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Abstract—Face detection/alignment methods have reached a satisfactory state in static images captured under arbitrary conditions.
Such methods typically perform (joint) fitting for each frame and are used in commercial applications; however in the majority of the
real-world scenarios the dynamic scenes are of interest. We argue that generic fitting per frame is suboptimal (it discards the
informative correlation of sequential frames) and propose to learn person-specific statistics from the video to improve the generic
results. To that end, we introduce a meticulously studied pipeline, which we name PD2T, that performs person-specific detection and
landmark localisation. We carry out extensive experimentation with a diverse set of i) generic fitting results, ii) different objects (human
faces, animal faces) that illustrate the powerful properties of our proposed pipeline and experimentally verify that PD2T outperforms all
the compared methods.
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1 INTRODUCTION

Significant progress has been made in static facial imagery,
e.g. in face detection ([1], [2], [3]), landmark localisation ([4], [5],
[6], [7]). Nevertheless, in a wide range of applications such as lip-
reading, expression analysis, surveillance, commercial cameras’
tracking the interest lies in dynamic scenes, where deformable
tracking has received less attention. This is precisely the problem
we tackle in this paper; we introduce PD2T, a meticulously studied
adaptive deformable tracking pipeline. Such an architecture is
invaluable in case the tracking outcome is used for training
algorithms, e.g. [8], [9], [10].

Deformable tracking ( [11], [12], [13], [14]) aims at tracking
the shape of a deformable object in a sequence of frames1. This
shape typically consists of a number of landmark (i.e. fiducial)
points, while the principal ‘object’ to date is the human face.
Deformable tracking methods are separated into i) generic and
ii) adaptive. The adaptive methods, often alleged person-specific
methods, learn the statistics from (previous) frames and fit the
fiducial points with these statistics. On the contrary, in the generic
methods a pre-trained landmark localisation technique, typically
trained in thousands of images, is employed to fit each frame
independently with generic statistics. In this work, we argue
that generic methods are suboptimal for tracking, since they
fail to capture any correlation among sequential frames and we
demonstrate that any generic method could be greatly boosted by
employing our adaptive method on the generic results.

The typical way to perform generic deformable tracking, as
described in the recent review of [15], consists in a two-step
process of i) obtaining the bounding box, ii) performing landmark
localisation per frame. The first step of obtaining the bounding box
can either be performed by a pre-trained object detector/tracker, or
by a model-free tracker. A shortcoming of the generic detection
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1. In this paper we use interchangeably the terms sequence of frames, clip
and video.

is that small intensity differences between two sequential frames
might result in non-overlapping detected regions of interest, due
to the (implicit) ranking performed by detectors. An alternative
to generic object detection is the model-free tracking techniques.
Given the state (typically a rectangular bounding box) of the
first frame, the technique estimates the state of the subsequent
frames, while no prior information about the object is provided.
The tracker should adapt to any appearance/shape changes of the
object. Tracking an arbitrary object in an arbitrary video, often
alleged ‘in-the-wild’, constitutes a very challenging task, thus an
immense amount of diverse techniques has been proposed [16],
[17], [18]. The two major drawbacks of the model-free trackers
are that i) they rely on a markov assumption, i.e. there should be
no cut frames/change of camera, ii) they are prone to drifting.

In contrast to the generic models, adaptive deformable fa-
cial models have received less attention, which can be partially
attributed to their computational complexity. Previous lines of
research in adaptive deformable tracking have focused on per-
forming joint alignment of the frames given the initial landmarks’
estimates. The majority of the works are based on RASL [19]
which assumes that a collection of M sequential frames of an
object, e.g. a human face, can be decomposed into a low-rank
matrix and a sparse error matrix. The drawback of this work is that
it allows the object to deform arbitrarily, often leading to unnatural
deformations. To mitigate that, Cheng et al. [20] modify RASL by
assuming that there are some generic anchor shapes and penalise
deformations from anchor shapes. This forces the solution to be
close to the initial erroneous fitting. In RAPS [21], they tackle
the unnatural deformations by restricting the object to be in an
appropriate subspace learnt from clean static images of that object.
A significant drawback with these approaches is that they are
designed for batches of images and not lengthy clips, in which it is
very computationally demanding to fit all images simultaneously.
Additionally, the low-rank assumption is restrictive in lengthy
clips with extensive object movement. The global SDM of [11]
only utilises the temporal correlation to initialise the fitting from
the outcome of the previous frame, however this does not i) learn
any statistics from the clip, ii) avoid drifting issues.
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Fig. 1: Visual overview of PD2T. PD2T accepts a sequence of frames and a (not necessarily dense temporally) sequence of landmarks
as input; it learns person-specific representations for the object of interest and it outputs an improved sequence of landmarks. There are
three main steps in PD2T followed by an optional iterative procedure.

A special part of adaptive models are the incremental learning
techniques ( [22], [23], [24]). Those are used when online perfor-
mance is of paramount significance. Such methods are based on
a pre-trained model which they update online as new samples
emerge. The drawbacks of ( [22], [23], [24]) are twofold: a)
there is not theoretical guarantee that these discriminative methods
converge, b) they often perform well, but their fitting empirically
converges only reasonably close to the solution. In addition, the
methods of [23], [24] are based on simulation statistics, which are
computationally expensive.

An additional reason for lack of adaptive methods was the
fact that there was no comprehensive benchmark for evaluating
facial landmark tracking methodologies. Evaluation was mainly
conducted by simple visual inspection of cherry picked videos
[14], [25]. The first large in-the-wild benchmark [9], alleged
300vW, consists of 114 videos (64 for testing) with varying
degrees of difficulty. Each video contains a single face, while
the annotation is dense in the temporal domain with a sparse set
of 68 fiducial points tracked. Annotating hundreds of thousands
of frames (especially in the challenging category 3) was a gar-
gantuan task. Consequently, we had to devise methodologies that
automatically provide an accurate landmark localisation output to
minimise the manual annotation effort. As we have demonstrated
in the past [26] methodologies similar to this work aid in large
scale video annotation.

In this work, we support that object alignment per frame is
suboptimal; much richer representations can be extracted from se-
quential frames. To that end, we introduce PD2T, a fully-automatic
pipeline, that considers as input a number of sequential frames
along with a generic fitting per frame, learns person-specific
statistics and fits the learnt models to the frames. The proposed
pipeline is a 3-step process where 1) the initial step is used to learn
person-specific statistics for improved detection, then 2) using
any off-the-shelf generic landmark localisation as a second step,
and finally 3) learning a person-specific model for refining the
landmark positions per frame. This process can be iterated several
times which will iteratively improve the final deformable tracking

results2. We propose two versions of PD2T: i) the incremental
(online), ii) the offline one. The incremental version learns the
models from the first few frames that are available (100 in the
experiments), then the learnt models are updated incrementally;
the offline version accepts as input the complete sequence/set
of generic results. The offline version allows the relaxation of
the markov assumption, since there is both a detection and a
localisation step in each frame. The motivation behind the offline
version is the optimal performance for demanding applications,
while the incremental version offers the chance of online pro-
cessing. Thorough experimentation is performed in both human
faces and animal tracking to validate PD2T’s effectiveness. The
generic methods of [15] are considered as input in 300vW and
demonstrate that PD2T improves the outcomes in every single
case. Due to the saturation of top-performing methods in 300vW,
we introduce FTOVM, a new dataset with harder cases that have
not emerged in 300vW. Additionally, a number of videos are
annotated in a previously unstudied task, i.e. animal landmark
tracking, in order to investigate the robustness of our method
to less established objects. The animal videos will be publicly
available in https://ibug.doc.ic.ac.uk/.

A preliminary version of this work has appeared in [26], how-
ever a number of extensions are performed with most prominent
the fact that PD2T can be used for several deformable objects;
experiments with both human facial tracking and animal tracking
are provided. Additionally, in this work we present an incremen-
tal (online) version of the pipeline, which includes incremental
learning of statistics for both detection and landmark localisation.
This has not emerged in the past, while the incremental pictorial
structures (person-specific detection) have not emerged in the
literature before. Moreover, the objective of this work consists
in learning an adaptive model on top of any generic deformable
tracking method. A third difference is the extensive self evaluation
part includes experimentation over the architectural/algorithmic
decisions to optimise the pipeline.

2. In practice we found that one iteration is sufficient in all our experi-
ments, i.e. the person-specific detection and then landmark localisation were
performed only once.

https://ibug.doc.ic.ac.uk/
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Our contributions are summarised as follows:

• An adaptive object-agnostic pipeline, which we name
PD2T, is proposed. We propose an i) incremental, ii)
offline version of PD2T with several self evaluation ex-
periments (deferred to the supplementary material). This
pipeline ameliorates the main drawbacks of the generic
methods.

• The incremental version of the pipeline includes the incre-
mental pictorial structures for detection, which has never
emerged before.

• Experimentation in an ad-hoc scenario (animal tracking)
which have never been published before. We illustrate that
PD2T surpasses the state-of-the-art results in both human
face and animal tracking.

• Two new datasets are proposed. The FTOVM addresses
cases that do not emerge in 300vW, e.g. the out of scene
movement. The second dataset, includes cats’ faces and
was developed for assessing the robustness of PD2T in an
ad-hoc deformable tracking scenario.

Even though the current implementation is not real-time, we
strongly believe that the proposed approach is extremely valuable;
it can provide very accurate large scale landmark annotations
which can be used for various tasks (e.g. training deep learning
methodologies, organising benchmarks).

The rest of the paper is organised as follows: In Sec. 2 the
proposed method is developed, the algorithms for every steps are
introduced; in Sec. 3 the experimental comparisons and results are
described.

2 METHOD

Given i) a set of M sequential frames D = {i(1), i(2), ..., i(M)}
along with ii) an initial set of landmarks in a subset of the frames,
the objective of PD2T is to improve the initial deformable tracking
results by learning person-specific models. To achieve the optimal
localisation outcomes, the two core steps of PD2T are alternated:
improve the bounding box detection, improve the landmark local-
isation. Each step of the pipeline is analysed in the subsequent
Sections, while a block diagram of the pipeline is visualised in
Fig. 1. The fundamental assumption of our method is that there
are at least few frames in each video that are initially well fitted.
Experimentally, we verify that approximately 50 frames suffice
for a clip over a minute long (∼ 1800 frames), which should be
achievable by several existing localisation techniques.

2.1 Notation
A capital (small) bold letter represents a matrix (vector), while a
plain letter designates a scalar number. The following notational
simplifications are performed in the succeeding Sections: (a) The
time t is dropped if unnecessary, e.g. instead of writing frame i(t),
it will be expressed as i, (b) an ‘image patch’ refers by default
to the vectorised version of the patch, (c) the feature extraction
function φ is implicitly assumed in patches, i.e. when denoting a
patch as ij , it refers to φ(ij).

The purpose of landmark tracking in each frame i consists in
localising a set of n points with configuration

l = [[`1]T , [`2]T , . . . , [`n]T ]T = [x1, y1, x2, y2, . . . , xn, yn]T

with `j = [xj , yj ]
T , j ∈ [1, n] the Cartesian coordinates of the

jth point in time t. An image patch centered around the point `j

TABLE 1: Summary of primary symbols.

Symbol Dimension(s) Definition

n R Number of landmark points in a frame.
M R Number of frames in the video.
`j R2 Cartesian coordinates of the jth landmark point.
l R2n Spatial configuration for all landmarks.
i Rh·w Vectorised frame (image).
ij Rpa Image patch around `j with area pa.
I - Identity matrix of appropriate dimensionality.

is denoted as ij . If the patch shape is (pw, ph) and the patch
area is defined as pa = pw · ph, then ij ∈ Rpa . The relative
location of two points of interest is determined as the vector of
their spatial difference, i.e. `j − `k = [xj − xk, yj − yk]T . The
I denotes an identity matrix of appropriate dimensionality. The
primary symbols in the manuscript are summarised in Tab. 1.

2.2 Person-specific pictorial detection
The first phase of PD2T consists in performing a more accurate
detection by utilising the pictorial structures of [27]. A gener-
ative method is preferred, since empirically generative methods
require less frames than their discrimative counterparts to learn
object representations; an experimental validation of this claim is
performed in the self evaluation part. For a frame i, we want to
confidently locate the position lj that is very close to the ground-
truth position lgtj for all points j. We express that with the joint
probability P (i, l|A,S) where A,S convey the appearance and
deformation parameters respectively.

A tree T = (V,E) is constructed online for utilising the
efficient derivation conducted by Felzenszwalb et al.in [27], [28].
Each vertex V = {v1, v2, ..., vn} corresponds to the texture
of a point of interest j, while each edge E models the spatial
constraints between every pair of points that are connected. The
optimal configuration for the edges E is provided by computing
the Minimum Spanning Tree (MST), which consitutes a tree with
minimum total weights on the edges. To learn the set of edges, a
complete graph with the vertices V and the edges is initialised and
then Kruskal’s algorithm is applied to compute the MST, please
consult [27] for further details.

With the typical assumption that the patch appearance is
independent from other patches (frequently appearing in computer
vision, e.g. in [2], [27], [29]) and the restricted format of the tree
G, the joint probability is

P (i, l|C) = P (i|l,A)P (l|S) =
n∏

j=1

P (ij |`j ,A)
n∏

(vk,vj)∈E

P (`j , `k|S)
(1)

We want to maximise this probability or correspondingly minimise
the probability’s negative logarithm. The first term of Eq. 1
corresponds to the appearance term, while the second to the spatial
configuration of the points. We model each of the two terms with
a multivariate Gaussian distribution, which allows us to use the
generalised distance transforms of [28] for computing the cost
per frame. Each term is developed independently below and the
combined cost function is formulated.

2.2.1 Appearance modelling
A multivariate Gaussian distribution N (ij |µj ,Σj) with µj ∈
Rpa the mean representation, Σj ∈ Rpa×pa the covariance,



ADAPTIVE DEFORMABLE TRACKING 4

represents the appearance of each patch ij . By considering the
negative logarithm of the appearance term of Eq. 1, the optimi-
sation is reduced to searching for the patch ij that minimises the
Mahalanobis distance. Mathematically,

arg min
ij

(ij − µj)
TΣ−1

j (ij − µj) (2)

A Singular Value Decomposition (SVD) is performed on
Σj ≈ UjLjU

T
j with Uj ∈ Rpa×m, Lj ∈ Rm×m to reduce the

variance. However, we have experimentally noticed that the hard
cases are not covered by the Gaussian distribution assumption,
hence we augment our formulation by assuming that there is a
latent representation that follows the Gaussian distribution. Each
patch ij is modelled as a linear combination of three terms: (a) a
projection of a random variable rj toUj , (b) the mean appearance
µj and (c) a random variable ε as the noise term. Equivalently in
math formulation:

ij = Ujrj + µj + ε (3)

where rj ∼ N (rj |0,Lj), ε ∼ N (ε|0, σ2I). Then the marginal
distribution of ij is a Gaussian formulated as:

P (ij |`j ,A) =

∫
rj

P (ij |rj , `j ,A)P (rj |A)drj =

N (ij |µj ,Σ
augm
j )

(4)

with Σaugm
j = UjLjU

T
j + σ2I , Σaugm

j ∈ Rpa×pa . Applying
the Woodbury formula on the augmented sigma, we obtain

(Σaugm
j )−1 = Uj(Lj + σ2I)−1UT

j +
1

σ2
(I −UjU

T
j ) (5)

The latent representation of Eq. 3 led to a Gaussian representation
(Eq. 4) of the patch ij with the initial mean and an augmented
variance (Σaugm

j ), thus as derived above we optimise for

arg min
ij

(ij − µj)
T (Σaugm

j )−1(ij − µj)
Eq.5
=

arg min
ij

[(ij − µj)
TUj(Lj + σ2I)−1UT

j (ij − µj)+

(ij − µj)
T 1

σ2
(I −UjU

T
j )(ij − µj)]

(6)

In the last equation there are two parts: (a) the Mahalanobis
distance within the subspace Uj , (b) the distance to its orthogonal
supplement (I − UjU

T
j ) scaled by the inverse variance term

σ2. The latter distance term captures appearances that cannot be
reconstructed from the learned subspace Uj ; by combining both
terms we model more effectively the whole texture space.

2.2.2 Spatial Modelling
The relative position (`j − `k) of a vertex (point of interest) j
from its parent vertex k is modelled as a multivariate Gaussian
distribution N ((`j − `k)|µj,k,Σj,k) with µj,k ∈ R2 the mean
and Σj,k ∈ R2×2 the covariance. Then the negative logarithm
of P (`j , `k|µj,k,Σj,k, E) from Eq. 1 that corresponds to the
deformation is optimised by

arg min
`j ,`k

((`j − `k)− µj,k)TΣ−1
j,k((`j − `k)− µj,k) (7)

This optimisation is computationally demanding as there are thou-
sands of candidate positions in a 2D grid while the computation
should consider the combinations of the `j and the parent position
of `k; a naive implementation would require quadratic time in the

number of positions in the grid. Utilising the tree structure and the
generalised distance transform, the computation is performed in
linear time. Additionally, in this work only the diagonal elements
of the covariance matrix Σj,k are considered in the computation
of the aforementioned optimisation.

Fig. 2: (Preferably viewed in colour) Pictorial representation of the
person-specific detection learning. From top to bottom, the steps
of a) extracting the patches from the current landmarks’ estimates,
b) rejecting the erroneous fittings with the classifier, c) learning
the appearance (unary) and spatial (pairwise) subspaces.

2.2.3 Learning
The pictorial representation parameters are estimated from the
input, which is a subsetDp (Dp ⊆D) of (not necessarily sequen-
tial) frames along with the respective spatial configuration. Both
the appearance parameters A = {µj ,Σj |∀j, j ∈ [1, n]} and
the set {µj,k,Σj,k|∀(j, k), (vk, vj) ∈ E} from the deformation
parameters are learnt with maximum likelihood.

Due to the sensitivity of the covariances to outlier fittings,
only well-fitted frames/landmarks pairs are considered as learning
samples. For this purpose, a classifier is applied to reject the
erroneous fittings, i.e. a function fcl(i, l) that accepts a frame
i along with the respective fitting l and returns a binary decision
on whether this is an acceptable fitting. In our case, fcl represents
a linear patch-based SVM of [30]. A set of K0 accepted fittings is
used to learn the pictorial representation parameters; the learning
procedure is visually depicted in Fig. 2.

2.2.4 Incremental pictorial detection
In the online version of PD2T, the pictorial detection is learnt in
the first few frames, hence adaptations of the parameters (means,
covariances) are required over time. In this Section the updates
of the parameters are developed (only applicable to the online
version). The incremental update in our case can be exact ( [31]),
i.e. it is equivalent to training a new appearance model with
an augmented set of images [i(K0+1), . . . , i(Knew)]. The update
of the appearance parameters is described below, while for the
deformation parameters it follows a similar logic. In order to avoid
defining new auxiliary variables, the derivation below will assume
momentarily that Σaugm

j = UjLjU
T
j , however exactly the same

derivation can be made if an SVD is performed in the full Σaugm
j .

Given the previous mean µj , the subspace Uj , the diagonal
matrix Lj and the new data B = [i(K0+1), . . . , i(Knew)] the
goal of the update consists in learning a µ̂j and a Ûj , L̂j with
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Σ̂j = Ûj L̂j Û
T
j . The Knew samples can be expressed as a

linear combination of the components already included in Uj and
the components to the orthogonal subspace toUj (denoted as Vj).
Then the updated sigma Σ̂j is equal to

Σ̂j = [Uj Vj ]

[
Lj UT

j B
0 V T

j B

] [
UT

j 0
0 I

]
(8)

An SVD is performed in the matrix
[
Lj UT

j B
0 V T

j B

]
=

Ũj L̃j Ũ
T
j , which allows us to rewrite Eq.8 as

Σ̂j = ([Uj Vj ] Ũj) L̃j (ŨT
j

[
UT

j 0
0 I

]
) (9)

The latter expression of Σ̂j enables the definition of the
updated terms as Ûj = [Uj Vj ] Ũj and L̂j = L̃j , while the
µ̂j is the weighted mean of µj combined with the mean of the
new image patches, which concludes the update rules.

2.2.5 Cost function

By combining the Eq. {4, 5, 7}, the final cost function is derived
from Eq. 1 as

arg min
iall,l

n∑
j=1

[(ij − µj)
TUj(Lj + σ2I)−1UT

j (ij − µj)+

(ij − µj)
T 1

σ2
(I −UjU

T
j )(ij − µj)+

((`j − `k)− µj,k)TΣ−1
j,k((`j − `k)− µj,k)]

(10)

with l = [[`1]T , [`2]T , . . . , [`n]T ]T the spatial configuration
and iall = [iT1 , i

T
2 , . . . , i

T
n ]T the respective patches for all the

parts. For each part j (vertex in T ) there are three terms: (a)
the unary cost computed as the Mahalanobis distance within the
subspace Uj , (b) the unary cost from the orthogonal subspace for
complementary appearance information, (c) the deformation from
the nominal displacement from its’ parent position (k denotes the
parent node of vertex j).

2.2.6 Efficient inference

Note in Eq. 10 that the total cost of each part j is defined with
respect to its parent’s vertex position, while the sum of all parts’
costs should be minimised. This dependency does not allow us to
independently perform the score computation per part, however
by utilising a message passing scheme, we can compute all the
costs in a single forward pass (from the leaves to the root) and
then backtrack to locate the patches and the parts.

Starting from the leaf nodes and inversely traversing the tree
towards the root vertex, the cost of placing each vertex in every
position of the grid is computed by utilising the generalised
distance transforms. This cost is passed as a message to the parent
of the vertex, which performs a similar cost computation till all the
costs are summed in the root vertex. The optimal position `root is
computed and then backtrack utilising the lookup tables to locate
the position `j of each part j, hence the patches and the spatial
configuration are decided.

2.3 Generic landmark localisation

From the pictorial step, we obtain for every frame i(t) ∈ D a
spatial configuration l(t). The tightest bounding box of l(t) is
computed and a generic landmark localisation technique is applied
in this step.

The recent development of such statistical methods can be
divided into two major categories: (a) discriminative models that
employ regression, e.g. [5], [7], [25], and (b) generative models,
e.g. [32], [33], [34]. As recent benchmarks have illustrated, the
discriminative methods with a cascade of regressors [5] out-
perform the rest methods. In our case, any standard landmark
localisation technique can be applied, either the same as the one
applied as the pre-pipeline initialisation or any other off-the-shelf
method (including the discriminative state-of-the-art methods). In
our experiments we consistently use the one that was applied as the
initialisation before the call of the pipeline. This step is required
as an initialisation to the person specific localisation method of the
following step.

2.4 Person-specific landmark localisation

In this step we aim to refine the generic fittings of the previous
step by constructing a model that best describes the sequence’s
variation. We choose the generative Active Appearance Models
of [32] that have empirically demonstrated great results when the
initialisation is quite close to the ground-truth. Specifically, we
employ the state-of-the-art part-based Active Appearance Model
(AAM) of [34], referred to as Gauss-Newton DPM (GN-DPM),
and iteratively update the appearance model to improve the fitting
results.

GN-DPM of [34] is a generative statistical model of shape
and appearance that recovers a parametric description of an
object through Gauss-Newton optimization. Generalized Pro-
crustes Analysis is utilised to align a set of K configurations
{l(1), . . . , l(K)}; Principal Component Analysis (PCA) is utilised
to learn an orthonormal basis of nl eigenvectors U (l) ∈ R2n×nl

and the mean shape l̄. This linear shape model can be used
to generate a shape instance as l(p) = l̄ + U (l)p, where
p = [p1, . . . , pnl

]T is the vector of shape parameters. The
appearance model is constructed in a similar way; a patch based
representation is extracted per part; the representation is converted
into a feature vector, i.e. ij for landmark location j in each frame
i; the feature vectors are concatenated to form a single vectorized
part-based appearance representation. A PCA is utilised in the
set of part-based appearance vectors that results in a subspace
of nA eigenvectors U (A) ∈ R(n·b)×nA (b is the feature length
of a vectorised featured patch) and the mean appearance ā. This
model can be used to synthesize shape-free appearance instances,
as a(λ) = ā+U (A)λ, where λ = [λ1, . . . , λnA

]T is the vector
of appearance parameters. Given a test image I, the optimization
problem of GN-DPM employs an `22 norm and is expressed as

arg min
p,λ

‖a(l(p)|I)− a(λ)‖2 =

arg min
p,λ

‖a(l̄+U (l)p|I)− a(λ)‖2
(11)

This can be efficiently solved using the Gauss-Newton algorithm
with a detailed derivation in [34].

In our case, we formulate an iterative optimization problem
that aims to minimize the mean GN-DPM fitting `2 norm of
Eq. 11 over all the M frames of the video. As a generative



ADAPTIVE DEFORMABLE TRACKING 6

(a) Clustered facial shapes

(b) Clustered cats’ facial shapes

Fig. 3: Indicative shapes for each cluster. Even with the seven clusters visualised in the figure significant shape variance is included.
This ensures that the shape model (as detailed in Sec. 2.4) contains considerable variance.

method GN-DPM requires few well chosen images for learning
appropriate appearance/shape subspaces with maximum variance.
A two step process is performed for selecting the samples for
learning. Initially, the pool of samples is reduced by rejecting the
erroneous fittings; sequentially we perform clustering and draw the
samples from each cluster. The rejection of the erroneous fittings
is performed with the same classifier as in the pictorial learning
(Sec. 2.2.3), i.e. all the configurations {l(1), . . . , l(M)} along
with the respective patches are inserted into the function fcl(i, l),
which outputs a number of accepted configurations/frames. Only
a subset of the accepted configurations is used to form the person-
specific shape subspace U (l) and the person-specific appearance
subspace U (A). To achieve the maximum variance in the shape
representation, clustering is performed in the shape coordinates
and a single instance is drawn from each cluster. All the accepted
shapes are aligned with Procrustes; a Gaussian Mixture Model
(GMM) with a predefined number of components is fit; one sample
is drawn from each cluster. Each shape along with the respective
texture is mirrored horizontally; this aggregated set consists the
set of learning samples for the subspaces U (l) and U (A). In Fig.3
few indicatives samples drawn from such a GMM for a clip are
visualised. Sequentially, a generic subspace, symbolised as G(l),
is formed by augmenting the subspaceU (l) with a set ofQ generic
shapes, i.e. shapes from datasets for static image alignment. As
developed in the experimental section less than 10 images are
added with the purpose to ensure that some extreme poses are
included in the shape variation. The optimisation function of this
step is

arg min
l̄,ā,[U(l) G(l)],pt,λt

1

M

M∑
t=1

‖a(l̄+ [U (l) G(l)]pt|It)− a(λt)‖2

s.t. [U (l) G(l)]T [U (l) G(l)] = I
(12)

This procedure updates the person-specific shape basis U (l)

and ensures that the two shape bases remain orthonormal, i.e.
[U (l) G(l)]T [U (l) G(l)] = I . Then the parameters {pt,λt}, t ∈
{1, . . . ,M} are re-estimated by minimizing the `2 norm for
each frame. Thus, the following two steps are performed in an
alternating manner:

(1) Fix {pt,λt} and minimize for { ¯̀, ā, [U (l) G(l)]}: Utilis-

ing the current shape estimation for each frame t ∈ {1, . . . ,M}
a person-specific shape subspace U (l) is constructed, ensuring
that it satisfies the orthogonality constrain with the generic shape
subspace.

(2) Fix {l̄, ā, [U (l) G(l)]} and minimize for {pt,λt}: Having
created the orthogonal basis that combines the person-specific
appearance variation, we now aim to estimate the shape and
appearance parameters per frame. Based on Eq. 11, this is achieved
by solving

arg min
pt,λt

‖a(l(pt)|It)− a(λt)‖2, ∀t ∈ {1, . . . ,M} (13)

using the Gauss-Newton optimization [34].
The above iterative procedure gradually improves the statisti-

cal model and, as a consequence, the spatial configurations. Our
experimentation demonstrated that few iterations suffice to end up
with accurate results.

2.5 Update

The learnt statistics of the aforementioned steps improve the
tracking outcomes of a generic method, however depending on the
nature of the videos and the deformable object, few frames could
be further improved by iterating the previous three steps. The
configurations {l(1), . . . , l(M)} obtained from the last step are
fed as input to the person-specific detection step; new improved
statistics with an initialisation closer to the ground-truth is learnt.
In practice, one iteration is sufficient to obtain results on-par with
the state-of-the-art deformable tracking results, even if the initial
generic method is not very accurate.

3 EXPERIMENTS

In this Section, we develop the experimental setup and present
the experimental results. These are separated into i) deformable
facial landmark tracking, ii) ad-hoc deformable object tracking.
For deformable facial tracking the generic results of [15] are
employed.
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(a) PD2T: incremental vs offline version
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(b) PD2T internal steps

Fig. 4: (Preferably viewed in colour) CED plots for validation experiments (Sec. 3.2). In all the plots, the blue line indicates the baseline
(generic fitting) as a measure for comparison. (a) The comparison of the two versions of the pipeline, i.e. the online (incremental
denoted as PD2TINCREM ) and the offline, for two different generic fitting methods. (b) Contribution of the different pipeline steps
(two different initialisation methods, i.e. a stronger one (SRDCF + CFSS) and a weaker one (MIL + CFSS)). The legend with P-S is an
abbreviation of person-specific.

TABLE 2: (Preferably viewed in colour) Exemplar results with
indicative fitting quality per experiment. The last column corre-
sponds to errors considered as a failure, hence they are not visible
in the CED plots and respectively not computed in the AUC. For
the facial tracking the maximum error considered is 0.08, while
for the animal tracking it is 12.

Exper. Error

0.01 0.04 0.08 0.09

faces

2 7 12 13

cats

3.1 Technical details

PD2T was implemented in Python with several utilities adopted
from Menpo [35]. The software of [36] was used during the
review process. In Tab. 3 some informative hyper-parameters are
gathered, while additional details along with qualitative results3

have been deferred to the supplementary material due to limited
space; the rest technical details allowing the reproduction of the
results are developed below.

The following preprocessing was performed for training the
classifier: (a) A dataset of static images with the appropriate
annotation, e.g. the trainset of the 300W challenge [39] for the
facial tracking experiment, was utilised for extracting the positive
training samples; perturbed versions of the annotations of those
images along with selected images of Pascal dataset [40] were

3. In https://youtu.be/3QdWoTuJqgE we provide a video with the tracking
results of several methods and different clips from our extensive comparisons.

TABLE 3: The hyperparameters used in the pipeline steps as
utilised in the experiments, i.e. the facial landmark tracking,
animal deformable tracking. Several hyperparameters are common
in the two experiments due to less effort spent in optimising them,
hence we reckon that improved results could be achieved with
some tuning.

Category Hyper-parameters Faces Cats

classifier
patch shape (14, 14) (12, 12)

features SIFT [37]

# pos. images 5000 2500

pictorial
patch shape (9, 9) (8, 8)

features sparse HOG [2]

# learning images (K0) 200 100

AAM
patch shape [(11, 11), (17, 17)]

features SIFT [38]

# learning images 30

used for mining the negative samples. (b) For each positive
sample a fixed size patch was extracted around each of the n
landmark points, SIFT [37] were computed per patch. For each
negative sample, a random perturbation of the ground truth points
was performed to create an erroneous fitting prior to extracting
the patches. (c) The linear SVM as a failure checking method
was trained, with its hyper-parameters cross-validated in withheld
validation clips (trainset of 300vW [9]).

We have noticed that that several challenging frames may
contain outliers. In order to avoid having the covariance matrix
affected by them, we used the trimmed statistical estimates [41].
Specifically, we have trimmed the top and bottom 3% of the values
of the shape covariances.

In the person-specific localisation (Sec. 2.4), the number of
generic shapes Q for the human face was Q = 6, while for cats

https://youtu.be/3QdWoTuJqgE
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Q = 0, i.e. no-generic shape was utilised for cats. These shapes
are some shapes we experimentally noticed that appear rarely, e.g.
closed-eyes or mouth wide open.

The computational cost of PD2T is on-par with the most
accurate techniques for generic fitting, which constitutes it an
effective tool in case the quality of the landmarks is crucial.
Specifically, following the report of [15] the mean time per frame
(in seconds) is reported in Tab. 4. The generic results are copied
from [15]. It should be noted that the bottleneck in our method
is the generic fitting. The steps of learning the statistics for both
the pictorial and the person-specific localisation are quite fast,
in comparison to the respective learning for DPM and person-
specific CFSS. Finally, we have created a GPU implementation of
the incremental version of the algorithm which can track around
50 frames per second.

3.2 PD2T Experimental Analysis
We assessed the performance of different steps and options of the
proposed pipeline4. The two most crucial experiments developed
below are a) the comparison of the online vs the offline version, b)
the contribution of the different pipeline steps as developed above.

The performance of the two proposed versions, i.e. the in-
cremental and the offline was scrutinised. In the incremental
version, the first 100 frames were assumed existing and then the
model was updated online every 30 frames. This validation was
performed in four clips of the most challenging category of 300vW
in two different generic results (one with very strong generic
performance and one with mediocre). The two indicative methods
were LCT [44] + CFSS [5] and MIL [43] + CFSS respectively.
The CED plot in Fig. 4(a) demonstrates that the two version are
equivalent with the offline version performing slightly better in the
case of a weaker initial generic result. However, the strong benefit
of the incremental version is the ability to execute in an online
setting. In the rest of the manuscript, we focused on providing the
optimal result that can be achieved currently, hence we have used
the offline version.

We analysed the improvements from the different steps of
PD2T. The same setting as the comparison between the two
versions was followed with MIL + CFSS (poor generic fitting)
and SRDCF [45] + CFSS (strong generic fitting). In Fig. 4(b)
the results of the output of steps 2 (person-specific detection +
generic fitting) and 3 (person-specific localisation) are visualised.
The performance gain in the two cases differs largely, since in
the poor initial fitting the person-specific detection offers a huge
boost, while in the SRDCF case with strong generic fitting, the
gain originates mostly from the person-specific landmark locali-
sation step. The experimental validation of our approach in two
widely different initialisation conditions demonstrates the merit
of learning both a person-specific detector and a person-specific
localisation technique in order to ensure the optimal fitting.

3.3 Deformable facial sparse tracking
Tracking of facial parts has dominated the deformable object
alignment literature, hence we investigated PD2T with various
generic fitting techniques. The dataset of 300vW [9] was utilised
for sparse tracking. Additionally, a new dataset, FTOVM, covering
cases that do not emerge in 300vW was annotated to validate our
claim in different scenarios.

4. Considerable part of the self evaluation has been deferred to the
supplementary material due to the restricted space.

3.3.1 300 Videos in-the-Wild experiment

Using the 300 Videos in-the-Wild (300vW) dataset [9] the pro-
posed pipeline in the task of face tracking was assessed. The
dataset includes in total 114 lengthy videos (out of which 64 for
testing) with each frame containing a single human face annotated
with the sparse 68 mark-up. It is divided into the subsequent 3
categories:

• Category 1: Videos in well-lit environments without any
occlusions.

• Category 2: Videos with unconstrained illumination con-
ditions.

• Category 3: Video sequences captured in arbitrary condi-
tions (including severe occlusions and extreme illumina-
tions).

In total, 123404 frames are annotated in the testset of 300vW,
consisting it the most extensive public dataset for evaluating the
deformable facial tracking performance.

The recent comprehensive evaluation of [15] provided an ex-
cellent reference for generic methods that we utilised to verify that
PD2T works under a diverse set of conditions and initialisations,
and provides a significant boost in state-of-the-art methods. It
should be emphasised that all the hyper-parameters remained the
same as in Tab. 3 for all the methods compared. To provide a fair
comparison we report the same error metrics as in the original
evaluation, i.e. the cumulative error distribution (CED) plots with
normalised point-to-point error along with the Area Under the
Curve (AUC) and the failure rate; in Fig. 2 some exemplar errors
are plotted. Each error equals the mean Euclidean distance of the
68 points, normalised by the diagonal of the ground truth bounding
box (further details for the errors exist on [15]). The combinations
of methods (from [15]) were selected in order to provide as broad
overview as possible, while as experimentally validated in [15]
the landmark localisation method with the most accurate results
for all combinations was CFSS [5]. Thus in the majority of
the experiments we used CFSS, however we experimented with
methods that use SDM [25]. Specifically, the methods chosen
were the state-of-the-art detector of [1] (MTCNN); the correlation-
filter based LCT [44]; the accurate discrimative DLSSVM of
[46]; the discrimative SPT tracker [47]; the generative trackers
of LSRST [48], DF [49] and RPT [50]; CMT [51] as a strong
performing keypoint-based tracker; the widely used baselines of
PF [52] and MIL [43]. Additionally, the baseline method that uses
the tightest bounding box of the previous frame to initialise the
current frame was included (denoted as PREV).

The quantitative results are provided in Table 5 and Fig. 5,
while in Fig. 9 few qualitative fittings are visualised3. The out-
comes demonstrate that PD2T achieved the goal of improving the
generic deformable tracking results in all methods and across all
categories. Methods with weaker performance, e.g. DF + CFSS
or SPT + CFSS gain a substantial performance boost that exceeds
50% of the initial AUC. This is particularly evident in category
3, which contains the most challenging videos. Nevertheless, for
methods with stronger results, e.g. LRST + CFSS, the improve-
ment is also noticeable in both the AUC, failure rate statistics and
the CED plots.

As indicated in [15] (and Table 5) the first 2 categories are
saturated with several methods performing equally well, thus our
additional tests are restricted to the most challenging Category
3. The additional methods were: the state-of-the-art method of
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DPM [2], [3] MDNET [42] MIL [43] MTCNN [1] CFSS [5] PICTORIAL [27] GN-DPM [34] PD2T (total)
2.087 3.101 0.075 3.204 1.207 1.121 0.093 2.531

TABLE 4: Computational cost of the top performing (generic and adaptive) methods. A generic deformable result has the computational
cost of the detection + landmark localisation, i.e. MTCNN + CFSS. The cost is reported in seconds, i.e. the mean processing time for a
single frame.

Method Category 1 Category 2 Category 3

AUC Failure Diff. (%) AUC Failure Diff. (%) AUC Failure Diff. (%)Rate (%) Rate (%) Rate (%)

CMT + CFSS 0.746 2.681 0.755 1.886 0.592 16.676
PD2T(CMT + CFSS) 0.762 4.611 2.145 0.787 1.326 4.238 0.657 15.094 10.98

DF + CFSS 0.465 38.830 0.457 35.599 0.346 51.851
PD2T(DF + CFSS) 0.725 10.908 55.914 0.721 8.524 57.768 0.667 14.845 92.775

DLSSVM + CFSS 0.759 2.540 0.744 0.493 0.609 15.386
PD2T(DLSSVM + CFSS) 0.779 3.591 2.635 0.786 1.232 5.645 0.698 9.214 14.614

LCT + CFSS 0.704 10.551 0.767 0.636 0.641 12.930
PD2T(LCT + CFSS) 0.767 5.566 8.949 0.786 1.688 2.477 0.707 10.503 10.296

LRST + CFSS 0.702 10.890 0.756 1.621 0.646 13.588
PD2T(LRST + CFSS) 0.748 7.918 6.553 0.790 1.050 4.497 0.697 11.168 7.895

MIL + CFSS 0.681 11.497 0.707 4.229 0.378 45.985
PD2T(MIL + CFSS) 0.740 9.401 8.664 0.738 6.051 4.385 0.596 23.448 57.672

MTCNN + CFSS 0.729 8.578 0.720 8.527 0.717 5.725
PD2T(MTCNN + CFSS) 0.746 8.091 2.332 0.734 8.478 1.944 0.741 5.439 3.347

PF + CFSS 0.544 29.170 0.613 15.417 0.412 38.242
PD2T(PF + CFSS) 0.752 6.392 38.235 0.752 5.269 22.675 0.633 15.711 53.641

PREV + CFSS 0.543 27.472 0.616 19.883 0.198 73.052
PD2T(PREV + CFSS) 0.736 9.076 35.543 0.742 6.890 20.455 0.581 27.486 193.434

RPT + SDM 0.616 9.382 0.704 0.992 0.534 17.676
PD2T(RPT + SDM) 0.704 5.854 14.286 0.717 4.162 1.847 0.637 9.571 19.288

SPT + CFSS 0.266 64.091 0.215 67.629 0.156 76.758
PD2T(SPT + CFSS) 0.687 16.261 158.271 0.715 8.944 232.558 0.595 25.200 281.410

Colouring denotes the methods’ performance ranking per category: � first � second � third

TABLE 5: Results for Experiment of Section 3.3.1. For every method, we include the initial metrics and in the subsequent line the
pipeline’s metrics with that particular method as initialisation, denoted as PD2T(method name). The Area Under the Curve (AUC)
and Failure Rate are reported. The last column per category, alleged Diff, denotes the improvement as a percentage of the AUC when
applying PD2T. The top performing methods (ranked by the AUC) of the table are highlighted.

[45] (SRDCF); the recent deep tracking system of [53] (SIAM-
OXF); the two widely used methods of [31] (IVT), [54] (KCF).
The additional results in Table 6 (Category 3) demonstrate that the
performance gains are substantial. Notably, our method improves
even the state-of-the-art systems, e.g. SRDCF + CFSS.

We additionally compared PD2T against the state-of-the-art
reported incremental tracker of [22]. We report the 3 top method
outcomes of PD2T against iCCR. The CED plot in Fig. 6 depicts
the error metric as reported in the original paper, i.e. the error in
the 49 points’ markup normalised with the interocular distance.
However, in constrast to the excluded frames of the original
evaluation, we evaluated the errors in all the frames provided. All 3
outcomes from PD2T outperform the results of iCCR; our method
sets a new state-of-the-art for the most challenging category.

3.3.2 Facial Tracking with severe occlusion, out of view
movement
Plenty of challenging cases are not included in 300vW. Namely
in 300vW all the frames include exactly one face, while all the
videos are of high resolution with the face close to the camera. The
recent progress in tracking/detection systems dictates acquiring

more challenging videos for experimentally assessing the merits
of new systems. Thus, we have annotated semi-automatically 6
new clips that cover extreme cases that do not emerge in 300vW,

Method AUC Failure Difference (%)Rate (%)

KCF + SDM 0.444 22.686
PD2T(KCF + SDM) 0.570 13.833 28.378

IVT + CFSS 0.423 42.244
PD2T(IVT + CFSS) 0.624 18.767 47.518

SIAM-OXF + SDM 0.567 13.775
PD2T(SIAM-OXF + SDM) 0.634 13.877 11.816

SRDCF + CFSS 0.687 8.145
PD2T(SRDCF + CFSS) 0.749 4.955 9.025

Colouring denotes the methods’ ranking: � first � second � third

TABLE 6: Results for Experiment with facial landmark tracking
(Sec. 3.3.1). The connotation for the column legends and metrics
are the same as in Fig. 5. The top 3 performing curves are
highlighted.
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(a) Category 1
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(b) Category 2
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(c) Category 3

Fig. 5: (Preferably viewed in colour) CED plots for Sec. 3.3.1 (deformable facial tracking). Depicted in (a) are the CED for Category
1, in (b) Category 2, in (c) Category 3. The common labelling method for all is that the green line denoted the initial result, while the
red one the outcome of PD2T. Two state-of-the art methods are depicted on the left, while two methods that benefit substantially from
PD2T are on the right two columns. Namely, from left to right the plots correspond to the methods: LRST + CFSS, MTCNN + CFSS,
PREV + CFSS, SPT + CFSS. The complete set of plots is deferred to supplementary material due to limited space.

e.g. extreme occlusions, out of camera view movement, 360 degree
rotation of the face. We name this new dataset FTOVM.

The annotation procedure for each clip was the following:
The state-of-the-art MTCNN detector [1] was utilised, while the
MDNET tracker was used to verify the existence of overlap
between the tracked and the detected outcome. Subsequently, a
generic GN-DPM [35], [55] was trained on 300W trainset and fit
in all the frames. A human expert excluded the erroneous fittings;
the GN-DPM model was augmented in an incremental manner
and all the frames were re-fitted. A Kalman filter was used to
smooth the fittings and a human expert kept only the frames with
an accurate fitting.

The experimental setup remained the same as in 300vW; the
generic deformable tracking method selected for the task was
MDNET + CFSS. The comparison with PD2T can be found in
Fig. 7, while in the supplementary video qualitative results are
visualised. The CED indicates that the strong method MDNET +

CFSS drifts under severe occlusions or out of view movement,
while our methods does not drift in such challenging cases.

3.4 Deformable animal tracking
Even though animals’ faces include higher degrees of deformation
and appearance variation, the subject has only recently emerged
in static images, e.g. in [56], [57], however there are no estab-
lished datasets for tracking yet. To illustrate the strengths of the
proposed pipeline beyond human facial tracking, we annotated
videos containing animal faces with an ad hoc shape. Six videos
including cats’ faces were semi-automatically annotated per frame
with 38 facial markup; a generic GN-DPM [35], [55] was applied;
sequentially a video-specific method [26] for refining the results
was employed. The erroneous fittings were rejected by two human
experts. Some clips contain more than one cats in order to verify
the ability of the detector to discriminate between similar objects
appearing in a clip.
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Fig. 6: (Preferably viewed in colour) CED plot for the comparison
of iCCR against the best reported curves for PD2T. In the left
plot the generic methods are visualised against iCCR, while on
the right the output of PD2T with each respective initialisation.
Apparently, iCCR is on-par with the generic MTCNN + CFSS;
the two others are weaker, while on the right the PD2T results in
all three adaptive results surpassing iCCR.
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Fig. 7: (Preferably viewed in colour) CED plot for the newly
introduced FTOVM in Sec. 3.3.2.

Three different experiments involving the two state-of-the-art
model-free trackers of MDNET [42] and SRDCF [45] (first and
second position respectively in the VOT 2015 challenge [16])
were performed. In the first two experiments, we obtained the
bounding boxes from MDNET and varied the generic landmark
localisation method, utilising SDM [25] and ERT [7], while on the
last experiment we used SRDCF + SDM for the generic fitting.
The specifics of SDM and ERT employed were the following:
For SDM, a 4-level Gaussian pyramid with parametric shape was
selected. SIFT [37] feature vectors of length 128 were extracted
at the first 3 scales, using RootSIFT by [58], while the highest
scale consisted of pixel intensities. For ERT the default parameters
of [7] were utilised. Both SDM and ERT were trained on 2000
images of cat faces with the appropriate annotation, while the
aforementioned parameters were validated in two withheld clips.

Due to the lack of established benchmark in the category,

we resort to reporting the cumulative error plot that indicates
in the x axis the point-to-point distance of the tracked point
from the ground-truth (refer to Table 2 for indicated error values
overlaid in the respective frame); additional metrics are deferred
to supplementary material. The CED plots can be found in Fig. 8.
The quantitative results in the generic method SRDCF + CFSS
demonstrate that the improvement from an adaptive method are
significant, while in the MDNET + CFSS, PD2T outperforms the
generic fitting with a large margin.

4 CONCLUSION

In this work, we introduced PD2T, a pipeline for learning person-
specific representations from a video clip. Given a set of generic
fitting results as a (sparse) set of fiducial points, PD2T aims at
improving the generic fittings. From the internal evaluation of our
method, it can be comprehended that the meticulous selection of
the training samples for learning person-specific statistics results
leads in very representative person-specific subspaces. We have
conducted extensive experimentation with both human faces and
animals’ (cats) faces indicating that PD2T improves the generic
fitting results, while we have also demonstrated that the method
works with a variety of different initial fittings’ combinations. In
the future we aim to explore different options for improving the
results further, e.g. utilising features from recent deep networks,
or learning a non-linear classifier for pruning the fittings. Addi-
tionally, we aim to explore the adaptation of our method for the
case of missing data.
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