as follows:

sr(y
r
i |xi) = ln(Pr(yri |xi, θr))+

+
∑

n∈par(r)

wrn ln(Pr(yri , |yni , xi, ϕrn)) (21)

(22)
srs(y

r
i , y

s
i |xi) = wrs ln(Pr(yri , y

s
i |xi, θr))+

+
∑
m=r,s

∑
n∈par(m)

wnn ln(Pr(yni , |ymi , xi, ϕmn)) (23)

One step of the optimization algorithm is depicted in Fig. 3. During
the ϕ-step (3a) for AU10, only the model parameter that belong
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to its node and the parent nodes (AU6, AU12) and that from the
corresponding edges are optimized. The regularization parameter are
also tuned for the root node. The sames rule is applied during the
θ step for the pair AU10-AU12. This approach has two advantages
over the regular CRF optimization. First, the dependency of only
directly connected AUs are modeled and higher order dependencies
are ignored which speeds up the optimization. Secondly, the partition
function can be computed per subgraphs, where each subgraph is
defined by one root node and its parent nodes. In other words, we
approximate the global joint dependency of all AUs but a product of
local joint dependencies.
Inference: The inference of test data in undirected graphical models
can be formulated as a discrete energy minimisation problem. This
is in general np-hard due to the need to evaluate all possible label
configurations. However, approximate methods based on Markov
chain Monte Carlo (MCMC) and loopy belief propagation (LBP)
for parameter learning have been proposed for making the parameter
learning extremely efficient for subproblems [78]. We used the LBP.
The running time for the LBP algorithm on our graph is expected to
be O(M ∗̇Nk), where M is the number of AUs, N is the number of
intensity levels for each AU, and k is the maximum clique size. Note
that the algorithm gives exact marginals when the graph is a tree but
only approximates the true marginals in loopy graphs. Fig. shows the
experimental results of the model performance and fig. the inference
time complexity. In our experiments, the best performance is reached
in less than 100 iteration which makes the proposed model applicable
for real-time application on an average work-station.

3.6 Partially Observed Data
The COR model, once trained, returns a multivariate probability
distribution over the intensity levels of all AUs. By updating the
inference algorithm, it is possible to make predictions on partially
observed data, where some AU annotations of the test set are given. In
this section, we briefly describe this approximate inference algorithm
for partially observed outputs. The application for this could be as
follows. A FACS coder can annotate a subset of AUs (AU6 and AU12,
which are easy to identify) and the inference algorithm can then be
used to compute the marginal node probability, conditioned on the
AU intensity levels from the partially annotated subset. We define two
sets of nodes. Yp is the set of observed (annotated) AUs and Yo is the
set of unobserved AUs. The conditional probability of Yp given Yo is
then defined by:

P (Yp|Yo) =
P (Yp, Yo)

P (Yo)
(24)

The marginal probability for the i-th AU having intensity k, given the
labels Yo can then be computed by marginalizing out the predictions
for the remaining AUs from set Yp.

P (Yi = k|Y ) =
∑
Yp 6=Yi

P (Yp|Y ) (25)

The marginal probably can be directly computed if the subset Yp
contains only a few AUs. In our experiments, we construct the
graphical model as described in section 3.5. We fix the potentials
that belong to AUs from Yo to the states provided by the label but the
potentials belonging to Yp are still given by the potential-functions
from the learned model. We apply LBP to approximate the node
posteriors (see Alg.2 with partially observed data).

4 EXPERIMENTS

In this section, we first describe the datasets and features and then
show the comparisons with the state-of-the-art. In particular, we
will show the results for the joint intensity estimation of AUs and
individual AUs from the three datasets and compare its performance
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Fig. 4: Complexity analysis of the LBP inference algorithms for
different databases. As expected, the performance for the classifi-
cation (4a) increases with the number of LBP iteration. It reaches its
maximum in less than 100 iteration for all datasets. The evaluation
rate in frames per second (4b) is linear decreasing with the number
of LBP iteration.

to that of the state-of-the-art methods. We also show the model
performance on partially labeled data.

4.1 Datasets and Experimental Procedure
Datasets
We evaluate the proposed model on major three benchmark datasets
- UNBC-MacMaster Shoulder Pain Expression Archive (PAIN) [35],
Denver Intensity of Spontaneous Facial Actions (DISFA) [39] and on
that subset of the BinghamtonPittsburgh 4D Spontaneous Expression
(FERA2015) [68] database that was used at the FERA2015 sub
challenge for AU-intensity estimation. This databases include acted
and spontaneous expressions and vary in image quality, video length,
annotation, number of subjects, and context. The PAIN dataset con-
tains video recordings of 25 patients suffering from chronic shoulder
pain while performing a range of arm motion exercises. We applied 5-
Fold cross validation (5 subjects per fold) on this dataset. The DISFA
dataset contains video recordings of 27 subjects while watching
YouTube videos. For this dataset we applied 9-Fold cross validation
(3 subjects per fold). The FERA2015 database includes video of 41
participants (ages 18-29). There are 21 subjects in the training, 20
subjects in the development and 20 in the test partition. Since the
test partition is not publicly available, we report our results on the
development set. In all three datasets, each frame is coded in terms
of the AU intensity on a six-point ordinal scale. For the experiments
presented here, we used all 12 AUs from DISFA, all 10 AUs from
PAIN, and from FERA 2015, we used all AUs that has been annotated
with intensity levels (see the AU numbers and the distribution in that
datasets in Fig. 5).

Features
We used the geometric facial features in our experiments, as in [22].
Namely, we used the locations of 49 out of 68 fiducial facial points
provided for all from facial images in each dataset, We removed the
points from the chin line, as these do not affect the estimation of
target AUs. We then registered the 49 facial points to a reference face
(average points in each dataset) using an affine transformation. To
reduce the dimensionality of the features, we applied PCA, retaining
97% of the energy. This resulted in 20 dimensional feature vectors.

Evaluation metrics
In order to give a fair comparison for different tasks, we use the
following measures for evaluation.
Mean Squared Error (MSE): MSE takes different scales
into account and is commonly used to measure regression and
ordinal classification performances [26], [47]. It also encodes how
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Fig. 5: The global AU relations depicted in terms of correlation coefficients. The negative corr is depicted in red, and positive corr in blue,
while their magnitude is proportional to the thickness of the line. The learned association parameter Theta and the Weights show the
learned graph for each database and the plots on the right show the product of this two parameters for each AU-pair which can be seen as
edge importance for high performance.

inconsistent the classifier is in regard to the relative order of the
classes, which is important when doing the intensity estimation.
Intra-class Correlation (ICC): We also report Intra-class Correlation
(ICC(3,1) [56]), which is commonly used in behavioral sciences to
measure agreement between annotators (in our case, the AU intensity
labels and model predictions).

Models

We compare the performance of the proposed copula framework in
three settings (COR-F, COR-IT and COR-HIT). We also compare our
method to various state-of-the-art methods in the field.
Single-Output: As the baseline for the comparison, we use the results
obtained by first applying the multi-class support vector machines
(SVM) followed by the standard ordinal regression (SOR) [1]. Note
that the SOR model uses the same marginal distribution functions as
the node potentials of the proposed copula framework.
SVM and SOR were used as the baseline, by treating each of the
intensity levels as a separate class. We optimized all hyperparameters
by a grid search over the range

{
10±4, 10±3, ..., 0

}
for the L2

regularizer, and selecting those that perform best on the validation
set. We performed the parameter search for each AU separately.
Multi-Output: As the furthurer baseline for comparison, we also in-
clude the results attained by commonly used methods for classification
and regression, i.e., multi-output K-Nearest-Neighbor (KNN), Multi-
Layer-Perception (MLP), multivariate Gaussian Processes Regression
(GP) and multivariate linear regression (MLR).

Finally, we compare our approach to the state-of-the-art methods
for the robust AU intensity estimation - Latent Trees (LT-all) [22],
MRF [50], our previous work on structured output [72], and the
general CRF [28] for structured learning.

The authors of LT provided their source code and we implemented
the MRF and CRF models. So the comparisons were performed in the
same settings as our proposed models.

Deep-Models: We have also conducted a number of experiments
using standard network architectures employed in previous works
[13]. The basic CNN [13] model consists of a simple 2-layer networks
with fully connected layer and softmax output-layer for multi-task
classification. This model serves as a baseline for the deep models.
Furthermore, we compare the proposed model with state-of-the-art
networks for AU detect [80], and age estimation [43]. The CNN-R
[80] was introduced for the task of AU detection and extends the basic
CNN with a region layer. The weights of this layer are region specific,
which makes the model adaptive and robust to background noise and
illumination. We have trained this network from scratch for multi-
task AU intensity estimation. The CNN-O [43] is a network with an
ordinal classifier. It was introduced for the task of age estimation but
can also be directly applied to AU intensity estimation of independent
AUs. We also trained it from scratch for the target task. VGG16 [57]
is a widely used very deep network for object detection. In order to
adapt it for our task, we used the pre-trained model and fine-tuned
the last 3 layer for AU intensity estimation. Lastly, the SCNN [32] is
a deep structured network, introduced for mutli-task object detection.
The linear pairwise potentials build a fully connected CRF, which
are also trained using piecewise optimization [62]. In this work, the
network is trained for multi-task AU intensity estimation, where each
AU can be seen as a sepparate object.

4.2 Evaluation of the proposed models
Table 1 and table 4 show the performance for AU Intensity estimation
on the FERA, DISFA and PAIN databases. As can be seen from Table
4. the single output ordinal model (SOR) performs consistently better
than SVM. This is the case for 18 out of 27 AUs (in terms of ICC)
and it is the outcome that the unconstrained SVM is more likely
to overfit. The independent SOR model also achieves on average
a better performance compared to the state-of-the-art LT method.
Such performance of LT has also been observed by the authors of
[22], who showed that significant improvements on highly noisy
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Fig. 6: Average association per intensity level of AU6&AU12 for all
three databases. The association reaches the lowest value when one
of the AUs is neutral (independent) and it is increasing with higher
intensity.

features can be attained by the model due to its generative part.
However, this robustness has not been observed in our experiments
on the target data. MLR, MRF and the proposed COR frameworks
consistently outperform the traditional models for joint AU intensity
estimation. Clearly, these methods are all based on Bayesian networks
and benefit from direct modelling of the dependencies between AUs
trough edge potentials. This in contrast to the traditional methods
(GP, MLP and MLR), that learn the AU dependency only indirectly
(e.g. inner layer, latent states) but not on the decision level. Among
the multi output methods, the worst performing method is the KNN.
This is also expected since the KNN-classifer is highly affected by
the curse of dimensionality. More precisely, the output space in this
experiments has 6Q possible configurations and there are simply no
nearest neighbors with the same configuration to train the classifier.
It is important to notice that the Bayesian models do not have this
problem because they share the edge potentials only among a set
of bivariate joints. Finally, all three COR models outperform the
compared models by a large margin. We attribute this to their Bayesian
networks properties that are combined with ordinal modelling of the
marginals.

4.2.1 Evaluation of different Copula models
We discuss here the differences between COR models. The association
parameter in the COR-IT model for a pair of AUs is shared over the
full range of intensities. This results in suboptimal modelling of AU
intensity pairs, especially with high intensity levels and on imbalanced
data, where the majority of frames is not active. This effect can be
observed on the DISFA and the PAIN dataset, where the COR-IT
model is outperformed by the COR-HIT model. The COR-HIT model
better fits the unbalanced datasets by learning different association for
different pairs of intensities. This observation could not be made on
the FERA2015 database. For this database, the sequences have been
manually pre-segmented and only segments that show highly active
facial expressions have been used in further processing. Fig. 5 shows
that the distribution of intensity levels for all AUs in this database are
better balanced than in PAIN or DISFA. However, such distribution
of intensity levels is ideal but it can not be observed in naturalistic
recordings. It is also important to notice that parts of the FERA2015
dataset (49 samples) were only partially annotated. This has a strong
negative affect on the performance of all multi output models. We also
notice that the joint inference by the proposed models consistently
outperforms the compared multi-output models. This is also due to
the individually tuned regularization parameters specifically for each
AU, which is, in the LT, MRV, KNN and GP infeasible. Next, we
observe that COR-HIT outperforms (on average) COR-IT across most
of the AUs and in particular on the imbalanced databases (DISFA and
PAIN) as expected. The COR-F model could not achieve such a good
performance because the inference in this model is applied on the fully
connected graph, which contains redundant edges. However, looking

Database: FERA2015
AU: 6 10 12 14 17 avr.

IC
C

(3
,1

)

COR-HIT .76 .72 .81 .29 .36 .59
COR-IT .74 .73 .79 .30 .44 .60
COR-F .72 .69 .79 .27 .40 .57
MRF [50] .72 .71 .81 .33 .30 .58
LT-all [22] .69 .58 .76 .30 .31 .53
KNN [6] .62 .57 .72 .11 .11 .43
MLP [49] .65 .67 .78 .27 .02 .48
GP [75] .68 .68 .78 .25 .23 .52
CRF [28] .67 .66 .81 .31 .28 .54
MLR .72 .70 .80 .27 .27 .55
SOR .68 .70 .79 .28 .26 .54
SVM .69 .65 .77 .18 .32 .52

M
SE

COR-HIT 0.97 1.18 0.88 2.25 0.81 1.22
COR-IT 1.04 1.20 0.92 2.04 0.89 1.22
COR-F 1.17 1.19 1.04 2.48 0.93 1.36
MRF [50] 1.06 1.18 0.94 2.00 1.17 1.27
LT-all [22] 1.68 1.63 1.08 2.94 1.37 1.74
KNN [6] 1.51 1.93 1.28 3.03 1.16 1.78
MLP [49] 1.41 1.67 1.06 2.76 1.21 1.62
GP [75] 1.25 1.17 0.95 1.85 0.96 1.24
CRF [28] 1.16 1.26 0.80 1.89 1.15 1.25
MLR 1.06 1.16 0.96 1.95 1.04 1.24
SOR 1.33 1.40 1.06 2.75 1.25 1.56
SVM 1.22 1.48 0.98 2.83 1.11 1.52

TABLE 1: Results on the FERA2015 (Train/Development) database.

into ICC of AU9, we see that the COR-F performs significantly better
for this AU. We attribute this to the full structure learning ability
of the AU co-occurrence. This particular AU occurs very rarely but
is correlated with AU10 and negative correlated with AU26 which
occurs relatively frequently.

4.2.2 Comparison to deep models

Table 5 shows the comparative results for the different deep models
evaluated on the DISFA and PAIN datasets. These models are largely
outperformed by traditional appearance based models (see Tab. 4).
This is expected and was also observed in other studies and challenges
(see [68]). However, the best performance for AU17 e.q. is achieved
by the CNN-O model with ICC of 45%. This is 10% higher than
the result of the best performing appearance based model (COR-
HIT). AU17 couses the skin of the chin to wrinkle when activated.
It is characterised exclusively by this textural change rather than by
a change in facial morphology that we could capture as changes in
facial landmark points locations. This important texture information
is preserved in by the deep features but not by location of facial
landmark, hence this result. Both, the CNN-O and the CNN-R model
achieve an ICC of 29% on the DISFA dataset, which is the highest
performance among the deep models. These models do not reach
comparative results with our proposed model. The same applies for
the CNN [13] and SCNN [32]. This confirms that to-data, standard
benchmark datasets in the field of automatic facial coding do not
provide sufficient data for deep models to be robustly trained on.

4.2.3 Evaluation on imbalanced data and head-pose variations

The proposed model consistently outperforms other models for all
AUs for which the available data are strongly imbalanced. This is
especially the case for AUs that are active in less than 8% of the
frames (AU5, AU20 in Disfa and AU4, AU9, AU10 and AU20 in
PAIN). The COR model achieves the highest performance on 5 out of
6 such AUs. We attribute this to the ability of (structured) learning the
AU co-occurrence. In order to evaluate the robustness against of the
proposed methods head pose variations, we removed all frontal images
from the test data and evaluated the models on only that samples in
which the orientation of the head to the camera is larger than 30
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Model DISFA PAIN

COR-HIT .33 .29
COR-IT .31 .29
COR-F .29 .29
MRF [50] .24 .23
LT-all [22] .21 .23
KNN [6] .11 .04
MLP [49] .23 .17
GP [75] .19 .19
CRF [28] .26 .17
MLR .12 .18
SOR .23 .17
SVM .18 .23

TABLE 2: ICC on non-frontal testdata

Database: FERA2015
AU: 6 10 12 14 17 avr.

IC
C

COR-HIT .76 .72 .81 .29 .36 .59
MRF [50] .72 .71 .81 .33 .30 .58
CRF .67 .66 .81 .31 .28 .54

+1
2

COR-HIT .84 .74 1.00 .46 .38 .68
MRF [50] .80 .73 1.00 .34 .32 .64
CRF .76 .69 1.00 .33 .39 .63

+6

COR-HIT 1.00 .77 1.00 .48 .41 .73
MRF [50] 1.00 .75 1.00 .30 .39 .69
CRF 1.00 .69 1.00 .35 .42 .69

+1
0

COR-HIT 1.00 1.00 1.00 .48 .41 .78
MRF [50] 1.00 1.00 1.00 .30 .41 .74
CRF 1.00 1.00 1.00 .36 .42 .75

TABLE 3: Results on the development set from the FERA2015
database with partially observed data

degrees. By doing so, the performance in terms of ICC of the COR-
HIT model dropped to 33% on the DISFA and to 29% on the PAIN
dataset (see Table 4.2.3). However, among the compared methods, the
best performing one is the CRF with an ICC of 26% on DISFA but
only 17% on the PAIN dataset. We notice that the performance on
the PAIN dataset is less effected if the frontal images are removed.
This is also expected, since the recordings of that dataset were already
non-frontal in most of the cases.

4.2.4 Evaluation on partially observed data
Table. 3 shows the results on the FERA2015 database with partially
observed labels in the test data. We also include the results of the
models based on Bayesian Networks for structured prediction. We first
add the labels for AU12, which is the AU with the highest detection
rate for all models. In the second iteration we add the labels for AU6
(second highest detection rate). Finally, the labels for AU10 are added
in the third iteration. In all experiments, the performance for AU6
increases when labels for AU12 are provided. This is expected because
of the strong dependency between this two AUs. This can also be
observed for AU17 which has no dependency to other AUs and they to
not co-occur. For example, by including the intensity levels of AU12
we can also infer some the states AU17 (being not active if AU12
is active). Therefore the increase in performance The COR model
again outperforms the other models because it is capable to learn the
sparse dependency structure directly from the training data. The MRF
model is outperformed because its graph is restricted to have a tree
like structure which is not the case in the COR-HIT model that can
learn complex relationships among groups of AUs. Finally, the CRF
model with unconstrained potential functions fails to predict partially
observed data because it typically falls in a local minimum.

4.3 Qualitative Results
This section gives a more detailed evaluation of the models of the
proposed copula framework on a single sequence of joy expression.

As previously mentioned, The COR-HIT model is capable to model
different association per intensity level. Typical AUs of joy are
AU6 and AU12. Therefore we expect them to be highly positively
correlated. More precisely, a high intensity of AU12 should increase
the chance that AU6 is activated and vice versa. However, the AUs
should be less dependent if they exhibit only a very low intensity. This
heteroscadastic association, learned by the COR-HIT model, is show
per Intensity pair in Fig.6. This association is close to 0 (independent
association) if at least one AU exhibits a low intensity. The association
increases with the AU intensity. Fig. 7 shows the predictions of
AU6&12 of different models from the Copula framework and the
related methods. Note that all models successfully predict the lower
intensity levels, but they fail do detect the exact levels for the higher
activations. However, this does not account for the COR-HIT model.
Due to its heteroscadastic adaptation, it is able to predict exactly
all intensity levels, the lower and the higher ones. Finally, Fig. 2
shows the average negative log likelihood (NCLL) (goodness of fit)
for the Independent, the Frank, the Gumbel, and the Clyton copula
on all three databases. The lowest NCLL (the best fit) is reached
by the Frank Copula. Gumbel and Clyton might be a good choice
for other problems but they fail to model the negative correlations.
Another important property of the Franc copula is its ability to model
independence by setting the association parameter to a very low
number. In our experiments, we found that for values |θ| < 10−5

the Frank copula acts exactly like the independent copula and the
edge potentials of the COR model are independent. In this special
case, the COR model results in the standard ordinal regression model.

5 CONCLUSIONS

In this paper, we proposed a novel Copula Ordinal Regression Frame-
work for joint modeling and estimation of intensities of multiple AUs
from facial images. The proposed model was evaluated in three differ-
ent settings and it has been shown experimentally that it significantly
improves the intensity estimation performance by modelling the struc-
tured ordinal output. First, we showed that by endowing the model
with separate but coupled marginal and dependency components, we
can successfully capture correlations between different facial features
and co-occurrences of various AUs. This approach generalizes prior
methods that rely on independent models by using an efficient para-
metric and flexible representation of the copula functions tied together
through a CRF model. Secondly, we demonstrate that the proposed
Copula Framework outperforms related independent models and the
state-of-the-art approaches for joint intensity estimation of AUs. We
demonstrate on three different datasets that the heteroscadastic COR-
HIT model predicts the AU intensities the best, particularly in the
case of imbalanced data with strong head-pose variations. Lastly, we
extend the inference algorithm for prediction of partially observed test
data and show that the proposed model outperforms related models
that are based on Bayesian networks for structured prediction.
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(a) COR-HIT
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(b) COR-IT [71]
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(c) SOR
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(d) GP [75]
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(e) SVM

Fig. 7: Intensity estimation of AU6&AU12 from the DISFA database attained by COR-HIT, COR-IT, SOR, GP and SVM. The upper figure
shows the series of input images with landmarks and the corresponding AU intensity levels. The lower figures show the true (solid blue) and
predicted (dashed red) labels by the models. The copula models also show the value of the association parameter (green) for the target pair
(AU6&AU12). For clarity, we have downscaled the value of the association parameter by 10.

Database: DISFA PAIN
AU: 1 2 4 5 6 9 12 15 17 20 25 26 avr. 4 6 7 9 10 12 20 25 26 43 avr.

IC
C

(3
,1

)

COR-HIT .53 .48 .63 .36 .47 .37 .8 .35 .35 .12 .84 .56 .49 .1 .53 .38 .39 .61 .5 .0 .38 .06 .19 .31
COR-IT .55 .46 .65 .32 .38 .42 .78 .31 .39 .15 .84 .54 .48 .07 .49 .36 .39 .6 .5 .01 .36 .03 .22 .3
COR-F .46 .41 .53 .23 .39 .47 .77 .19 .23 .12 .83 .52 .43 .02 .51 .34 .42 .63 .48 .0 .32 .1 .13 .3
MRF [50] .48 .37 .6 .31 .35 .3 .78 .27 .25 .06 .85 .47 .43 .01 .43 .36 .04 .6 .43 .0 .33 .0 .13 .23
LT-all [22] .37 .31 .45 .13 .52 .29 .77 .15 .3 .05 .78 .49 .38 .01 .41 .33 .33 .61 .44 .0 .33 .0 .15 .26
KNN [6] .28 .26 .34 .09 .36 .22 .7 .12 .16 .1 .78 .31 .31 .03 .27 .08 .0 .02 .26 .0 .29 .03 .1 .11
MLP [49] .31 .12 .6 .05 .49 .36 .73 .1 .24 .01 .77 .49 .35 .01 .45 .21 .03 .43 .42 .0 .34 .12 .12 .21
GP [75] .12 .1 .68 .0 .58 .43 .83 .01 .27 .0 .84 .53 .36 .07 .43 .26 .1 .19 .41 .01 .29 .08 .19 .2
CRF [28] .41 .36 .46 .16 .52 .29 .78 .16 .31 .08 .78 .50 .40 .06 .45 .27 .03 .12 .43 .00 .23 .07 .01 .17
DSRVM [23] .26 .22 .47 .14 .47 .40 .75 .28 .34 .19 .58 .35 .37 - - - - - - - - - - .21
MLR .04 .08 .64 .0 .5 .35 .81 .0 .15 .0 .85 .46 .32 .04 .45 .17 .17 .29 .43 .07 .33 .07 .13 .22
SOR .34 .28 .51 .12 .46 .31 .82 .16 .26 .1 .86 .51 .39 .04 .39 .21 .23 .43 .37 .0 .32 .12 .12 .22
SVM .25 .19 .45 .12 .53 .25 .78 .13 .2 .05 .77 .42 .34 .07 .46 .22 .15 .42 .45 .03 .38 .01 .09 .23

M
SE

COR-HIT .38 .34 .82 .06 .41 .25 .28 .14 .27 .14 .43 .37 .32 .14 .44 .29 .05 .03 .54 .09 .26 .28 .04 .22
COR-IT .36 .35 .83 .07 .52 .29 .3 .15 .3 .18 .47 .39 .33 .15 .46 .29 .05 .04 .54 .08 .27 .29 .04 .22
COR-F .4 .37 .97 .08 .54 .25 .37 .17 .34 .19 .54 .41 .39 .14 .47 .31 .06 .03 .6 .07 .28 .29 .05 .23
MRF [50] .41 .38 .9 .08 .62 .31 .39 .15 .33 .18 .49 .5 .4 .15 .58 .3 .06 .04 .68 .09 .28 .3 .05 .25
LT-all [22] .4 .36 .91 .06 .37 .28 .36 .15 .28 .15 .62 .41 .36 .15 .57 .31 .06 .04 .68 .06 .29 .29 .05 .25
KNN [6] .57 .52 1.43 .11 .6 .38 .54 .2 .39 .22 .72 .65 .53 .18 .5 .4 .08 .06 .64 .06 .28 .34 .05 .26
MLP [49] .42 .42 .74 .23 .37 .28 .41 .15 .27 .17 .63 .41 .37 .15 .55 .36 .06 .04 .72 .05 .28 .32 .05 .26
GP [75] .59 .51 .72 .17 .43 .36 .38 .26 .36 .25 .56 .49 .42 .24 .54 .39 .16 .16 .66 .15 .33 .37 .14 .31
CRF [28] .39 .36 .93 .07 .39 .28 .36 .15 .29 .15 .63 .41 .37 .15 .49 .32 .07 .06 .62 .06 .25 .27 .05 .23
MLR .54 .43 .8 .07 .44 .32 .34 .17 .32 .15 .53 .5 .39 .19 .82 .48 .09 .07 1.02 .08 .35 .37 .06 .35
SOR .36 .34 .79 .12 .48 .3 .34 .14 .3 .2 .53 .4 .36 .15 .58 .35 .11 .05 .74 .05 .3 .3 .05 .27
SVM .44 .39 .91 .07 .34 .28 .34 .14 .28 .15 .63 .41 .37 .16 .55 .34 .07 .04 .67 .06 .31 .33 .07 .26

TABLE 4: Average performance of the apperance based models tested on the DISFA and Shoulder-Pain database for intensity estimation.
Note that the models from the Copula framework outperform the traditional models and the state-of-the-art in 15 out of 22 AUs and reaches
the overall best average performance in terms of ICC and MSE.

Database: DISFA PAIN
AU: 1 2 4 5 6 9 12 15 17 20 25 26 avr. 4 6 7 9 10 12 20 25 26 43 avr.

IC
C

(3
,1

) CNN [13] .05 .04 .36 .02 .44 .27 .67 .25 .08 .03 .46 .22 .23 .11 .50 .23 .25 .28 .57 .08 .43 .16 .23 .29
CNN-R [80] .05 .06 .32 .02 .36 .39 .77 .29 .19 .04 .65 .35 .29 .11 .51 .28 .25 .22 .54 .07 .46 .15 .24 .28
CNN-O [43] .04 .05 .41 .01 .35 .19 .72 .23 .45 .06 .53 .44 .29 .21 .45 .13 .07 .22 .52 .07 .18 .09 .24 .21
SCNN [32] .03 .07 .01 .00 .29 .08 .67 .13 .27 .00 .59 .33 .20 .11 .40 .28 .25 .22 .41 .16 .26 .11 .21 .24
VGG16 [57] .19 .14 .19 .02 .39 .33 .68 .14 .27 .03 .59 .38 .28 .11 .51 .28 .30 .22 .54 .10 .46 .15 .24 .29

TABLE 5: Average performance of the models based on CNN’s. Note that the models from the Copula framework (Tab. 4) outperform the
CNN based models by a large margin, Especially on the DISFA dataset.
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