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Abstract-Non-negative Matrix Factorization (NMF) is among 
the most popular subspace methods widely used in a variety of 
pattern recognition applications. Recently, a discriminant NMF 
method that incorporates Linear Discriminant Analysis criteria 
and achieves an efficient decomposition of the provided data to 
its salient parts has been proposed. An extension of this work 
specialized for classification, optimized using projected gradients 
in order to ensure converge to a stationary limit point, resulted 
in a more efficient method of the latter approach. Assuming 
multimodality of the underlying data samples distribution and 
incorporating clustering discriminant inspired constraints into 
the NMF decomposition cost function, resulted in the Subclass 
Discriminant NMF algorithm which found to outperform both 
approaches under real life settings. In this work we review 
all these methods in the context of various pattern recognition 
problems using facial images. 

I. INTRODUCTION 

It is common knowledge that the spatial facial image dimen­
sionality is much higher than that exploited by many facial 
image analysis applications. This fact necessitates to seek 
for efficient dimensionality reduction methods for appropriate 
facial feature extraction, which will alleviate computational 
complexity and boost the performance of the succeeding facial 
features processing algorithms. Such a popular category of 
methods, is the subspace image representation algorithms 
which aim to discover the latent facial features by projecting 
the facial image to a linear (or nonlinear) low dimensional 
subspace, where a certain criterion is optimized. 

Non-negative Matrix Factorization (NMF) [1], is a popular 
subspace learning algorithm widely used in image process­
ing. It is an unsupervised data matrix decomposition method 
that requires both the data matrix being decomposed and 
the yielding factors to contain non-negative elements. The 
non-negativity constraint imposed in the NMF decomposition 
implies that the original data are reconstructed using only 
additive and no subtractive combinations of the yielding basic 
elements. This limitation distinguishes NMF from many other 
traditional dimensionality reduction methods, such as Principal 
Component Analysis (PCA), Independent Component Analy­
sis (ICA) or Singular Value Decomposition (SVD). 

Focusing on facial image analysis, numerous specialized 
NMF decomposition variants have been proposed for face 
recognition [2], [3], facial identity verification [4] and facial 
expression recognition [5], [6]. In such applications the entire 
facial image forms a feature vector and NMF aims to find 
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its projections that optimize a given criterion. The resulting 
projections are then used in order to map unknown test 
facial images from the original high dimensional image space 
into a lower dimensional subspace, where the criterion under 
consideration is optimized. 

In this paper we briefly review NMF algorithm and its 
discriminant counterpart that incorporates Linear Discriminant 
Analysis criteria in order to achieve a more efficient decom­
position of the provided data to their salient parts. Moreover, 
we propose the Subclass Discriminant NMF algorithm which 
is able to enhance class separability in the reduced dimen­
sional projection subspace when data samples distribution is 
multimodal and demonstrate its optimization in two different 
frameworks. 

II. NMF BASICS 

In the following, without losing generality, we shall assume 
that the decomposed data are facial images. Obviously, the 
techniques that will be described can be applied to any kind 
of non-negative data. NMF approximates a facial image by a 
linear combination of elements, the so called basis images, that 
correspond to facial parts. Given a non-negative data matrix 
X E RrXL whose columns are vectorized F-dimensional 
facial images, NMF attempts to perform the following fac­
torization: 

X�ZH (1) 

where Z E RrXM is a matrix containing the basis images, 
while matrix H E R1f x L contains the linear combination 
coefficients required to reconstruct each original facial image. 
To measure the cost of the decomposition in (1), the most 
common approximation error measures for NMF factorization 
methods are the Kullback-Leibler (KL) divergence metric and 
the matrix Frobenius norm. The KL divergence between two 
vectors x = [Xl ... XF]T and q = [ql ... qF]T is defined as: 

KL(xllq) � t (Xi In X
i 

+ qi - Xi) . (2) 
i=l q, 

Thus, the cost of the decomposition can be measured as the 
sum of all KL divergences between all original images and 



their respective reconstructed versions: 

L 
OKL(XIIZH) = 2:KL(xjIIZhj) = 

j=l 
(3) 

t t (Xi,j In( L :"j h . ) + 2: Zi,khk,j � Xi,j) . 
j=l i=l k ',k k,J k 

Frobenius norm measures the Euclidean distance between two 
matrices A and Bas: 

i,j 

Consequently, the decomposition cost is evaluated as: 

L F 

(4) 

IIX � ZHII} = 2: 2: (Xi,j � [ZH]i,j)2 
j=li=l 

(5) 

where II.IIF is the Frobenius norm. NMF algorithm factorizes 
the data matrix X into ZH, by solving the following opti­
mization problem: 

subject to: 

minO(XIIZH) 
Z,H 

Zi,k 2': 0 ,hk,j 2': 0, Vi,j, k. 

(6) 

Considering the KL-divergence based NMF, it has been shown 
in [7] that using an appropriately designed auxiliary function, 
the following multiplicative update rules update hk,j and Zi,ko 
yielding the desired factors, while guarantee a non increasing 
behavior of the cost function in (3): 

h (t) k,j 

(t) Zi,k 

'\' (t-1) Xi,j ui zi,k '\' Ct 1) hC' 1) 
h(t-1) u, Zi,l ',j 
k,j '\' (t-1) ui Zi,k 

'\' h (t) Xi.j Uj k,j'\' zCt 1)h(L) (t-1) u, ,,I '.J Zi,k L' h(t) J k,J 

(7) 

(8) 

Following a similar optimization strategy, the desired factors 
for the NMF algorithm based on the Frobenius norm, are 
derived by: 

h (t) k,j 

(t) zi,k 

(t-1) [Z(t-1)'lX]k,j hk,j [Z(t-1)TZ(t-1)H(t-1)]k,j' 

(t-1) [XH(t)'l]i,k 
zi,k [Z(t-1)H(t)H(t)'r]i,k' 

III. DISCRIMINANT NMF VARIANTS 

(9) 

(10) 

Next we will describe supervised NMF learning variants 
that incorporate discriminant constraints in order to provide a 
more efficient decomposition of the decomposed data to their 
discriminant parts. 

A. Discriminant NMF 

Discriminant Non-negative Matrix Factorization (DNMF) 
[4], [8] algorithm is an attempt to introduce discriminant 
constraints in the NMF decomposition cost function. DNMF 
aims to find projections that enhance class separability in the 
reduced dimensional projection subspace and basis images that 
correspond to discriminant salient facial parts such as eyes, 
nose, mouth, eyebrows etc. 

In order to incorporate discriminant constraints into the 
NMF decomposition, the well known Fisher discriminant 
criterion [9] is exploited, given by: 

J(w) = 

tr[wT�bw] 
tr[wT�ww] 

(11) 

where tr[.] is the matrix trace operator. Fisher criterion at­
tempts to find a transformation matrix W, that maximizes the 
ratio defined by the traces of the between-class and within­
class scatter matrices tb = WT�bW and tw = WT�wW, 
respectively, both evaluated over the projected data. DNMF 
cost function incorporates a discriminant factor, requiring the 
dispersion of the projected samples that belong to the same 
class around their corresponding mean to be as small as 
possible, while at the same time the scatter of the mean vectors 
of all classes around their global mean to be as large as 
possible. Consequently, the DNMF algorithm that considers 
the KL-divergence metric to measure the decomposition error, 
minimizes the following cost function: 

ODNMF(XIIZH) = OKL(XIIZH) + atr[tw] � ,8tr[tb] 
(12) 

where a and ,8 are positive constants. Using a similar opti­
mization methodology as that followed by the NMF algorithm, 
the multiplicative update rule shown in (13) evaluate the 
weight coefficients hk,j that belong to the r-th class. Parameter 
T is defined as: 

T = (2a + 2,8) (� 2: hk��l)) � 2,8f.1t) 
� 1 (14) 

r A,Aiel 

where Nr denotes the number of samples of the r-th class 
and ILk the k-th element of the mean vector j.L(r) evaluated 
over the projected samples of the r-th class. On the other 
hand, performing optimization with respect to Z, leads to the 
update formulae in (8) used by the original NMF algorithm, 
since the incorporated discriminant factor is independent from 
the basis images matrix Z. 

B. Subclass Discriminant NMF 

Unfortunately, the considered by DNMF discriminant factor 
possesses certain shortcomings that arise from the LDA opti­
mality assumptions. That is, it assumes that the sample vectors 
of each class are generated from underlying multivariate 
Gaussian distributions having a common covariance matrix 
but with different class means. Moreover, since it regards that 
each class is represented by a single compact data cluster, 
the problem of nonlinearly separable classes cannot be solved. 
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However, this problem can be tackled if we consider that each 
class is partitioned into a set of disjoint subclasses and perform 
a discriminant analysis aiming at subclass separation between 
those belonging to different classes. Typically, in real world 
applications, data usually do have a subclass structure. In order 
to overcome these deficiencies we have recently proposed the 
Subclass Discriminant NMF (SDNMF) algorithm [10]. 

To overcome the aforementioned limitations, SDNMF re­
laxes the assumption that each class is expected to consist of 
a single compact data cluster and regards that data inside each 
class form various subclasses, where each one is approximated 
by a Gaussian distribution. Consequently, it approximates the 
underlying distribution of each class by a mixture of Gaussians 
and exploits discriminant criteria inspired by the Clustering 
based Discriminant Analysis (CDA) introduced in [11]. To 
formulate the SDNMF problem we modify the NMF algorithm 
by embedding appropriate discriminant constraints and adjust 
the cost function that drives the optimization process. This 
extension provides discriminant projections that are expected 
to enhance class separability in the reduced dimensional space 
when data samples distribution is multimodal. 

To facilitate CDA in the n-class facial image data matrix, let 
us denote the number of subclasses composing the r-th class 
by On the total number of formed subclasses by 0, where 
o = 2:7 Oi , and the number of facial images belonging to 
the t9-th subclass of the r-th class by N(r)(!}) ' Let us also 
define the projected p-th facial image that belongs to the t9-th 
subclass of the r-th class by the M -dimensional feature vector 
"1�r)(!}) = ['T)��i(!}) . . .  'T)��r/)]T resulting by applying the trans­
formation "1�r)(!}) = ztx�r)(!}) and the mean vector for the 61-
th subclass of the r-th class by M(r)(!}) = [fL ir)(!}) ... fLt;)(!}) ]T 
which is evaluated over the N(r)(!}) projected facial images. 
Using the above notations we can define the within subclass 
scatter matrix Sw as: 

and the between subclass scatter matrix Sb as: 

where 0: and (3 are posItive constants, while � is used to 
simplify subsequent mathematical derivations. Consequently, 
the new minimization problem is formulated as: 

min OSDNMF(XIIZH) 
Z,H 

S.t.: Zi,k � 0 ,hk,j � 0, 'Vi, j, k, 

(18) 

which requires the minimization of (17) subject to the non­
negativity constraints applied on the elements of both the 
weights matrix H and the basis images matrix Z. 

To solve the SDNMF constrained optimization problem we 
introduce Lagrangian multipliers ¢ = [¢i,k] E RFx M and 
'¢ = [?'vj,k] E RMx L each one associated with constraints 
Zi,k � 0 and hk,j � 0, respectively. Thus, the Lagrangian 
function £ is formulated as: 

£ = OKL(XIIZH)+ �tr[Sw]- �tr[Sb]+tr[¢ZT]+tr['¢�;J) 
Consequently, the optimization problem in (18) is equivalent 
to the minimization of the Lagrangian arg min £. To minimize 

Z,H 
£, we first obtain its partial derivatives with respect to Zi,j and 
hi,j and set them equal to zero: 

8£ '" Xk,jZk,i '" 0: Dtr[Sw] 
8h ' 

- � "z h ' + � ZI,i + ?'vi,j + 2 � ',J k ul k,1 I,J I ',J 

8£ 

� 8tr[Sbl 
= 0 (20) 

2 8hi,j 

8z ' ',J 

'" Xi,lhj,l '" h 
rI, 0: 8tr[Sw] - � " h + � j,1 +'f'i,j + 2 -8--I uk Zi,k k,1 I Zi,j 

� 8tr[Sb] 
= O. (21) 

2 8zi,j 

According to KKT conditions [12] it is valid that ¢i,jZi,j = 0 
and also ?'vi,jhi,j = O. Consequently, we obtain the tollowing 
equalities: (oJ:, ) '" Xk 'Zk ' '" 

oh ' hi,j = 0 ¢? - � 2: ,)  h" hi,j + � Zl,ihi,j '
,
J k I Zk,l I,J I 
+ (h ' - (r)(8» ) h . __ 

/3
_ (r)(8) (0 - 0 ) h ' 

Q �,
J J..Li �,

J N ILi r Z,) 
(r)(8) 

ern 

+/3N(r)(8) L L p,;rn)(g) hi,j = 0 (22) 
n n ci C,' T Sb = L L L L (M(i)(j) - M(r)(!}» ) (M(i)(j) - M(r)(!}» ) . oJ:, Xi Ih �

,rn",r 
g=l i=l r,r#i j=l !}=1 (

-;,--) Zi,j = 0 ¢? - L " ' 
J

, Zi,j + L hj,lZi,j = O. (23) 
(16) UZi,j I Uk Zi,khk,l I 

Adding appropriate penalty terms in the NMF decompo- Solving the quadratic function for hi,j, resulting from equation 
sition the new cost function for the SDNMF problem is (22), leads to the multiplicative update rule shown in (24). On 
formulated as follows: the other hand, the update rule in (8) is directly derived by 

0: (3 solving (23) for Zi,j' In (24) hi,j denotes the i-th feature ele-
OSDNMF(XIIZH) = OKdXIIZH) + 2tr[Sw] - 2tr[Sb] (17) ment, in the projection subspace, of the j-th image belonging 



to the 8-th subclass of the r-th facial class and A is defined 
as: 

A (a + _
(3

_(0 - Or)) _
1

_ L h(t;l) 
N(r)(e) N(r)(e) ).,,).,#j 2, 

t!-- t � fL�m)(g) - 1. 
(r)(e) m,m#r g=l 

(25) 

As can be seen the developed multiplicative update rules for 
the SDNMF algorithm consider not only sample class labels 
but also their subclass origin. 

C. Projected Gradient DNMF 

Recent studies [13], [14] regarding the optimization proper­
ties of the derived multiplicative update rules have revealed 
that they only guarantee a non increasing behavior of the 
considered cost function and do not ensure that optimization 
converges to a limit point that is also stationary. In NMF-based 
optimization problems, stationarity is an important property, 
since all relevant objective functions are non-convex and there 
is no guarantee that every limit point in a sequence of iterations 
corresponds to a local minimum. 

In order to exploit the well established optimization prop­
erties of [13], [14] that ensure stationarity of the reached 
limit point, Projected Gradient DNMF (PGDNMF) has been 
introduced in [6]. PGDNMF algorithm considers the following 
cost function: 

where the within class scatter matrix :Ew and the between 
class scatter matrix :Eb are evaluated using vectors Xj = ZT Xj 
which are the actual features used for classification. Since, the 
cost function in (26) is convex either for Z or H but non­
convex for both variables, we formulate two subproblems, by 
keeping one variable fixed and performing optimization for 
the other: 

min:h (Z) subject to: Zi,k � 0, \:Ii, k (27) z 

min.J2(H) subject to: hk,j � 0, \:Ik,j. (28) 
H 

1) Optimization of Z solving the subproblem (27): The 
performed optimization is an iterative steepest descent process 
that at a given iteration round t the following update rule is 
applied: 

where the operator P[.] = max[.,O] guarantees that no 
negative values can be assigned to the updated elements of 

(24) 

matrix Z and at is the learning step parameter for the t-th 
iteration. 

By iterating the update rule in (29), a sequence of min­
imizers {Z(t) }�l of .J1(Z) is generated and according to 
Bertsekas [15], it is guaranteed that a stationary point is found 
among its limit points. Thus, in order to verify whether the 
currently reached limit point is stationary or not, a stationarity 
check step [16] is performed, which examines whether the 
following condition is satisfied: 

IIVP .J1(Z(t) )IIF :s: ezllVP .J1(Z(1) )IIF, (30) 

where vP .11 (Z(t) ) is the projected gradient of .11 (Z(t) ), with 
respect to Z, with its (i, k)-th element defined as: 

, if Zi,k > 0 
, if Zi,k = 0 

(31) 
and ez is a predefined stopping tolerance satisfying: 0 < 
ez < 1. A similar strategy is followed for the optimization 
of H solving the subproblem in (28). The iterative projected 
gradient optimization framework generates a sequence of 
minimizers {Z(t) , H(t) }�1 until the reached limit point is a 
stationary point of (18). 

The minimization of both subproblems in (27) and (28) 
involves the calculation of the first and second order gradients 
of .11 (Z) and .J2(H) which are evaluated as follows: 

V.J1 (Z) ZHHT - XHT + aVtr[:Ew] - (3Vtr[:Eb] 
(32) 

V
2.J1(Z) HHT ® 1M + aV2tr[:Ew]- (3V2tr[:Eb] 

(33) 
(34) 
(35) 

where ® denotes the Kronecker product operation and 1M is 
a M x M identity matrix. 

IV. EXPERIMENTAL RESULTS 

We compare the performance of the presented SDNMF 
method, considering its multiplicative optimization updates, 
with those of the DNMF and the conventional NMF algorithms 
for face recognition on the Extended Yale B database [17] 
and for facial expression recognition on the Cohn-Kanade [18] 
dataset. 

A. Facial Expression Recognition in the Cohn-Kanade (CK) 

dataset 

The CK AU-Coded facial expression database is among 
the most popular databases for benchmarking methods that 
perform automatic facial expression recognition. In order to 



Fig. 1. Mean images for each expression considering that each facial expres­
sion class is partitioned into three subclasses. Mean images are derived from 
the two more distant subclasses inside every class. The diverse illumination 
conditions during facial expression capture in the CK database are evident. 

form our data collection we only acquired a single video frame 
from each sequence, depicting a subject performing a facial 
expression at its highest intensity level. Consequently, face 
detection was performed and the resulting facial Regions Of 
Interest (ROIs) were manually aligned with respect to the 
eyes position and anisotropically scaled to a fixed size of 
30 x 40 pixels. In total 407 expressive images were acquired 
which were used to compose either the training or the test 
set. To measure the facial expression recognition accuracy, 
we randomly partitioned the selected samples into 5-folds 
and a cross validation performed by feeding the projected 
discriminant facial expression representations to a linear SVM 
classifier. Consequently, the reported facial expression recog­
nition accuracy rate is the mean value of the percentages of 
the correctly classified facial expressions in all 5-folds. 

It is important to note that CK database depicts subjects 
of different racial background under severe illumination varia­
tions. Consequently, the data sample vectors do not correspond 
to one compact cluster per class, a fact that we expect to 
be successfully handled by the proposed SDNMF algorithm. 
To verify this, we have considered that each of the seven 
recognized facial expression classes namely: anger, fear, dis­
gust, happiness, sadness, surprise and neutral is partitioned 
into three subclasses and the mean expressive image for every 
subclass of each class is computed. Figure 1 shows the mean 
image for each facial expression considering the two more 
distant subclasses inside every class. Clearly the illumination 
variations are captured during clustering. 

Since the available samples for each expression class are 
relatively few (around 50) we have considered only class 
partitioning into two and three distinct subclasses. Figure 
2, shows the measured average facial expression recognition 
accuracy rates versus the projection subspace dimensionality. 
The highest measured recognition accuracy rate attained by 
the proposed method is 69.05%, while for the NMF algorithm 
is 64.85%. Therefore, an increase by more than 4% has 
been achieved by incorporating the CDA inspired discriminant 
constraints in the NMF cost function. As can be seen, in 
Figure 2, SDNMF constantly outperforms both NMF and 
DNMF methods, when considering projections in a subspace 
of dimensionality greater than 100. 
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Fig. 2. Average facial expression recognition accuracy rates versus the 
dimensionality of the projection subspace in CK database. 

B. Face Recognition on the Extended Yale B database 

Extended Yale B database consists of 2,414 frontal face 
images of 38 individuals, captured under various laboratory 
controlled lighting conditions. For our experiments we have 
randomly selected for each subject half of the images for 
training, while the rest were used for testing. Searching 
for the optimal projection subspace, we have trained NMF, 
DNMF and SDNMF algorithms considering subspaces of 
dimensionality varying from 120 to 500. Moreover, since on 
average there are available 64 images for each subject, thus 
approximately 32 samples for each class for training, we 
have considered for the SDNMF algorithm that each class is 
composed by either two or three disjoint subclasses. 

Figure 3 shows the attained face recognition accuracy rates 
of each examined method versus the projection subspace 
dimensionality. NMF achieved a highest recognition rate of 
85.9% while, SDNMF considering 2 subclasses partitioning of 
each class, attained the best performance among the examined 
methods reaching a recognition rate of 92.7%. The maximum 
recognition rates for DNMF and SDNMF with Cr = 3 are 
89.5% and 90.1%, respectively. 
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Fig. 3. Face recognition accuracy rates versus the dimensionality of the 
projection subspace in the Extended Yale B database. 

V. CONCLUSION 

In this paper we briefly reviewed NMF, DNMF and 
PGDNMF algorithms and presented SDNMF method which 



addresses the general problem of finding discriminant projec­
tions that enhance class separability by incorporating CDA 
inspired criteria in the NMF decomposition. To solve the 
SDNMF minimization problem, we developed multiplicative 
update rules using an iterative Lagrangian solution. We com­
pared the performance of SDNMF algorithm with NMF and 
DNMF on two popular datasets for facial expression and face 
recognition. Experimental results verified the effectiveness of 
the proposed method on both tasks. 
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