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Abstract. Automatic pain recognition is an evolving research area with promis-
ing applications in health care. In this paper, we propose the first fully automatic
approach to continuous pain intensity estimation from facial images. We first
learn a set of independent regression functions for continuous pain intensity esti-
mation using different shape (facial landmarks) and appearance (DCT and LBP)
features, and then perform their late fusion. We show on the recently published
UNBC-MacMaster Shoulder Pain Expression Archive Database that late fusion
of the afore-mentioned features leads to better pain intensity estimation compared
to feature-specific pain intensity estimation.

1 Introduction

Automatic pain recognition has received increased attention in the recent years mostly
because of its applications in health care, ranging from monitoring patients in intensive-
care units to assessment of chronic lower back pain [1]. Current research on automatic
pain detection is based on automatic analysis of facial expressions, since it has been
shown that facial cues are very informative for pain detection [2].

To date, there are only few works that have addressed the problem of automatic pain
detection [3,4,5,6,7]. Brahnam et al. [3] used Principal Component Analysis, Linear
Discriminant Analysis and Support Vector Machines (SVMs) for binary classification
of pain images (i.e., pain vs. no pain). Gholami et al. [4] used intensities from facial
images to train a Relevance Vector Machine (RVM) classifier for pain detection. Little-
wort et al. [5] proposed a two-layer SVM-based approach for the classification of image
sequences in terms of real pain and posed pain. In their approach, the presence of Fa-
cial Action Units (AUs) (see [8] for AU description) per frame is detected with a set of
AU-specific SVM classifiers based on Gabor features. The outputs of the AU-specific
SVMs are then temporally filtered and used as an input to the SVM classifier. The work
by Lucey et al. [6] also addresses AU and pain detection based on SVMs. They detect
pain either directly using image features or by applying a two-step approach, where
first AUs are detected and then this output is fused by Logistical Linear Regression in
order to detect pain. In their more recent work in [7], the authors train separate SVM
classifiers for three-level pain intensity estimation.

Except from the approach proposed in [7], the rest of the aforementioned methods
have been proposed for pain detection only (i.e., pain vs. no pain). In this paper, we
propose a three-step approach to continuous pain intensity estimation per video frame
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(in contrast to [7], which estimates pain for a whole video sequence only). The outline
of the proposed approach is depicted in Fig. 1. In the first step, we extract shape-based
features (i.e, locations of characteristic facial points) and appearance-based features
(Local Binary Patterns (LBPs) [9] and Discrete Cosine Transform (DCT) [10]) from
facial images of subjects displaying different intensities of pain. The pain intensity was
annotated by the database creators using sixteen discrete values (0 to 15), with 0 mean-
ing no pain and 15 meaning its peak. In the second step, for each set of features we
train separate regression models (in this paper, we employ Relevance Vector Regression
(RVR) [11]) for prediction of the pain intensity levels. Note that although the regressor
training is performed using discrete outputs (i.e., intensity labels from 0 to 15), during
inference the regressors give a continuous estimation of the pain intensity. Finally, the
outputs of the regressors trained using different feature sets are combined in two ways:
(i) by computing the mean estimate of the regressors, and (ii) by using the outputs of
separate regressors as an input to another RVR, which gives a single estimate for the
pain intensity. In contrast to the aforementioned methods which deal with pain detection
only (i.e., pain vs. no pain), the proposed approach is the first one that performs contin-
uous pain intensity estimation. Furthermore, we show that the proposed feature-fusion
scheme outperforms the separately trained RVRs on different feature sets, whereby the
combination of appearance features (DCT and LBP) performs best. We also demon-
strate the performance of the proposed approach in the task of continuous intensity
estimation of the facial AUs.

The rest of the paper is organized as follows. Section 2 describes the employed
database. Feature extraction is detailed in Section 3. The regression-based approach
to continuous pain intensity estimation is presented in Section 4. Section 5 shows the
experiments and discusses the results. Section 6 concludes the paper.
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Fig. 1. Overview of the proposed approach to continuous pain intensity estimation. We first ex-
tract three feature sets from a face image: facial landmarks (PTS), Discrete Cosine Transform
coefficients (DCT) and Local Binary Patterns (LBP). We then use Relevance Vector Regression
(RVR) to learn the feature-specific functions, which independently estimate the pain intensity
from each feature set. In the final step, we use a second layer RVR to perform the fusion of the
pain intensity estimations obtained by the feature-specific functions.
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2 Database

We use the publicly available UNBC-MacMaster Shoulder Pain Expression Archive
Database [6] for our experiments. It contains face videos of patients suffering from
shoulder pain while performing range-of-motion tests of their arms. Two different move-
ments are recorded: (1) the subject moves the arm himself, and (2) the subject’s arm is
moved by a physiotherapist. Only one of the arms is affected by pain, but movements
of the other arm are recorded as well as a control set. 200 sequences of 25 subjects were
recorded (in total 48,398 frames). For each frame, AU intensities are provided for the
AUs 4, 6, 7, 9, 10, 12, 20, 25, 26 and 27 on a 6 level scale (0-5) and for AU 43 on a
2 level scale (present or not). The number of frames available per AU intensity level is
shown in Table 1.

Table 1. Frame distribution over AU intensity levels

Intensity 0 1 2 3 4 5

AU4 47324 202 509 225 74 64
AU6 42841 1776 1663 1327 681 110
AU7 45034 1360 991 608 305 100
AU9 47975 93 151 68 76 35
AU10 47873 171 208 63 61 22
AU12 41511 2145 1799 2158 736 49
AU20 47692 286 282 118 0 20
AU25 45992 766 803 611 138 88
AU26 46306 430 918 265 478 1
AU27 48380 6 3 3 6 0
AU43 45964 2434 - - - -

According to [12], the pain intensity is quantified as having 16 discrete levels (0 to
15) based on the AUs as:

Pain = AU4+max(AU6,AU7)+max(AU9,AU10)+AU43 (1)

This score for the pain intensity is provided by the database creators, and is used in this
work as the ground-truth for the pain intensity estimation. The distribution of the pain
intensity levels in the database is shown in Fig. 2.

3 Feature Extraction

In the first step of our approach, we perform extraction of three different sets of features.
The first set, denoted as Set 1, contains the locations of 66 facial landmark points (PTS)
(see Fig.1) that are extracted by the database creators using the Active Appearance
Model (AAM) [13]. As a preprocessing step, these points were aligned by applying
Procrustes analysis.

The second set, denoted as Set 2, contains features obtained by applying the Discrete
Cosine Transform (DCT) [10] to the aligned facial images. Specifically, the faces were
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Fig. 2. Frame distribution over pain intensity levels

first aligned to a base shape using the points from the triangulated mesh of the AAM
(see [6] for details). Later, the 2-dimensional DCT was applied to the aligned images,
and the first 500 coefficients were used as features, which were selected based on the
zig-zag scheme [14]. We employ the PTS and DCT features in this paper since they
have been previously proposed for pain detection (i.e., pain vs. no pain) in [6] .

The third set, denoted as Set 3, contains Local Binary Pattern (LBP) [9] features
extracted from the above-mentioned shape-aligned images. We use these features since
they have been shown to be effective for facial expression recognition [15]. An aligned
face image was divided into patches and LBP histograms were extracted from each
patch separately. After an initial parameter search, we chose uniform LBPs with 8 ra-
dial points on a radius of 2 pixel. The image was divided into 9x9 equally sized non-
overlapping patches with a resolution of 14x13 pixel. The LBP histogram extracted
from a patch resulted in a 59-D feature vector. The final LBP feature vector was the
4779-D concatenation of all 81 histograms.

We employ these three sets of features because they contain different types of infor-
mation. PTS are geometric features, and are robust to illumination changes. However,
they cannot accurately capture subtle facial movements (e.g., the eye wrinkles). This can
be well described by the appearance features (i.e., DCT and LBP) that are derived from
pixel intensities of an image. Compared to PTS, DCT and LBP are much more sensi-
tive to skin color variation, and texture variation due to the illumination changes. Note,
however, that DCT and LBP capture different characteristics of the texture changes.
Specifically, DCT features describe image appearance on a large scale, which can be
seen from a DCT reconstructed image: The overall image structure is still preserved,
but sharp edges are lost (see Fig. 1). Conversely, LBP features are local descriptors that
model statistics of the gradient orientations within a small pixel neighborhood, i.e. they
describe the edges. For the aforementioned reasons, we hope that by fusion of these
three types of features we can improve the overall accuracy of the continuous pain in-
tensity estimation, as proposed in this paper.

4 Continuous Pain Intensity Estimation

To perform continuous pain intensity estimation from a single feature set, we learn a
regression function that maps the features to the corresponding (discrete) pain intensity
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levels. This function is learned by means of the Relevance Vector Regression (RVR)
model [11]. It models the target function by selecting representative cases, the so called
’Relevance Vectors’, which are used in the model during inference of a query image.
We use RVR instead of the popular Support Vector Regression in the target task because
it usually results in a more sparse model, i.e., less relevance vectors are selected than
support vectors for the same task [11]. In our case, this is important since we deal with
image sequences. Formally, for each feature set we model the outputs (y) of the target
function as:

y(x;w,γ,δ ) =
N

∑
n=1

wnK(x,xn)+ ε, (2)

where x is the input feature vector, {x1, ...,xN} are N training inputs and w=(w1, ...,wN)
are the weight parameters. Here, the sparsity of the model comes from the fact that most
of the weights parameters tend to go to zero, thus, the corresponding training samples
are not used for inference. As the kernel function, we use the standard Radial Basis
Function (RBF) kernel with the length scale parameter γ . The noise on the outputs is
modeled as a Gaussian with zero mean and the variance δ .

Once the feature-set-specific target functions are learned, we perform late fusion
of their outputs. This fusion is performed in two ways: (i) mean fusion and (ii) RVR
fusion. In the mean fusion approach, we calculate the mean of the outputs, obtained by
the feature-set-specific target functions {y1, ...,yL}, as y f =

1
L ∑L

l=1 yl , where y f is the
mean fusion output and L is the number of the feature sets. RVR fusion is performed
by learning another RVR model that uses the outputs of the feature-set-specific target
functions as an input, i.e., ŷ = (y1, ...,yL), which are continuous estimates of the pain
level intensities, and the (discrete) pain level intensities as outputs. This fusion function
is given by

y f (ŷ;wf,γ f ,δ f ) =
M

∑
m=1

wf
mK f (ŷ, ŷm)+ ε f , (3)

where {ŷ1, ..., ŷM} are M training inputs, obtained from the first-layer outputs, and
wf = (wf

1 , ...,w
f
M) are the weight parameters, γ f is the length scale of the Radial Basis

Function kernel K f and ε f is the noise, as defined above. Note that the training samples
used to learn the feature-set-specific target functions may differ from the samples used
to learn the fusion function.

5 Experiments and Results

We performed two sets of experiments. In the first set of experiments we evaluated the
performance of the proposed approach in the task of continuous AU intensity estima-
tion. In the second set, we evaluated the performance in the task of continuous pain
intensity estimation. In all our experiments we applied a leave-one-out cross-validation
procedure. Specifically, we used facial images of 24 subjects for training and one sub-
ject for testing. The feature-specific target functions were trained using the same train-
ing data as for the fusion functions. Note that in terms of generalization performance,
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the performance of the proposed 2-layer approach is expected to be better if the feature-
specific target functions and the fusion function are trained using data corresponding to
different subjects. However, we found that this strategy results in worse performance
than using the same training data to train both layers. This could be due to the limited
number of available subjects: if the subjects are split between the first and the second
layer, then each of the layers is trained on less subjects, and hence the performance
decreases. Note also that AU27 was left out, since only few examples with intensities
greater than zero are present in the dataset (see Table 1). We measured the performance
of the proposed approach using the mean squared error (MSE) and the Pearson cor-
relation coefficient (CORR). The MSE and CORR were computed on the differences
between the predicted pain/AU intensities and the relevant ground truth. Furthermore,
MSE and CORR were computed per subject and per sequence, and then correspond-
ingly weighted by the number of frames in each sequence, in order to obtain an average
value for each measure.

Table 2 shows the results for the feature-specific target function learned in the task
of continuous pain/AU intensity estimation. In the case of pain intensity estimation, the
ground truth contains 16 discrete intensity levels, while in the case of AUs there are 6
discrete intensity levels. In addition, we show the results of two methods for pain inten-
sity estimation: Pain (I) is directly estimated from the features as described in Section 4,
where Pain (II) is calculated from the estimated AU intensities by using Eq. 1. As can
be seen, the results obtained by the latter method are in some cases outperformed by
the former method, where the pain intensity is estimated directly from the training data.
This is a consequence of the error propagation in the AU estimation, since for some
AUs only few positive examples (i.e., with intensity level greater than zero) were avail-
able during training. Since the Pain (II) is computed by using a deterministic formula,
the inaccuracies in the estimation of each AU are added in the final estimate of the
pain intensity. Note also from Table 2 that for AU intensity estimation, LBP features
outperform PTS and DCT features. This is because the LBPs are local descriptors and
are able to better capture appearance variation caused by changes in AU intensities,
since different AUs are located in different regions of a facial image. The accuracy in
AU intensity estimation attained by using LBPs directly translates into the accuracy at-
tained by the Pain (II) approach, which outperforms Pain (I) in the case of the LBPs.
On the other hand, in the case of DCT features, which capture global changes in ap-
pearance, the Pain (I) is more accurate than the Pain (II) approach. This again shows
that estimating the pain intensity level from AU intensities is sensitive to the errors in
AU intensity estimation. We also observe that in the case of predicting AU20 with LBP
features, the MSE can be misleading: the result of 0.103 seems better than the MSE of
other AUs, but CORR is only 0.092. This is due to the imbalanced data used for training
(see Table 1 and Fig. 2) where the vast majority of the frames have the zero intensity.
Overall, LBP features perform best in terms of the MSE measure, while in the case of
the CORR measure, the difference is not that apparent, though LBPs are still the best
in most cases. On the other hand, DCT features perform best in the task of pain inten-
sity estimation. Overall, appearance features (DCT and LBP) work better than shape
features (PTS). However, the poor performance of shape features might be caused by
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Table 2. Single feature results for Action Unit (AU) and pain intensity estimation, measured
by the mean squared error (MSE) and the Pearson correlation coefficient (CORR). Pain (I) is
estimated directly from the features and Pain (II) is calculated from the estimated AU intensities
using Eq. 1. The best result for each target and each measure is printed in bold letters.

Measure MSE CORR

Features PTS DCT LBP PTS DCT LBP

AU4 0.341 0.254 0.204 .096 .140 .133
AU6 0.906 0.592 0.590 .385 .528 .527
AU7 0.806 0.504 0.379 .120 .303 .342
AU9 0.119 0.119 0.113 .246 .224 .190
AU10 0.084 0.079 0.097 .171 .203 .169
AU12 1.010 0.717 0.600 .330 .484 .548
AU20 0.505 0.158 0.103 .012 .092 .092
AU25 0.707 0.579 0.486 .130 .104 .204
AU26 0.896 0.834 0.475 .013 .016 .111
AU43 0.300 0.273 0.176 .240 .291 .465

Pain (I) 2.592 1.712 1.812 .363 .528 .483
Pain (II) 2.532 1.716 1.484 .348 .480 .518

registration errors, because the Procrustes alignment cannot cope properly with out-of-
plane rotations. A better registration will likely improve the single shape and the fusion
results, therefore we would not suggest to rely on appearance features alone.

The results for the mean-fusion approach are shown in Table 3. In most cases, MSE
and CORR improves over the results obtained with single features only. This shows
that the employed features contain complementary information. Based on the CORR
results, the DCT+LBP fusion gives the best results in most cases. This is not surprising,
because DCT and LBP, although both being appearance-based features, capture differ-
ent information: DCT captures global, while LBP captures local appearance variation.

The results for the RVR feature fusion are shown in Table 4. The results are similar
to those obtained by the mean fusion in the sense that almost all values improve over the
single feature results, as expected. However, the improved performance of DCT+LBP
features is even more pronounced in the case of the RVR fusion approach, giving the
best CORR results overall. Although we would expect the RVR fusion to perform at
least as good as the mean fusion in all tasks, this does not seem to be the case. A reason
for this could be the fact that both layers in the proposed approach are trained on the
same data (because of the limited training data), which could have led the 2nd-layer
RVR to over-fit the data. We plan to address this in our future work.

Fig. 3 shows an example of the pain intensity estimation from one test image se-
quence. The estimation is based on our best model, i.e., DCT+LBP RVR fusion (the
Pain (I) approach). In most cases, the continuous pain intensity estimation is close to
the ground-truth. Note, however, the peaks around the frames 95, 120 and 336, which
are all caused by the eye blinks. This is a consequence of the fact that the proposed
approach is static (i.e., it is trained per frame), and therefore, it cannot differentiate
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between an eye blink (short time) and eye closure (long time). During the training stage,
the model has learned that the closed eyes are related to pain, and that is why the eye
blinks result in sudden peaks in the estimated pain intensity, as shown in Fig. 3.

Table 3. Mean feature fusion results for Action Unit (AU) and pain intensity estimation, mea-
sured by the mean squared error (MSE) and the Pearson correlation coefficient (CORR). The best
results are given in bold letters.

Measure MSE CORR

Features PTS+DCT PTS+LBP DCT+LBP all PTS+DCT PTS+LBP DCT+LBP all

AU4 0.224 0.201 0.206 0.191 .205 .260 .294 .295
AU6 0.543 0.544 0.496 0.472 .500 .508 .526 .543
AU7 0.479 0.429 0.361 0.376 .276 .276 .376 .343
AU9 0.087 0.091 0.096 0.083 .370 .339 .323 .382
AU10 0.064 0.070 0.075 0.064 .371 .312 .334 .370
AU12 0.656 0.625 0.568 0.563 .529 .545 .582 .588
AU20 0.177 0.179 0.103 0.119 .103 .095 .133 .129
AU25 0.474 0.449 0.455 0.415 .212 .213 .264 .252
AU26 0.622 0.482 0.557 0.493 .090 .118 .090 .120
AU43 0.232 0.184 0.191 0.187 .360 .396 .462 .439

Pain (I) 1.469 1.642 1.508 1.373 .489 .481 .554 .547
Pain (II) 1.928 1.850 1.368 1.480 .395 .403 .529 .494

Table 4. RVR feature fusion results for Action Unit (AU) and pain intensity estimation, mea-
sured by the mean squared error (MSE) and the Pearson correlation coefficient (CORR). The best
results are given in bold letters.

Measure MSE CORR

Features PTS+DCT PTS+LBP DCT+LBP all PTS+DCT PTS+LBP DCT+LBP all

AU4 0.264 0.248 0.242 0.274 .209 .199 .243 .177
AU6 0.539 0.550 0.480 0.549 .487 .514 .533 .502
AU7 0.423 0.428 0.343 0.400 .248 .321 .402 .314
AU9 0.132 0.233 0.120 0.201 .401 .326 .479 .414
AU10 0.087 0.074 0.071 0.070 .080 .243 .424 .294
AU12 0.782 0.713 0.617 0.657 .507 .542 .576 .545
AU20 0.140 0.088 0.109 0.147 .049 .059 .086 .049
AU25 0.669 0.538 0.572 0.762 .106 .199 .235 .090
AU26 0.604 0.414 0.490 0.582 .005 .060 .090 .015
AU43 0.243 0.158 0.179 0.182 .352 .512 .516 .437

Pain (I) 1.801 1.567 1.386 1.804 .489 .485 .590 .502
Pain (II) 1.867 1.899 1.633 1.770 .342 .345 .471 .369



376 S. Kaltwang, O. Rudovic, and M. Pantic

0 50 100 150 200 250 300 350

0

2

4

6

8

Frame number

P
ai

n 
in

te
ns

ity

estimation

ground-truth

Fig. 3. Example pain estimation sequence for DCT+LBP RVR fusion

6 Conclusion

We have proposed a three-step approach to continuous pain intensity estimation based
on Relevance Vector Regression. We have shown that for the task of continuous pain and
AU intensity estimation, the proposed approach achieves better results when trained us-
ing appearance-based features (either DCT or LBP) than with the shape features (PTS).
Also, when used as single input features, LBPs worked best in most cases. Furthermore,
we showed that the fusion of DCT and LBP features gives the best performance in the
target task. However, we believe that by a proper alignment of the shape-based features
(e.g. by using [16]), the overall performance attained by the fusion of these three feature
sets should improve. We also showed that direct pain estimation can be more accurate
than calculation from the the AUs, which is probably due to the inaccuracies in AU
intensity estimation. The approach presented in this paper estimates the AU intensities
independently and does not exploit information about their co-occurrences. Further-
more, the current approach is static, and it cannot distinguish between eye blinks and
eye closures, which are important cues for pain intensity estimation. These limitations
of the proposed approach are the focus of our future research.
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