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Abstract

In the recent years particle filtering has been the dominant
paradigm for tracking facial and body features, recogniz-
ing temporal events and reasoning in uncertainty. A major
problem associated with it is that its performance deterio-
rates drastically when the dimensionality of the state space
is high. In this paper, we address this problem when the
state space can be partitioned in groups of random vari-
ables whose likelihood can be independently evaluated. We
introduce a novel proposal density which is the product of
the marginal posteriors of the groups of random variables.
The proposed method requires only that the interdependen-
cies between the groups of random variables (i.e. the pri-
ors) can be evaluated and not that a sample can be drawn
from them. We adapt our scheme to the problem of multiple
template-based tracking of facial features. We propose a
color-based observation model that is invariant to changes
in illumination intensity. We experimentally show that our
algorithm clearly outperforms multiple independent tem-
plate tracking schemes and auxiliary particle filtering that
utilizes priors.

1. Introduction
In the recent years, particle filtering has been the dominant
paradigm [2] [3] [8] [5] [4] [7] [11] in the tracking of the
state � of a temporal event given a set of noisy observations
� � �� � � � ��� �� up to the current time instant. Its ability
to maintain simultaneously multiple solutions, the so called
particles, make it particularly attractive when the noise in
the observations is not Gaussian and robust to missing or
inaccurate data. However, a problem that has been reported
in this framework [1] [9] is that the performance deterio-
rates drastically as the dimensionality of the state space �

(i.e. � � �) increases. Indeed, as the dimensionality of the
state space increases, a large number of particles that are
propagated from the previous time instance are wasted in
areas where the likelihood of the observations is very low.
Therefore, a very large number of particles are necessary to
accurately track the state.

In this paper we propose a method that deals with the
above mentioned problem in the case that the state � can
be partitioned in groups of random variables �� (i.e. � �
����), such that the likelihood ������� of the observations
�at the current time instant, given each group �� , can be
independently evaluated. We build on the particle filter-
ing framework, which involves the following three steps: a)
sample from ������ ��, where �� is the state at the previ-
ous time instant, b) propagate the samples via the transition
probability ������� and c) evaluate a new weight for the
samples from the likelihood ������. We propose a modified
scheme which can be summarized as follows. First, each
partition �� is propagated and evaluated independently.
This creates a particle-based representation of ������ �. We
subsequently use this representations to sample from a pro-
posal function ����� � �

�
�
������ �. Finally, each of the

particles produced in this way is reweighted by evaluating
the transition probability ������� so that the set of particles
with their new weights represents the a posteriori probabil-
ity ����� �. In correspondence to the standard particle filter-
ing, our approach requires only that the transition probabil-
ity ������� can be evaluated and not that it can be sampled
from. Thus, it allows easier modeling of the interdependen-
cies between the groups of random variables �� (for exam-
ple with a Markov Random Field). Furthermore, since the
particles are sampled from the proposal function ����, it is
guaranteed the likelihood ������ is not low and, therefore,
that the particles are not wasted at areas of the state space
with low likelihood.

We experimentally verify our claims by applying the
proposed method to the problem of multiple template-based
tracking of facial features. We propose a color-based ob-
servation model that is invariant to changes in illumination
intensity and utilize learned priors of the relative configu-
rations of the facial features. We provide comparative ex-
perimental results with other particle filters on real image
sequences.

The remainder of the paper is organized as follows. In
Section 2 we concisely review similar works and describe
the proposed particle filtering method in detail. In Section
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3 we explain how it is applied to the problem of template-
based tracking of multiple facial features. In Section 4 we
present comparative experimental results on real data and
finally in Section 5 we draw conclusions and future research
directions.

2. Particle filtering with factorized
likelihoods

The main idea of the particle filtering is to maintain a par-
ticle based representation of the a posteriori probability
����� � of the state � given all the observations � up to
the current time instance. This means that the distribution
����� � is represented by a set of pairs ����� ���� such that
if �� is chosen with probability equal to ��, then it is as if
�� was drawn from ����� �. In the particle filtering frame-
work our knowledge about the a posteriori probability is
updated in a recursive way. Suppose that we have a parti-
cle based representation of the density ������ ��, that is
we have a collection of � particles and their corresponding
weights (i.e. ����

�
� ��

�
��). Then, the Sampling/Importance

Resampling particle filtering can be summarized as follows:

1. Pick � particles ��
�

from the collection ����
�
� ��

�
��.

Each particle ��
�

is picked with probability equal to
��
�

. This is approximately equivalent to sampling from
������ ��.

2. Propagate each of the chosen particles via the “transi-
tion” probability �������. This creates a collection of
particles ���� which are, approximately, sampled from
the so-called, proposal density ����� ��.

3. To each particle �� assign a weight �� equal to the
likelihood of the observations, that is let �� � �������.
Normalize the weights so that they sum up to one.

This results in a collection of � particles and their corre-
sponding weights (i.e. ����� ����) which is an approxima-
tion of the density ����� �.

There are three problems with the above scheme. The
first is that a large number of the particles that result from
sampling from the proposal density ����� �� (i.e. step 2)
are wasted in areas with small likelihood. In other words,
when they “go through” the “measurement” density ������,
at step 3, they are assigned very low weights. The rea-
son is that the transition probability �������, naturally,
cannot deterministically produce particles with high like-
lihood and therefore adds noise in order to “explore” the
state space. This is very inefficient when the dimension-
ality of the state space is high. The second problem is
that the above scheme ignores the fact that while a parti-
cle �� �� ������ 	 	 	 ��� 
 might have low likelihood, it
can easily happen that parts of it (e.g. ���) might be close
to the correct solution. In many practical problems, it is

easy to evaluate the goodness of these subparticles since the
likelihood can be factorized (i.e. ������ �

�
�
�������).

Finally, the third problem is that it might be difficult to per-
form the second step, that is to sample from �������. When
there are interdependencies between the different parts of
the state � (e.g. in case that � is a Markov Random Field)
it is generally easier to evaluate ������� (up to a constant
factor) than to sample from it.

There has been a number of adaptations that attempt to
improve the performance of the particle filtering by giving
answers to some of these problems. Icondensation by Is-
ard and Blake [3] proposes to substitute the first two steps
by sampling from an empirical “external” proposal density
���� (that is, instead of sampling from ����� ��). While
their work is very important, it addresses only the first prob-
lem and leaves the choice of ���� an open issue. Auxiliary
particle filtering, introduced by Pitt and Shephard [8], also
proposes the use of a modified proposal density. The main
idea is to sample at stage one particles ��

�
that, when propa-

gated via the transition probability �������, produce parti-
cles �� with high likelihood. Their work has the advantage
that it does not require an “external” proposal functions ��	�
but is limited to the first problem. The work of Deutscher et
al [1] attempt to overcome the problems associated with the
high dimensionality of the state space with automatically
partitioning it according to the observed variance at each of
its dimensions. Finally, a number of recent works [4] [11],
attempt to deal with both of the first two problems.

Our method attempts to answer all of the three problems
in the case that the likelihood can be factorized, that is in
the case that ������ �

�
�
������� (see fig. 1). Similarly to

[8] and [3] we propose the use of an adapted proposal func-
tion. In contrast to them, we utilize the fact that the like-
lihood ������ can be factorized and propose to use as the
proposal distribution ���� the product of the posteriors of
each �� given the observations, that is ���� �

�
�
�������.

Our work is closer to [4] and [11] but we do not introduce
an artificial hierarchy to the propagation of each partition
�� as in [4] and do not restrict to Markov Random Fields
models for ���� as in [11]. Furthermore we do not require
iterative sampling from a complicated ����. For the remain-
der of this section we will show how we draw samples ��
from the proposal distribution and, subsequently, how we
assign them weights ��, such that the collection ����� ����
is a representation of the a posteriori probability ����� �.

2.1 Updating the posterior

For the proposal distribution ���� we ignore the interdepen-
dencies between the different ��. This fact, which is wit-
nessed by the factorized form of ����, allows us to construct
a sample �� �� ��� 	 	 	 ��� 	 	 	 ��� 
 by independently
sampling from ������ �. In, a slightly modified, particle fil-
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Figure 1: The assumed model. The broken lines represent
interdependencies, that might or might not exist, between
the partitions of the state variables.

tering framework we express the ������ � as follows:

������ � � �������
�

��

������
�������� �� (1)

We use a modified version of the auxiliary particle filter-
ing algorithm to end up with a particle based representation
of ������ �, for each �. This procedure, which is repeated
for each partition �, can be summarized as follows:

1. Propagate all particles ��� via the transition probability
������

�� in order to arrive at a collection of � sub-
particles ���. Note, that while ��� has the dimension-
ality of the state space, the ��� has the dimensionality
of the partition �.

2. Evaluate the likelihood associated with each sub-
particle ��� , that is let ��� � ��������.

3. Draw � particles ��� from the probability density that
is represented by the collection ����� 	 ���


�

� ��. This
is the essence of the auxiliary particle filtering; in this
way it favors particles with high ��� , that is particles
which, when propagated with the the transition den-
sity, end up at areas with high likelihood.

4. Propagate each particle ��� with the transition proba-
bility ������

�� in order to arrive at a collection of �
sub-particles ���. Note, that ��� has the dimensionality
of the partition �.

5. Assign a weight 
�� to each subparticle as follows,
��� � ��������

���
, 
�� � ����

� ���

With this procedure, we have a particle-based representa-
tion for each of the � posteriors ������ �. That is, we have
� collections ����	 
���, one for each �. Then, sampling �
particles from our proposal function ��� �

�
� ������ �

is, approximately, equivalent to constructing each particle

�� �� ��� � � � ��� � � � ��	 � by sampling independently
each ��� from ������ �.

At the end of this phase we have a collection of particles
�� �� ��� � � � ��� � � � ��	 � each of which is drawn from
���. In order that this collection represents the posterior
����� � we need to assign a weight to each particle equal to
[3][8]:


� �
�������������

��

����
(2)

�
�������������

���
� ����� �� �

(3)

�
�������������

���
� ���������������

��
(4)

�
������

���
� �������

��
(5)

In words, the numerator of the final weight of a parti-
cle is the probability of the particle �� given the observa-
tions at the previous time instant. That is, at the numerator
the interdependencies between the different ��� are taken
into consideration. On the contrary, at the denominator, the
different ��� are considered independent. In other words,
the reweighting process favors particles for which the joint
is higher than the product of the marginals. Note, that in
the degenerate case that the �� are indeed independent and,
therefore, the weights are one, our scheme is equivalent to
� independent particle filters, one for each of the ��. In-
deed, each ��� is drawn independently from ������ �.

In the general case that eq. 5 cannot be evaluated by
an appropriate model, the weights need to be estimated.
We do so by utilizing the particle based representation of
������ �� as follows:


� �
������

���
� �������

��
(6)

�

�

 ������

�

 ����

�

 �� ���

�

�

 �������

�

 ����

�

 �� ��

(7)

Finally, the weights are normalized to sum up to one.
With this, we end up to a collection ����	 
��� that is a
particle-based representation of ����� �.

3. Tracking multiple facial micro-
features

In what follows we adapt the particle filtering scheme that
has been proposed in Section 2 to the problem of multiple
template-based tracking. We then apply it to the problem of
simultaneously tracking multiple facial micro-features such
as the lip corners, the middle of the mouth and a number
of points on the eyebrows. We propose a novel observation
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likelihood for each template, that is based on robust color
consistency. The proposed likelihood attempts to deal with
changes in the appearance of the templates due to changing
illumination conditions, facial expressions and occlusions.
Furthermore, we propose tracking the facial micro-features
by utilizing prior knowledge on the configurations of the
facial micro-features, that is knowledge of ����. We show
how prior knowledge can be easily incorporated in our fac-
torized particle filtering scheme.

In what follows we will first formally pose the problem,
second describe the observation model, third the transition
probability models and the use of priors in the reweighting
phase. We will subsequently present comparative experi-
mental results and close with some conclusions and direc-
tions for future research.

3.1 Problem formulation

Formally, we aim at tracking in an image sequence the 2-D
positions �� of � facial micro-features. At the first frame
of the sequence the position of the facial micro-features are
initialized by the user (e.g. fig. 2). In the notation of Section
2, � �� �� � � � �� � � � �� � is the �� dimensional random
variable that represents the unknown state at a given time
instant and the observations � at the current time instant is
the current image frame.

3.2 Robust color-based observation model

Various observation models have been proposed for
template-based tracking with special attention being given
to robustness in clutter and occlusions and in the adaptation
of the observation model (e.g. [6] [10]). Recently, attention
has been drawn to color-based tracking [12] [7].

Our observation model is initialized at the first frame of
the sequence when a set of � windows are centered by the
user around the facial micro-features that will be tracked.
Let us denote with �� the template feature vector, which
contains the RGB color information at window �. Obvi-
ously, �� has dimensionality equal to three times the number
of pixels in window �.

We need to define �������. Let us denote with 	� the
template feature vector that contains the RGB color infor-
mation at the window around ��. We propose a color-based
difference between the vectors �� and 	� that is invariant to
global changes in the intensity as follows:


���� 	�� �

�
��

�����
�

	�
��	��

�
(8)

where����� is the mean of the vector ��, that is the average
intensity of the color template ��. It is easy to show that
the proposed color difference vector 
���� 	�� is invariant to
global changes in the light intensity.

Finally, we define the scalar color distance using a robust
function . Let us denote here with � the pixel index and
with 
����� 	�� the color difference at pixel �. The scalar
color distance is then defined as:

����� 	�� � �� ��
����� 	���� (9)

where the robust function that has been used in our exper-
iments is the �� norm. Then, we define the observation
likelihood as:

������� � �
�

��������

�� (10)

where �� is a scaling parameter. Note, that the color-based
distance as defined in eq. 8 becomes unreliable as the tem-
plates become darker. In order to compensate for this fact
we adapt �� to the average intensity of each template by
letting �� � ���������.

3.3 Transition models and priors

Once the observation model is defined we need to model
the transition density �������� and to specify the scheme
for reweighting the particles, either by eq. 5, or by eq.
7. To avoid sampling from a complicated distribution we
consider that �������� � ������

�

� �, that is each feature
can be independently propagated. We use a very simple
zero order model with Gaussian noise, that is ������

�

� � �
��� �� ��� ��.

In order to define the reweighting scheme we utilize a
more elaborate scheme that uses training data to learn the
interdependencies between the positions of the facial micro-
features. In our modeling, the ratio of eq. 5 is approximated
with a prior on the relative positions of the facial features.
In the graphical model of fig. 1 that would correspond to
the evaluation related to the dashed lines. This is evaluated
with Parzen density estimation, that is,

�� �
�
�

����	������ ���� ��� (11)

where the collection ���� is the collection of training data
and 	��� is a transformation function that registers the data
from the current face (i.e. the particle ��) to the training
data (i.e. to the collection ����). For our experiments we
removed the translational component by compensating for
the position of the facial features at the first frame and for
the position of a stable facial feature (such as the nose) at
the current frame. Scaling is done by person-related scaling
factors (such as the dimensions of the mouth of the subject)
that are estimated from the positions of the facial features
at the first frame. With ���� we denote the Parzen kernel,
which in our case is a Gaussian kernel with standard devia-
tion ��. Finally, with ��	������ ��� we denote the distance
function between the registered particle �� and a training
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datum �� . In our experiments we have used as ���� �� the
Euclidean distance.

4. Experimental Results
We have applied the proposed method to a number of image
sequences and here we present results for tracking five facial
features, that is the position of the nose, the mouth corners
and the upper and lower lip. We define small rectangular
templates around each mouth feature and a larger template
around the nose.

We present comparative results with a standard auxiliary
particle filtering that attempts to track independently each of
the facial micro-features. The results are summarized in fig.
2. As expected, the nose is tracked reliably for the whole
sequence, since its template is rather large and the appear-
ance does not change due to facial expressions. However,
the tracking of mouth corners fails at the first facial expres-
sions that affects their appearance for long time. Similarly,
at a later time instant, occlusion of the upper lip causes a
failure of the tracking of the corresponding template.

Figure 2: Tracking independently facial micro-features with
1000 particles. Results, from left to right and top to bottom,
are presented for frames 1 (user initialization), 35, 51 and
101.

The results with the proposed method are summarized
in fig. 3. The use of the priors provide constraints that are
sufficient for the reliable tracking of the templates at the
presence of appearance changes due to facial expressions.
Furthermore, the tracker can successfully recover from long
term occlusions, some of them occurring for more than 40
frames. This is achieved with only 100 samples in total,
which is an order of magnitude less than the number of par-
ticles that have been used for tracking each template inde-
pendently. Note however, that during occlusions the esti-

mated positions of the occluded parts do not very often co-
incide with their true positions (e.g. frame 51 at fig. 3).

Figure 3: Proposed method with 100 particles. Results are
presented for frames 51, 101, 151, 201, 251 and 301.

Finally, we present results for another image sequence
in which the subject exhibits another set of facial expres-
sions and talks naturally. As expected, independent track-
ing of the facial features, even with a large number of sam-
ples, fails soon after the first facial expression and, for some
of the facial features, it never recovers. To compare our
method with a particle filtering that utilizes the priors, we
have devised a modified version of the standard auxiliary
particle filtering. This scheme utilizes the priors ���� by
using the function ������������ as the observation model.
The results improve considerably in comparison to tracking
each feature independently, but still (fig. 4), the tracking is
lost even with a relatively large number of particles.

Figure 4: Modified auxiliary particle filtering with priors
and 1000 particles. Results are presented for frames 51,
101, 151.

In comparison, the proposed method clearly outperforms
the independent feature tracker and the modified auxiliary
particle filtering scheme. We have used the same training
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data to learn the priors and the same parameters in our tran-
sition and observation models. With only 100 samples we
were able to reliably track the mouth features in the pres-
ence of different facial expressions. The proposed method
has always been able to recover from errors and track reli-
ably the facial features for the rest of the sequence.

Figure 5: Proposed method with 100 particles. Results are
presented for frames 51, 101, 151, 201, 251 and 301.

5. Conclusions
We have presented a method for particle filtering that over-
comes some of the limitations of the classical particle filters
in the case that the likelihood can be factorized. We devise
a proposal density that is the product of the marginal pos-
teriors of each of the state partitions. With show that with
the proposed method we end up in a scheme that requires
sampling from simple transition probabilities and only eval-
uation of more complicated interdependencies between the
partitions of the state. We utilize the developed framework
for the problem of template-based tracking of multiple fa-
cial features. We have devised a color-based scheme and
we have incorporated prior knowledge of the relative posi-
tions of the facial features that is learned from training data.
We have experimentally shown that the proposed method
clearly outperforms the auxiliary particle filter both for mul-
tiple independent template tracking and when prior knowl-
edge is utilized. For future work we consider the use of
more sophisticated methods for evaluating the prior (or the
transition) density than the simple Parzen window approach
that we have used and the adaptation of the appearance
model in the particle filtering framework (e.g. [5]).
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