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Abstract— Face tracking serves as the crucial initial step in
mobile applications trying to analyse target faces over time
in mobile settings. However, this problem has received little
attention, mainly due to the scarcity of dedicated face tracking
benchmarks. In this work, we introduce MobiFace, the first
dataset for single face tracking in mobile situations. It consists
of 80 unedited live-streaming mobile videos captured by 70 dif-
ferent smartphone users in fully unconstrained environments.
Over 95K bounding boxes are manually labelled. The videos
are carefully selected to cover typical smartphone usage. The
videos are also annotated with 14 attributes, including 6 newly
proposed attributes and 8 commonly seen in object tracking.
36 state-of-the-art trackers, including facial landmark trackers,
generic object trackers and trackers that we have fine-tuned
or improved, are evaluated. The results suggest that mobile
face tracking cannot be solved through existing approaches. In
addition, we show that fine-tuning on the MobiFace training
data significantly boosts the performance of deep learning-
based trackers, suggesting that MobiFace captures the unique
characteristics of mobile face tracking. Our goal is to offer
the community a diverse dataset to enable the design and
evaluation of mobile face trackers. The dataset, annotations
and the evaluation server will be on https://mobiface.
github.io/.

I. INTRODUCTION

Face analysis on mobile platforms has attracted increasing
levels of interest in recent years [5]–[8]. One crucial element
is face tracking, which, given its initial location specified in
the first frame, finds the bounding box of the target face in a
video. Despite recent attempts to address this problem [9]–
[11], tracking a face on mobile platforms remains extremely
challenging due to the large appearance variations caused
by illumination changes, out-of-plane rotations, heavy oc-
clusions, target disappearance from the camera view among
various difficulties.

One important prerequisite of tackling this challenge is
the collection of a large scale in-the-wild mobile dataset for
developing and evaluating face trackers. However, existing
mobile datasets [1], [2], [6] fail to serve this purpose, as they
are (i) not designed for face tracking, and; (ii) not collected
in fully unconstrained environments. To our knowledge the
only in-the-wild mobile dataset is the one proposed by Yu
and Ramamoorthi [4]. Unfortunately, this dataset is quite
small, consisting of only 8,756 frames, and does not provide
bounding box annotations. In this work, we attempt to bridge
this gap by proposing the first mobile face tracking dataset

in the wild. Our dataset contains 80 unedited mobile live-
streamed videos with 95,635 frames with bounding box
annotations provided for all the frames.

Although it might appear that the mobile face tracking
problem can be readily solved using existing generic object
tracking methods, extensive experiments on our dataset show
this to be incorrect. Four key differences between the two
problems illustrate why. First, the target faces can undergo
large scale variations due to the mobility of smartphones,
whereas the target’s size and the aspect ratio rarely change
in most object tracking videos. Second, due to the use of
hand-held devices in the mobile footage, the motion of
the target can be fast and sometimes unpredictable. Third,
rarely does object tracking have similar objects in the same
video, whereas in mobile face tracking the tracker can often
encounter multiple faces. Finally, due to the smaller field of
view of mobile cameras, targets can be easily occluded or
out of view. Nevertheless, domain adaptation from generic
object tracking to face tracking can still provide a promising
starting point given a sufficient amount of data [12]–[14].

Following the trend of deep learning in computer vi-
sion, the research community has employed data-driven
approaches to solve a wide range of face-related problems,
such as face detection [15] and facial landmark tracking
[16], [17]. In this paper, we introduce MobiFace, the first
large scale mobile dataset dedicated for face tracking, as
a significant step towards solving the mobile face tracking
problem.

Our contribution can be summarised as:
1) We introduce MobiFace which consists of 80 unedited

in-the-wild mobile video uploaded by 70 smartphone
users. We provide bounding box annotations for all the
95,635 frames. We also define 14 attributes for these
mobile videos and provide annotations for each one.

2) We benchmark 36 state-of-the-art tracking methods
and models, including 4 facial landmark trackers, 14
object trackers and 18 trackers that we improved or
fine-tuned. The results indicate that mobile face track-
ing remains challenging for all existing methods.

3) We demonstrate that fine-tuning on MobiFace signifi-
cantly boosts the performance of deep learning-based
trackers. This suggests MobiFace captures the unique
characteristics of mobile face tracking, demonstrating
its use potential for the research community.



Datasets Capture device # of videos # of frames # of labelled frames Avg. frames Edited Application Year
MOBIO [1] Nokia N93i & MacBook 28,800 5,490,000 0 190 No Biometrics 2008
AA-01-FD [2] iPhone 5s 750 8,036 8,036 11 Yes Detection 2015
UMDAA-02-FD [3] Nexus 5 8,756 33,209 33,209 4 Yes Detection 2016
Yu and Ramamoorthi [4] Various smartphones 33 8,318 0 252 No Video stabilisation 2018
MobiFace (this paper) Various smartphones 80 95,635 95,635 1,195 No Tracking 2018

TABLE I: A summary of recent publicly available face datasets in the mobile domain. The column ‘Edited’ denotes whether or not the
source videos are downsampled or composed of multiple shots.

4) All videos, training data annotations and the evalua-
tion server are provided on our project website. To
guarantee a fair comparison, we reserve MobiFace test
set annotations on our evaluation server. Researchers
are encouraged to submit their tracking results for
benchmarking.

II. RELATED WORK

A. Face Datasets in the Mobile Domain

Despite the tremendous efforts in building large scale face
databases [17]–[20], there has been a scarcity of datasets
tailored for mobile face tracking in the wild. The MOBIO
[21] dataset is one of the earliest attempts to collect mobile
videos for face and speaker verification. In this work, 160
participants were recruited and recorded in 12 different ses-
sions. However their videos were collected in the controlled
lab environment, where the subjects were required to position
their heads inside a fixed region during the recording. Similar
mobile datasets for face verification also exist, with more
variations on background and less restrictions on head pose.
The AA-01-FD [2] dataset and UMDAA-02-FD [3] dataset
are two widely used mobile face datasets. Nevertheless, their
videos are often very short and contain only one large main
face, which makes them less useful for developing mobile
face trackers or benchmarking object trackers in the mobile
domain. Yu and Ramamoorthi [4] recently proposed a mobile
dataset that contains 33 in-the-wild selfie videos. At initial
look the data set would seem suitable for benchmarking
trackers in mobile settings. However, the size of dataset is
too small, and no face bounding box annotation is provided.

Through MobiFace, our work aims to fill this gap. To our
knowledge, this is the first mobile dataset dedicated to face
tracking in the wild. This dataset exhibits rich variations in
camera quality, pose, illumination and background. Table I
compares our MobiFace dataset with other existing mobile
datasets.

B. Face Tracking

In contrast with facial landmark tracking [17], a face
tracker provides only the target face’s bounding box, which
can then be used as the input for facial landmark localisation
and other high level face analysis tasks. This work focuses
on addressing face tracking in mobile situations. Specifically,
given the initial state of a target face in the first frame, a face
tracker should continuously estimate the states, e.g., pres-
ence, size and location, of the target face in all subsequent
frames.

Face-TLD [9] was one of the earliest attempts to apply
the tracking-by-detection diagram to face tracking. [10] em-
ployed an incremental principal component analysis (PCA)
model to obtain robust face representation. Due to the lack of
face tracking benchmarks the performance of these trackers
was reported either on a few videos [22] or on small subsets
from object tracking benchmarks [11], which yielded results
unable to be directly compared. Our proposed dataset aims
to provide the community with an unified benchmark for the
development of mobile face trackers.

C. Single Object Tracking

Single object tracking, or object tracking, shares a similar
objective with face tracking. In contrast to the slow ad-
vancements in face tracking, object tracking has progressed
rapidly, due to the availability of many visual tracking
databases and competitions, including VOT [13], OTB [12]
and VisDrone [14], and others [23]–[25]. As face is an
instance of the object class, object tracking methods can
potentially be adapted to mobile face tracking, provided that
sufficient training videos are made available.

1) Correlation filter trackers: Correlation Filter (CF) [26]
has been widely used to develop accurate and fast trackers.
This is primarily due to modelling of target’s movement as
a circulant matrix, which represents the dense sampling of
the target. The circulant shift formulation results in very fast
solution to the underlying ridge regression problem in the
Fourier domain. The KCF tracker [27] proposed to map the
input features to a high dimensional space by the kernalised
CF. DSST [28] introduced a multi-scale search space to
handle large object scale variations. Staple [29] combined
colour features and histogram of oriented gradients (HOG)
features to enhance feature robustness. Most recently, the
HCF [30] tracker exploited different features from multiple
layers of a pre-trained deep convolutional networks in the
CF framework, achieving promising results.

2) Deep trackers: Following the success of Convolutional
Neural Networks (CNNs) in computer vision applications, a
large number of object trackers that employ deep models
were proposed. We have broadly categorised these trackers
according to their tracking strategies. Readers can refer to
[31] for a thorough review of deep trackers.
Tracking-by-detection. These trackers train an online clas-
sifier to discriminate the target from the background using
the samples collected during tracking. MDNet [32] applied
a multi-domain offline training technique to train the full
network, and fine-tuned the last fully connected layer online.
CREST [33] reformulated CF as a fully connected layer for
tracking and used online residual learning to train the CF



Fig. 1: Exemplar videos from our proposed MobiFace. Red rectangles indicate the ground truth bounding boxes.

layer. VITAL [34] explored adversarial learning to augment
the feature extraction process, obtaining better features to
capture large appearance changes. MetaTracker [35] intro-
duced an offline meta-learning method to adjust the initial
network for online adaptation.
Template matching. The template matching-based tracker
devises two identical CNNs to extract features from the target
image patch and the search region respectively, which are
combined to generate a response map with maximum value
indicating the target position. The pioneering SiamFC [36]
adopted a pre-trained fully convolutional Siamese network
for feature extraction. It was trained end-to-end and operated
beyond real-time. CFNet [37] exploited CF in training,
which allowed shallow CNNs to extract robust features for
tracking. SiamRPN [38] introduced a region proposal module
to propose candidate regions of different sizes and aspect
ratios, able to deal with dramatic scale changes of the
target object. MemTrack [39] proposed a Long Short-Term
Memory (LSTM) module to control the template adaptation
to capture the appearance changes along the time.

III. MOBIFACE DATASET

In this section, we introduce MobiFace, the very first mo-
bile dataset tailored for face tracking in the wild. MobiFace
contains 80 videos curated from thousands of mobile live-
streaming videos uploaded by different internet users. Fig. 1
shows some examples of the videos. We manually annotate
all the 95,635 frames with a bounding box around the target
face. We also annotate each mobile video with 14 attributes,
of which, 6 are newly proposed attributes commonly seen
in mobile situations. We provide details about our data
collection and annotation procedure as well as the evaluation
metrics. We also highlight the new challenges posed by this
novel dataset in this section.

A. Data Collection

We used YouTube Data API to fetch videos from YouTube
mobile live-streaming channel, which is maintained daily by
YouTube. Those videos are usually raw footage recorded
and uploaded by different vloggers worldwide, without any
video editing or visual effects. Most of them are captured
under fully unconstrained environments, such as a protest

event, a wild party or even a wedding, where interactions of
the user with the environment/audience are natural. Exemple
videos that show the user interacting with the surrounding
environment can be found in the 2nd and 4th sequence on
the left of Fig. 1 while typical videos exhibiting the user-
audience interaction can be found in the 1st and 3rd sequence.

To create a large pool of candidate videos, we subscribed
and followed the aforementioned channel for three consecu-
tive months. In total, we have collected 6,201 unedited videos
for later selection. Among these videos, we went through
each one of them and discarded those that do not capture a
face on the camera, e.g., live-streaming of a street. We further
refined our list by two criteria: (i) the target face should at
least appear in 10% of the video frames; (ii) to serve the
purpose of visual tracking, the target face should not always
stay still. As a result, we picked 80 video sequences, with
each video carefully segmented to retain the main part that
best reflects the challenging scenarios in the mobile domain.

As facial images are of critical privacy, we concern
ourselves with the legal issue on circulating the data within
academia. Thus we have contacted the video owners for their
consents to use the videos for academic purposes.

B. Annotation for Tracking
We provide a manually annotated face bounding box for all

the frames in MobiFace. For each sequence, we annotate the
initial bounding box and define strict annotation protocols for
the annotators to label the successive frames. We recruited
three experienced annotators and developed a cross-platform
web application for the annotation process. Our annotation
protocol is that, two annotators are assigned different videos
for the bounding box annotation, while the third annotator
serves as the quality control person, who is committed to
review the annotation and report the possible confusions to
us. In this manner, we can quickly resolve the annotation
problem and give feedback to the annotators.

We also derived clear rules to guarantee the quality and
consistency of our annotation process. Different from object
tracking that may not require a tight bounding box, we tried
to provide an accurate close-fitting box that can benefit the
latter face analysis. Henceforth, four rules were specified as
follows:



Attribute # of videos Description
FC (Frontal Camera) 61 The video was captured using the frontal camera.
RC (Rear Camera) 18 The video was captured using the rear camera.
PT (Portrait) 9 The orientation of the video is portrait.
LS (Landscape) 71 The orientation of the video is landscape.
CS (Camera Switch) 1 The camera switches from frontal to rear in the video or vice verse.
MF (Multiple Faces) 64 More than one face exist in the view.
IV (Illumination Variation) 38 Significant illumination change on the target face.
SV (Scale Variation) 31 The area ratio of two bounding boxes in two consecutive frames is smaller than 0.7.
OCC (Occlusion) 50 The face is partially or fully occluded.
FM (Fast Motion) 19 The displacement of the target centre is larger than the frame width between consecutive frames.
IPR (In-Plane Rotation) 31 The face rotates in the image plane.
OPR (Out-of-Plane Rotation) 77 The face rotates out of the image plane.
OV (Out-of-View) 72 Part or all of the target leaves the view.
BL (Blur) 52 The target face is blurred due to the motion of target or smartphone, out-of-focus and low resolution.

TABLE II: MobiFace video attributes. Top: six proposed attributes (see Sec. III-C). Bottom: eight common attributes as in [12].

1) Bounding box: An upright bounding box is labelled
tightly around the target face in each frame. We required it
to cover the forehead and the chin but not the ears. For profile
faces, the bounding box should include the nose tip and
exclude the ear. We do not use eclipse annotations [40] since
most face-related algorithms, e.g., facial landmarks tracking,
take an upright bounding box as input.

2) Occlusion and out-of-view: Some benchmarks anno-
tate only the visible part of the target even if it is severely
occluded [41]–[43]. We argue that this introduces drastic
scale changes between frames and may cause bias in the
evaluation results. Considering the fact that a small portion
of the face does not contribute to the successive face analysis,
we mark the state that 90% of the target face is occluded or
out-of-view as absent, and require the tracker to report all
zero values to represent the absent state.

3) Rotation: The faces with over 120 degrees of out-of-
plane rotation are also considered absent (see 2nd sequence
of Fig. 1). For in-plane rotations, we require the bounding
boxes to be upright and cover the whole face.

4) Large faces: When the faces are extremely close to the
camera and display only some visible parts, e.g., eyes and
nose, we annotate the whole visible part as it is difficult to
estimate the extent of the bounding box outside the view.

C. Attributes Annotation

Apart from the bounding box annotation, each video is
also annotated with a list of high-level attributes defined in
Table II. We introduce six novel and unique attributes that are
commonly seen in the mobile scenarios but not considered
in object tracking benchmarks.

1) Frotnal Camera (FC), Rear Camera (RC) and Camera
Switch (CS): These three attributes relate to the camera
of mobile phone. FC and RC indicate whether the video
is captured by the frontal or the rear camera. The frontal
camera is more frequently used in selfie videos while the rear
camera is usually for general-purpose shooting. Because of
this fact, the recorded videos captured from the frontal and
the rear camera pose different challenges for tracking. For
example, the frontal camera often has a closer view of the
phone holder, which may not only result in a bigger face,
but also an incomplete/occluded face. On the other hand,
the rear camera usually captures a smaller face with many

background noises or distractors. CS suggests the case that
the user switches the camera from the frontal camera to the
rear ones, or vice versa. The challenges of this attribute
include: (i) two cameras often have different specs such
as megapixels, aperture and focal length; (ii) the switch of
camera is sudden and unpredictable. Although we do not
provide many videos with this extremely difficult attribute,
it is certainly of our future interest to collect more such data.

2) Portrait (PT) and Landscape (LS): They denote the
orientation of the video. Depending on the user’s holding
position, the captured video can be either in portrait or
landscape orientation.

3) Multiple Faces (MF): It indicates whether there are
more than one face in the video or not. There are usually no
similar objects in one single video in object tracking datasets
[12]–[14], [25] and mobile datasets [1]–[4].

The remaining eight attributes are commonly used in
object tracking and we annotate them following the protocols
defined in [12]. Full distribution of attributions can be found
on the project website.

D. Evaluation Metrics

We utilise three conventional metrics, i.e., precision plot,
success plot and frame per second (FPS), to quantitatively
evaluate a face tracker on the proposed MobiFace dataset.

1) Normalised precision plot: Precision plot [12] is a
widely used evaluation metric on tracking. Precision is de-
scribed by the euclidean distance between the centre location
of the tracked face and the ground truth box. However,
as our unedited mobile videos differ greatly in resolution,
we adopt the recently proposed normalised precision value
[43] in our benchmark. The size of the frame is used for
the normalisation, and we rank the trackers based on the
area under the curve (AUC) for normalised precision value
between 0 and 0.5.

2) Success plot: The success plot [12] shows the percent-
age of frames in which the intersection of union (IoU) of the
predicted and ground truth bounding box is greater than a
given threshold. Denoting the ground truth bounding box as
rgt and the predicted bounding box as rp, the IoU metric is

defined as
rgt ∩ rp

rgt ∪ rp
, where ∩ and ∪ represent the intersection

and union of two regions, respectively. The threshold value



ranges from 0 to 1. A representative score for each tracker
is the AUC of the success plot.

3) FPS: This is the average speed of the evaluated tracker
running across all the sequences. The initialisation time
is not considered here, thus we count the FPS from the
beginning of frame-to-frame tracking. Ideally, a mobile face
tracker should run at a high FPS (on CPU or GPU) to allow
potential migration to the actual mobile devices. Due to a
lack of available face/object tracking implementations on
mobile devices, we can only provide the FPS on desktop
environment which should still be indicative to the efficiency
of the trackers.

IV. BENCHMARK RESULTS

In this section, we evaluate the effectiveness and efficiency
of many different trackers on our novel MobiFace dataset,
and provide in-depth discussion on the current issue in
mobile face tracking. All of our experiments were conducted
on a desktop machine with a Intel i9-7900X CPU (3.30GHz)
and one GTX 1080 Ti GPU.

A. Evaluated Trackers

We gathered and evaluated 18 representative tracking
methods [9], [27], [29], [30], [32]–[39], [44]–[47] as listed
in Table III on our dataset. Among these trackers, 12 of them
are short-term trackers from the object tracking benchmarks
[12], [13], 2 trackers are long-term trackers, while the
remaining 4 trackers are state-of-the-art 2D and 3D facial
landmark trackers [46], [47]. Unfortunately, there are not
many trackers designed for long-term tracking, we hence
equipped all 4 facial landmark trackers [46], [47] and 3
short-term trackers [32], [35], [36] with a simple re-detection
module to alleviate this problem. In order to demonstrate the
usefulness of MobiFace, we fine-tuned these trackers on the
training set, and compared them with the versions fine-tuned
using YouTube Faces [18] on the test set. Note that we also
apply the re-detection mechanism to those fine-tuned trackers
to get the best possible result on mobile face tracking. In
total, we have benchmarked 36 different tracking methods
and models.

1) Short-term trackers: Table III summarises the evalu-
ated short-term trackers. Since these trackers were designed
for generic objects, we expected that their performance could
generalise to some extend to faces.

2) Long-term trackers: Long-term trackers are normally
equipped with a re-detection module which is called when
they believe the target is lost because of the severe occlusion
or tracking drift. We first consider TLD [9] and EBT [49]
as they were designed for long-term tracking. Unfortunately,
EBT does not output the absent state and we do not have
access to the source code for evaluation, only TLD is
available for us. Besides, we assembled a simple tracker,
dubbed DVNet, by concatenating a robust face detector
[48] and a state-of-the-art face verification method [45].
Although DVNet is not a real tracker as it ignores temporal
information, we use it here to illustrate that mobile face

Trackers Feature Method Device Implementation Long-term
KCF [27] HOG CF CPU C++ No
Staple [29] HOG+Color CF CPU M No
ECO [44] CNN CF GPU MCN No
HCF [30] CNN CF GPU MCN No
SiamFC [36] CNN TM GPU MCN No
CFNet [37] CNN TM GPU MCN No
VITAL [34] CNN TD GPU P+P No
CREST [33] CNN TD GPU P+P No
MemTrack [39] CNN TM GPU P+P No
MDNet [32] CNN TD GPU P+P No
MetaMDNet [35] CNN TD GPU P+P No
DaSiamRPN [38] CNN TM GPU P+P No
TLD [9] HOG TD CPU M Yes
CMHM2D [46] HOG TD GPU P+T No
CMHM3D [46] HOG TD GPU P+T No
FAN2D [47] HOG TD GPU P+P No
FAN3D [47] HOG TD GPU P+P No
DVNet [45], [48] CNN TD GPU P+T Yes

TABLE III: Evaluated state-of-the-art trackers. The initials stand
for: CF - Correlation Filter, TD - Tracking-by-Detection, TM -
Template Matching, M - Matlab, MCN - MatConvNet, P+P -
Python and PyTorch, P+T - Python and Tensorflow.

tracking cannot be fully solved by this naive combination
and thus more systematic designs are required.

Furthermore, we augment MDNet [32], SiamFC [36] and
MetaMDNet [35] with a re-detection logic similar to that
described in [41]. Specifically, if the maximum score of the
response is below a threshold, the tracker should enter the
absent state. During this state, it will search around the last
position in the subsequent frames until the maximum score
surpasses the threshold. The threshold is updated in a similar
manner as that of the conventional template update scheme
in the tracking literature [36], [37]. We denote these modified
trackers as MDNet+R, SiamFC+R and MetaMDNet+R.

3) Facial landmark trackers: Although MobiFace is not
aimed at benchmarking non-rigid face tracking methods, two
2D landmark trackers CMHM2D [46] and FAN2D [47] and
their 3D variants1, CMHM3D and FAN3D, are included in the
evaluation for completeness. These trackers have produced
state-of-the-art results on recent 2D and 3D face alignment
benchmarks [16], [47]. For each sequence, we initialised the
tracker with the ground truth bounding box in the first frame,
then used the current fitting result as the initialisation of the
next frame. For tracking evaluation, the trackers used the
bounding box predicted in the previous frame. Additionally,
we implemented a similar re-detection scheme as that of
long-term trackers to the landmark trackers. We used the
sum of response scores from the landmark trackers as the
confidence score, for which a threshold is empirically set to
decide if a face detector [48] should be called to re-initialise
the tracker. The score is also updated during tracking using
the aforementioned template update scheme. We denoted
these modified trackers as CMHM2D+R, CMHM3D+R,
FAN2D+R and FAN3D+R.

B. Benchmark Results on MobiFace

1) Short-term trackers: Fig. 2 shows the results of short-
term trackers on the whole MobiFace dataset. The top
performing tracker is ECO [44] (47.0% in the success

1The facial landmarks returned by these 3D trackers are in fact the 2D
projections of the 3D facial landmarks.



plot), which uses a factorised convolution operator to reduce
parameters for online training. Nevertheless, none of the
tested trackers achieved over 50% in success rate, whereas
in the other object tracking benchmark [12], they can easily
score over 80%. The same situation can be observed from
the normalised precision plot, compared with the generally
high values (around 70%) reported in OTB100 [12], [43],
the normalised precision scores reported in our dataset are
still quite low. These facts suggest that there is still room for
improvement in the mobile face tracking problem.
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Fig. 2: Results of short-term trackers on MobiFace.
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Fig. 3: Results of long-term trackers on MobiFace.

It is worth noting that although the template-matching
trackers SiamFC, DaSiamFC and MemTrack produce
slightly worse results (42.2%, 41.9%, and 44.0% respec-
tively), they are significantly faster than the other trackers.
Nevertheless, one common drawback of the short-term track-
ers is that they cannot identify the absent state, thus may fail
to re-locate the out-of-view target when it reenters the scene.
In the next experiment, we will show that with a simple
additional re-detection module, the performance of short-
term trackers can be improved by a considerable margin.

2) Long-term trackers: Fig. 3 shows the results of long-
term trackers on all MobiFace videos. Although DVNet is
seemingly the best method, it is by definition not a tracking
algorithm, and the run-time speed is quite slow. Even worse,
its success rate stalls at around 0.7 regardless of any lower
overlap thresholds. This suggests that the naive combination
of face detection and verification is not an effective and
elegant solution to the mobile face tracking problem.

Notice that SiamFC+R benefits from a re-detection module
in terms of accuracy and speed, as the re-detection helps
SiamFC avoid incorrect and unnecessary update of the tem-
plate. SiamFC+R runs at one magnitude faster than DVNet
with comparable results. In the light of this fact, we believe
that a more systematic design of template-matching strategies
and re-detection modules can be a promising future direction.

3) Facial landmark trackers: Fig. 2 and 3 both show that
landmark trackers CMHM and FAN cannot compete with
most of the objects tracker, with or without re-detection
module. This is because landmark trackers are very error-
prone to motion blur and occlusion, while object trackers
are more robust on these cases.
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Fig. 4: Results of trackers on six different attributes, i.e.,
Fast Motion, Multiple Faces, Frontal Camera, Rear Camera,
Portrait and Landscape.

C. Attribute Specific Results
Each video in MobiFace is labelled with some of the

14 attributes as described in Sec. III-C. According to the
attributes of a video, we categorise the results from the short-
term and long-term trackers and plot them in separate figures.
Due to the page limit, we only highlight five new attributes
(i.e., Frontal Camera (FC), Rear Camera (RC), Landscape
(LS), Portrait (PT) and Multiple Faces (MF)), plus the Fast
Motion (FM) that is prevalent in mobile footage. We refer
the readers to our project website for the complete results.

Overall, Fast Motion and Rear Camera cause the most
troubles for the tested trackers. Taking SiamFC+R as the
reference method, its success rate for the dataset is 52.9%
(Fig. 3), while for the FM and RC sequences (Fig. 4), it drops
to 43.6% and 50.7% respectively. Similar observations can
be made in the other methods such as MDNet+R and ECO.
The reason of RC being troublesome to the trackers is that
the rear camera usually gives a distant view of the object,
thus any minor movement of the phone can result in a fast
magnified movement of the object in the video.



All these facts imply that fast motion is one of the biggest
challenges in mobile face tracking. We further analyse how
the unique attributes proposed in MobiFace may affect
trackers in Sec. IV-D.2.
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Fig. 5: Fine-tuning on MobiFace improves trackers.

D. Retraining on MobiFace

1) Fine-tuning deep trackers: Deep neural networks nor-
mally require fine-tuning to adapt to other domains. Most
deep trackers we evaluated were developed for generic
objects and should be fine-tuned for the faces. We randomly
split the whole MobiFace dataset into the train and the test
set with a ratio of 8:2. This partition is subject independent,
as we ensure there is no overlap of subjects between two sets.
To provide fair comparison, the test set annotations will be
held privately and can only be accessed by our evaluation
server. We fine-tuned MDNet, SiamFC, MetaMDNet, MD-
Net+R, SiamFC+R and MetaMDNet+R on the train set. The
resulting trackers are named by adding a suffix -MBF. To
show that MobiFace captures the characteristics of mobile
face tracking, we also fine-tuned those trackers on YouTube
Faces [18] and reported their performances. These fine-tuned
trackers are named with a suffix -YTF.

Fig. 5 shows the results of fine-tuned trackers on the Mob-
iFace test set. It can be seen that fine-tuning with MobiFace
constantly improves the trackers over their original versions,
for example, MDNet-MBF, gains an improvement of 0.033
over MDNet in the success rate. On the contrary, fine-tuning
on YouTube Faces dataset [18] delivers an inferior and incon-
sistent performance. In the success plot, a prominent example
is that, MetaMDNet-YTF+R overshadows MetaMDNet+R
by 0.7%, while MetaMDNet-YTF (50.6%) performs worse
than MetaMDNet (51.8%).
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Fig. 6: Fine-tuning on MobiFace improves trackers in Mul-
tiple Faces and Fast Motion scenarios. See Sec.IV-D.2.

2) How fine-tuning helps: To gain more insights about
the performance improvement obtained from fine-tuning on
MobiFace, we show the attribute-wise performance in Fig. 6.
Interestingly, fine-tuning on MobiFace train set provides the
most significant improvement on sequences with Multiple
Faces and Fast Motion. This is likely owing to the fact
that these two attributes seldom appear in the other datasets
except our MobiFace. On the other hand, fine-tuning on
YouTube Faces [18] actually hurts the performance on these
two attributes. The possible reason is that videos in YouTube
Faces usually contain a single face and the shooting device
is almost always still. These two attributes deserve more
attention, as they are challenging and prevalent in the mobile
footage. Arguably, MobiFace lays a good foundation for
resolving these issues in mobile face tracking.

3) Qualitative results: Fig. 7 show qualitative results of
the variants of SiamFC [36] on the MobiFace test set. It
is worth emphasising that after fine-tuning on MobiFace,
the tracker can better handle profile faces, and the scenarios
of multiple faces and fast motion. These qualitative results
comply with our observations from the previous experiments.

Fig. 7: Qualitative results comparing variants of SiamFC.
SiamFC-MBF was fine-tuned on MobiFace training set and
SiamFC-YTF fine-tuned on YouTube Faces (Sec. IV-D.3).

V. CONCLUSION

We present MobiFace, the first mobile dataset tailored
for developing and benchmarking single face trackers. This
dataset consists of 80 in-the-wild mobile videos from 70
smartphone users, with a total of 95,635 frames. We provide
a manually annotated bounding box for each frame, and
define 14 video attributes for the mobile videos, of which, 6
are newly proposed.

We have conducted a comprehensive evaluation of 36
advanced tracking methods and models on MobiFace. Our



results suggest that mobile face tracking is still a very chal-
lenging problem that cannot be fully solved by existing land-
mark or object trackers, neither by a simple concatenation of
face detection and verification method. Despite this, we take
a step towards solving this problem by showing that fine-
tuning on MobiFace substantially boosts the performance
of the trackers. This experiment not only demonstrates the
usefulness of MobiFace, but also highlights the richness of
its contents in the mobile domain.

All the MobiFace videos, the training set annotations
and the evaluation library will be made publicly available
on https://mobiface.github.io/. To ensure a fair
comparison, we reserve the test set annotations on the server,
where researchers can upload their results for evaluation.

REFERENCES

[1] C. McCool, S. Marcel, A. Hadid, M. Pietikinen, P. Matejka, J. Cer-
nock, N. Poh, J. Kittler, A. Larcher, C. Lvy, D. Matrouf, J. Bonastre,
P. Tresadern, and T. Cootes, “Bi-modal person recognition on a mobile
phone: Using mobile phone data,” in ICME-W, 2012.

[2] H. Zhang, V. M. Patel, M. Fathy, and R. Chellappa, “Touch gesture-
based active user authentication using dictionaries,” in WACV, 2015.

[3] U. Mahbub, S. Sarkar, V. M. Patel, and R. Chellappa, “Active user
authentication for smartphones: A challenge data set and benchmark
results,” in BTAS, Sept 2016.

[4] J. Yu and R. Ramamoorthi, “Selfie video stabilization,” in ECCV,
2018.

[5] M. E. Fathy, V. M. Patel, and R. Chellappa, “Face-based active
authentication on mobile devices,” in ICASSP, 2015.

[6] U. Mahbub, S. Sarkar, V. M. Patel, and R. Chellappa, “Active user
authentication for smartphones: A challenge data set and benchmark
results,” in BTAS, 2016.

[7] P. Perera and V. M. Patel, “Towards multiple user active authentication
in mobile devices,” in FG, 2017.

[8] P. Perera and V. M. Patel, “Extreme value analysis for mobile active
user authentication,” in FG, 2017.

[9] Z. Kalal, K. Mikolajczyk, and J. Matas, “Face-tld: Tracking-learning-
detection applied to faces,” in ICIP, Sept 2010.

[10] S. Liwicki, S. Zafeiriou, G. Tzimiropoulos, and M. Pantic, “Fast and
robust appearance-based tracking,” in FG, March 2011.

[11] F. Comaschi, S. Stuijk, T. Basten, and H. Corporaal, “Robust online
face tracking-by-detection,” in ICME, July 2016.

[12] Y. Wu, J. Lim, and M. Yang, “Object tracking benchmark,” T-PAMI,
vol. 37, pp. 1834–1848, Sept 2015.

[13] M. Kristan, J. Matas, A. Leonardis, T. Vojir, R. Pflugfelder, G. Fer-
nandez, G. Nebehay, F. Porikli, and L. Čehovin, “A novel performance
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