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Abstract. In this paper we focus on an understudied computer vision
problem, particularly how the micro-geometry and the reflectance of a
surface can be used to infer its material. To this end, we introduce a new,
publicly available database for fine-grained material classification, con-
sisting of over 2000 surfaces of fabrics1. The database has been collected
using a custom-made portable but cheap and easy to assemble photo-
metric stereo sensor. We use the normal map and the albedo of each
surface to recognize its material via the use of handcrafted and learned
features and various feature encodings. We also perform garment classi-
fication using the same approach. We show that the fusion of normals
and albedo information outperforms standard methods which rely only
on the use of texture information. Our methodologies, both for data
collection, as well as for material classification can be applied easily to
many real-word scenarios including design of new robots able to sense
materials and industrial inspection.

Keywords: material classification, micro-geometry, reflectance, photo-
metric stereo

1 Introduction

Materials recognition from their visual appearance is an important problem in
computer vision having numerous applications spanning from scene analysis to
robotics and industrial inspection. Knowledge of the material of an object or
surface can provide useful information about its properties. Metallic objects
are usually rigid while fabric is deformable and glass is fragile. Humans use
daily this kind of information when they interact with the physical world. For
example, they are more careful when they hold a glass bottle than a plastic one
and they avoid walking on ice or other slippery surfaces. It would be useful in
many applications, such as robotic manipulation or autonomous navigation, if a
computer vision system had the same ability.

Due to the limited amount of data available the problem of material recogni-
tion/classification was not among the most popular computer vision areas [1–7].

1 http://ibug.doc.ic.ac.uk/resources/fabrics
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Fig. 1. Samples from our database. From left to right, top to bottom: cotton, terrycloth,
denim, fleece, nylon, polyester, silk, viscose, and wool.

But with the advent of the Internet and crowd-source annotation, collection and
annotation of large databases of materials and textures was made feasible, which
in turn brought renewed attention to the problem of material classification [8–
12]. Currently the trend is to use materials captured in unconstrained conditions,
also referred to as “in-the-wild”, and mainly in the large scale [10, 11, 9, 8]. In
this paper, we take a different direction which has, to the best of our knowledge,
has received limited attention. We study the problem of fine-grained material,
and particularly fabric, classification in the fine scale introducing the first large
database suitable for the task.

Recognizing materials from images is a challenging task because the appear-
ance of a surface depends on a variety of factors such as its shape, its reflectance
properties, illumination, viewing direction etc. Material recognition is usually
treated as texture classification. Statistical learning techniques have been em-
ployed [1–3] on databases of different materials taken under multiple illumina-
tion and viewing directions [13–15]. Despite the very high classification rates
achieved this way [3], the introduction of data captured “in-the-wild” have re-
cently showed that the problem is extremely challenging in real world conditions.

On the other hand, humans do not rely only on vision to recognize materials.
The sense of touch can be really useful to discriminate materials with subtle
differences. For example, when someone wants to find out the material a garment
is made of, they usually rub it to assess its roughness. This gives us the hint
that the micro-geometry of the garment surface provides useful information for
its material.
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In this paper, we study how the micro-geometry and the reflectance of a
surface can be used to infer its material. To recover the micro-geometry we use
photometric stereo, which gives us the normal map and the albedo of the surface
by capturing images under different illumination conditions. An advantage of
photometric stereo over other techniques, like binocular stereo, is that there is no
correspondence problem between images. All images are captured under the same
view point and only the illumination is different. That makes photometric stereo
a fast and computational efficient technique that suits well the time constraints
of a real-world application.

To be able to apply photometric stereo in unconstrained environments, we
built a portable photometric stereo sensor using low cost, off-the-shelf compo-
nents. The sensor recovers the normal map and the albedo of various surfaces
fast and accurately and has the ability to capture fine micro-structure details,
as we can see in fig. 1. Using the sensor we collected surface patches of over 2000
garments. Knowing the fabric of a garment can help robots manipulate clothes
more robustly and facilitate the automation of household chores like laundry [16]
and ironing.

In contrast to most datasets [17, 18] where fabrics are treated as one of the
material classes, we investigate the problem of classifying 9 different fabric classes
- cotton, denim, fleece, nylon, polyester, silk, terrycloth, viscose, and wool. This
fine-grained classification problem is much more challenging due to the large
intra-class and small inter-class variance that fabrics have. We perform a thor-
ough evaluation of various feature encoding methodologies such as Bag of Vi-
sual Words (BoVW) [1], Pyramid Histogram Of visual Words (PHOW) [19],
Fisher Vectors [20, 21], Vector of Locally-Aggregated Descriptors(VLAD) [22]
using both SIFT [23], as well as features from Convolutional Neural Networks
(CNNs) [24]. We show that using both normals and albedo the classification
accuracy is improved. In summary, our main contributions are:

– The first large, publicly available database of garment surfaces captured
under different illumination conditions.

– An evaluation of texture features and encodings which shows that the micro-
geometry and reflectance of a fabric can be used to classify its material more
accurately than by using its texture.

2 Related Work

At first, texture classification was implemented on 2-D patches from image
databases such as Brodatz textures [25]. One of the first efforts to collect a
large database suitable for studying appearance of real-world surfaces was made
in [13]. The so-called CUReT database contains image textures from around 60
different materials, each observed with over 200 different combinations of viewing
and illumination directions. Leung and Malik [1] used the CUReT database for
material classification, introducing the concept of 3D textons. They used a filter
bank to obtain filter responses for each class of the CUReT database and they
clustered them to obtain the 3-D textons. Then, they created a model for every
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training image by building its texton frequency histogram and they classified
each test image by comparing its model with the learned models, introducing
what is now known as the BoVW representation. In [1] a set of 48 filters were
used for feature extraction (first and second derivatives of Gaussians at 6 ori-
entations and 3 scales making a total of 36, 8 Laplacian of Gaussian filters and
4 Gaussians). A similar approach was followed in [2] using the so-called MR8
filter. The MR8 filter bank consists of 38 filters but only 8 filter responses. To
achieve rotation invariance the filter bank contains filters (Gaussian and a Lapla-
cian of Gaussian) at multiple orientations but only the maximum filter response
across all orientations is used. Later Varma and Zisserman [3] questioned about
the necessity of filter banks by succeeding comparable results using image patch
exemplars as small as 3 × 3 instead of a filter bank. The KTH-TIPS (Textures
under varying Illumination, Pose and Scale) image database was created to ex-
tend the CUReT database by providing variations in scale [4]. Despite the almost
perfect classification rate in CUReT database the results of the same algorithms
in KTH-TIPS showed that the performance drops significantly [5].

Fig. 2. The photometric stereo sensor on a table (left) and installed in the gripper of
an industrial robot (right)

Sharan et al. created the more challenging material database FMD [18] with
images taken from the Flickr website and captured under unknown real-world
conditions (10 materials with 100 samples per material). Liu et al. [26] used
the FMD and a Bayesian framework to achieve 45% classification rate while Hu
et al. [27] by using the Kernel Descriptor framework improved the accuracy to
54%. Sharan et al. [7] used perceptually inspired features to further improve the
results to 57%.

Recently, in [10] the authors presented the first database with textures “in-
the-wild” with various attributes (including the material of the texture) and in
[9] a very large-scale, open dataset of materials in the wild, the so-called Materi-
als in Context Database (MINC) was proposed [9]. Another database (UBO2014)
that appeared recently for synthesising training images for material classification
appeared in [28] (7 material categories, each consisting of measurements of 12
different material samples, measured in a darkened lab environment with con-
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Fig. 3. Bottom view of our photometric stereo sensor having all lights off (left) and
with one light on (right)

trolled illumination). The above databases are suitable for training and testing
generic material classification methodologies from appearance information.

In this paper we study the problem of fine-grained material classification
using both the reflectance properties (albedo) and the micro-geometry (surface
normals) of a surface. The most closely related work on fusing albedo and nor-
mals for material classification is the work on [29] which proposes a rotational
invariant classification method. The authors applied succefully their method on
real textures but they used only 30 samples belonging to various material classes
(fabric, gravel, wood). In contrast, our database contains around 2000 samples
and is suitable for fine-grained classification.

Regarding recognition of materials using micro-geometry the only relevant
published technology is the tactile GelSight sensor [30, 31]. In [30] the authors
used the Gelsight sensor to collect a database of 40 material classes with 6
samples per class (the database is not publicly available). The Gelsight sensor is
able to provide very high resolution height maps but cannot recover albedo [31]
(contrary to our sensor which provides both micro-geometry and albedo).

Fig. 4. Albedo, normals, and 3-D shape of our calibration target
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Fig. 5. The 9 main fabric classes with albedo and 3D shape

3 Photometric Stereo Sensor

Photometric stereo [32] is a computer vision method that uses three or more
images of a surface from the same viewpoint but under different illumination
conditions to estimate the normal vector and albedo at each point. By integrating
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the normal map the 3-D shape of the surface can be acquired. Photometric stereo
has found application in a wide variety of fields, ranging from medicine [33] to
security [34] and from robotics [35] to archaeology [36].

We used this method to acquire the micro-geometry and the reflectance prop-
erties of garment surfaces. In order to capture a large number of garments, we
built a small-sized, portable photometric stereo sensor using low-cost, off-the-
shelf components, fig. 2. The sensor consists of a webcam with adjustable focus,
white light emitting diode (LED) arrays and a micro-controller to synchronize
the LED arrays with the camera. It features an easy to use USB interface that
connects directly to a computer with a standard USB port. All the components
are enclosed in a 3-D printed cylindrical case with a diameter of 38mm and
height of 40mm. The case has also a rectangular base that allows the sensor to
be mounted in the gripper of a robot, fig. 2 (right).

The sensor captures 4 RGB images of a small patch of the inspected surface,
one for each light source, in less than a second. The working distance of the
camera is 3 cm and to achieve focus we had to modify appropriately the camera
optics. The sensor resolution is 640×480 pixels but we crop all images to 400×400
pixels to avoid out-of-focus regions at the corners due to the very shallow depth of
field. The corresponding field of view is approximately 10mm×10mm, adequate
to capture the micro-structure of most fabrics.

We use near-grazing illumination to maximize contrast and eliminate specu-
larities. Because the light sources are close to the inspected surface the lighting
field is not uniform. To confront this issue, we have captured with our sensor
a flat surface with known albedo and use these images to normalize every new
surface we capture.

As can be seen in fig. 3, we use LED arrays to illuminate uniformly the
inspected surface. However in such a close distance the illumination is not di-
rectional and we have to know the light vectors in each position to apply photo-
metric stereo. To do so, we used a chrome sphere (2 mm diameter) in different
locations to calibrate our lights and by interpolation we found the light vectors
for each pixel. Next, we run photometric stereo to get the albedo and the nor-
mal map using the method of Barsky and Petrou [37] to deal with shadows and
highlights. At the end we integrate the normals to obtain the 3D shape of the
surface [38].

We evaluated the accuracy of our sensor by using a calibration target, con-
sisting of a 2 × 2 grid of spheres of diameter of 2 mm. As we can see in figure 4
the sensor can accurately reconstruct the shape of the spheres. Since our goal is
to capture the geometry of a surface for classification, we didn’t further assess
the reconstruction accuracy.

4 Dataset

Using the photometric stereo sensor we collected samples of the surface of over
2000 garments and fabrics. We visited many clothes shops with the sensor and
a laptop and captured all our images “in the field”. For every garment we kept
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information (attributes) about its material composition from the manufacturer
label and its type (pants, shirt, skirt etc.). The dataset reflects the distribution
of fabrics in real world, hence it is not balanced. The majority of clothes are
made of specific fabrics, such as cotton and polyester, while some other fabrics,
such as silk and linen, are more rare. Also, a large number of clothes are not
composed of a single fabric but two or more fabrics are used to give the garment
the desired properties. Fig. 5 presents samples for major classes, along with its
albedo and its 3-D micro-geometry.

4.1 Data collection

Fig. 6. Capturing setup

The procedure we followed to capture our fabric dataset is depicted in Fig. 6.
The photometric stereo sensor is placed on a flat region of the garment, equal to
the field of view (10mm× 10mm). Initially the sensor turns on one light source
to allow the camera to focus on the surface of the garment. Due to the shallow
depth of field, this task is very important. Subsequently we capture 4 images, one
for each light source. We normalize the captured images using reference images
of a flat surface with known albedo.

Fig. 6 shows the graphical user interface we use to collect the data. In the top
row the 4 captured images are shown, while in the bottom row we visualize the
albedo, the normal map (as an RGB image) and the 3-D shape of the surface.
On the right side we can select the fabric of the garment (cotton, wool, etc.) as
well as its type (t-shirt, pants, etc.).
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5 Experiments

In this section we describe the experiments we run on our fabric database for
fine-grained material and garment classification. First of all, a very important as-
pect of every classification system is the selection of features to use. In our case,
we want to use features that distinguish fabric classes from one another. We are
mostly interested in features that represent the micro-geometry and reflectance
of the surface as they are encoded in normals and albedo respectively. To this
end we have followed similar steps as [10]. We have used handcrafted, i.e dense
SIFT [23] features 2, as well as features coming from Deep Convolutional Neural
Networks (CNN) [40, 24]. Deep learning and especially CNNs dominate the field
of object and speech recognition. CNNs contain a hierarchical model where we
have a succession of convolutions and non-linearities. CNNs can learn very com-
plex relationships, given that exist a large amount of data. In our case we used
the VGG-M [40] pre-trained neural network which has 8 layers, 5 convolutional
layers plus 3 fully connected. We have applied the non-linear features (dense
SIFT and CNNs) to (a) albedo images, (b) the original images under differ-
ent illuminants, (c) the normals (concatenate the three components, Nx, Ny, Nz,
into a single image) and (d) fusing normals and albedo (by creating a larger
image consisting of the albedo plus the three components of the normals). The
following feature encodings have been applied to the local (dense SIFT) features:

– Feature encoding via the use of BoVW. BoVW uses Vector Quantisation
(VQ) [41] of local features (i.e., responses of linear or non-linear filters)
by mapping them to the closest visual word in a dictionary. The visual
words (vocabulary) are prototypical features, i.e. kind of centroids, and are
computed by applying a clustering methodology (e.g., K-means [42]). The
BoVW encoding is a vector of occurrence counts the above vocabulary of
visual words. BoVW was first proposed in [1] for the purpose of material
classification.

– Another popular orderless encoding is the so-called VLAD [22]. VLAD, sim-
ilar to BoVW, applies VQ to a collection of local features. It differs from the
BoVW image descriptor by recording the difference from the cluster center,
rather than the number of local features assigned to the cluster. VLAD ac-
cumulates first-order descriptor statistics instead of simple occurrences as in
BoVW.

– A feature encoding that accumulated first and second order statistics of local
features is the FV [21]. FV uses a soft clustering assignment by using a Gaus-
sian Mixture Model (GMM) [43] instead of K-means. The soft-assignments
(posterior probability of each GMM component) is used to weight first and
second order statistics of local features.

For the case of CNNs features we have used them directly in the classifier or we
used FV encoding before performing classification [11]. The classifier we used was

2 We have tried other features such as Local Binary Patterns (LBPs) [39] and the
MR8 filters in [2] but the results were much poorer than dense SIFT, hence are not
reported.



10 C. Kampouris et al.

a linear 1 versus ”all” Support Vector Machine (SVM) [44]. We have performed
four fold cross-validation (i.e., using 75% for training and 25% for testing in each
fold).

In all experiments, we used the VLFeat library [45] to extract the SIFT
features and to compute the feature encodings (BoVW, VLAD, FV). For the
CNNs we used the MatConvNet library [46].

5.1 Results

For our classification experiments we didn’t use garments with blended fabrics.
We kept only those whose composition is 95% of one material. We also discarded
fabric classes with too few samples. So, for our experiments we have chosen a
subset of 1266 samples which belong to one of the following fabric classes: cotton,
terrycloth, denim, fleece, nylon, polyester, silk, viscose, and wool. The number
of samples in each class is shown in table 1.

Cotton Terrycloth Denim Fleece Nylon Polyester Silk Viscose Wool

588 30 162 33 50 226 50 37 90

Table 1. Number of samples per class for fabric classification

Table 2 summarizes the results of our experiments for fabric classification.
As we can see, the combination of albedo and normals gives constantly slightly
better accuracy. This is true not only for the hand-made features but also for
the learned features of CNNs. This provides evidence that using both geometry
and texture is useful for fine grained material classification problems.

SIFT CNN - VGG-M

Modality FV VLAD BoVW FV FC FC+FV

Images 65.3 58.9 58.4 66.5 44.0 71.7
Albedo 63.5 56.5 56.6 67.9 47.6 71.2
Normals 72.5 57.2 54.3 73.9 41.9 74.1

Alb+Norm 74.7 61.7 60.1 76.1 50.5 79.6

Table 2. Results for fabric classification

We also run experiments for garment recognition to investigate whether the
garment type can be estimated by the microgeometry or albedo. Here we split
our dataset in 6 classes: blouses, jackets, jeans, pants, shirts, and t-shirts. Table
3 shows the number of samples per garment class.

We used the same approach with fabric classification testing SIFT features
in different encodings as well as CNN features. The results are presented in table
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Blouses Jackets Jeans Pants Shirts T-shirts

294 146 139 205 159 261

Table 3. Number of samples per class for garment classification

4. It is obvious that this problem is a more difficult and requires more research
but also in this case the fusion of albedo and normals gives the best results.

SIFT CNN - VGG-M

Modality FV VLAD BoVW FV FC FC+FV

Images 50.1 48.3 44.7 55.7 40.0 61.2
Albedo 49.5 49.7 46.6 57.3 40.6 63.4
Normals 54.9 51.3 53.3 54.2 41.9 64.3

Alb+Norm 55.6 51.6 52.8 57.1 50.5 64.6

Table 4. Results for garment classification

Fig. 7 (left) presents the confusion matrix for the combination of albedo
and normals using fully-connected deep convolutional features from the VGG-M
model and FV pooling. This model achieved 79.6% average accuracy, surpassing
both dense SIFT features with FV pooling and CNN with FV pooling (74.7%
and 76.1% respectively). As we can see cotton, terrycloth, denim and fleece can
be recognized successfully with almost no errors. On the other hand, classes like
nylon and viscose are more difficult to classify due to their glossy appearance
and the small number of samples in our dataset.

Fig. 7. Confusion matrix of the best fabric (left) and the best garment (right) classifier
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The same combination of local features and pooling encoder (FC-CNN +
FV) gives also the best result for the problem of garment classification. Here the
accuracy is 64.6%, while using dense SIFT we get 55.6% and using CNN + FV,
57.1%. As we can see by observing the confusion matrix in fig. 7 (right) only
the classification rate of jeans is high. This is expected since jeans are made by
denim fabric and our system can recognize denim accurately (fig. 7 (left)). On
the contrary, all other garments can be made of various fabrics and there is no
one-to-one correspondence between fabric and garment class.

6 Conclusion

Material classification is important but challenging problem for computer vision.
This work focuses on recognizing the material of clothes. Inspired by the fact
that humans use their sense of touch to infer the fabric of a garment, we investi-
gated the use of the micro-geometry of garments to recognize their materials. We
built a portable photometric stereo sensor and introduced the first large scale
dataset of garment surfaces, belonging to 9 different fabric classes. We tested
a number of different features for material classification and showed that using
both the micro-geometry and the reflectance properties of a fabric can improve
the classification rate. Although there is room for improvement, our system is
efficient and practical solution for material classification that can be applied in
many different scenarios in robotics and industrial inspection.
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