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ABSTRACT
The two predominant families of deformable models for the
task of face alignment are: (i) discriminative cascaded re-
gression models, and (ii) generative models optimised with
Gauss-Newton. Although these approaches have been found
to work well in practise, they each suffer from convergence
issues. Cascaded regression has no theoretical guarantee of
convergence to a local minimum and thus may fail to recover
the fine details of the object. Gauss-Newton optimisation is
not robust to initialisations that are far from the optimal so-
lution. In this paper, we propose the first, to the best of our
knowledge, attempt to combine the best of these two worlds
under a unified model and report state-of-the-art performance
on the most recent facial benchmark challenge.

Index Terms— face alignment, cascaded regression,
Gauss-Newton optimisation, descent directions

1. INTRODUCTION

Statistical deformable models have emerged as an important
research field over the last few decades. The majority of ongo-
ing research has focused on the task of facial alignment, due
to the plethora of existing annotated databases [1, 2, 3, 4]. The
most commonly-used face alignment methods can be sepa-
rated in two families: (i) discriminative models that employ
cascaded regression, and (ii) generative models that are iter-
atively optimised using a Newton-type algorithm.
Cascaded Regression models: The methods of this category
aim to learn a regression function that regresses from the ob-
ject’s appearance (e.g. commonly hand-crafted features) to
the target output variables (the landmark coordinates). Recent
works have shown that a single regression step (as previously
proposed [5]) is not sufficient for accurate generic alignment
and that superior performance can be achieved by employ-
ing a cascade of regression functions [6, 7, 8, 9, 10, 11, 12,
13]. The most representative example is Supervised Descent
Method (SDM) [6, 7]. Cascaded regression-based techniques
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Fig. 1: Example descent directions. Cascaded-regression
(green) does not reach the optimum. Gauss-Newton (blue)
diverges due to the initialisation. However, applying Gauss-
Newton after the final regression step (red) converges much
closer to the optimum. This observation motivates the idea
behind the proposed unified model.

generally return accurate results even with very challenging
initialisations. Hence, they seek to learn averaged descent di-
rections with good generalisation properties, as in the case
of SDM [6]. However, since the descent directions are not
specific to the test image, they are not always able to recover
the fine details of the object. They also have no theoretical
guarantee of local convergence on test images1.
Generative models: The most common generative alignment
method is the Active Appearance Model (AAM) [5]. AAMs
are parametric linear models of shape and appearance of an
object and their objective function involves the minimisation
of the appearance reconstruction error with respect to the
shape parameters. [14, 15] showed how to linearise the AAM
objective function and optimise it using the Gauss-Newton
algorithm. Numerous extensions have been published since

1Theoretical guarantee for convergence exists only for the train set [6].



then, either related to the optimisation procedure [16, 17, 18]
or the model structure [19, 20, 21]. Generative models have
been shown to be more accurate than regression-based meth-
ods when initialised close to an optimum [16, 18, 19, 21].
However, the linearisation of the cost function required for
Gauss-Newton optimisation causes generative models to be
highly sensitive to their initialisations. In general, if Gauss-
Newton is not initialised within close proximity of an accept-
able local minima, the resulting alignment will be poor.

In this paper, we present a unified model that combines
the generative and discriminative formulation via a weighted
combination of their descent directions. Our motivation
comes from the example of Figure 1, in which we plot the cost
function that we aim to optimise based on a parametric shape
model and a projected-out appearance subspace [14]. Note
that the cost function is plotted w.r.t the first two shape param-
eters and is common for the discriminative and the generative
models. Even though the initialisation is far from the ground-
truth optimum, the cascaded regression manages to quickly
converge towards the correct direction with large steps, but is
not able to actually reach the optimum. In contrast, the gen-
erative model completely diverges due to the distance from
the global optimum. However, by applying Gauss-Newton
after cascaded regression, we reach a local optimum that is
very close to the global optimum. Our proposed model em-
ploys a fully parametric cascade of regression-based descent
directions, which are further adapted by the gradient descent
directions provided by the Hessian of Gauss-Newton. This
adaptation allows the model to be robust to very challenging
initialisations and to converge to the local minimum which
can recover accurate landmark localisation for the fine de-
tails of an object. Inspired by our method’s nature, we name
it Adaptive Cascaded Regression (ACR). Finally, we report
state-of-the-art performance on the task of face alignment,
using the most recent benchmark challenge 300-W [1, 2, 3].

2. PROPOSED METHOD

Shape model We denote a landmark point for an image I, as
xi = [xi, yi]

T and thus the shape instance of an object with n
landmarks is given by s =

[
xT

1 , . . . ,x
T
n

]T ∈ R2n×1. Given
a set of such shape samples {si}, a parametric shape model
can be modelled by aligning the shapes and then performing
Principal Component Analysis (PCA). The shape subspace
is further augmented with four eigenvectors that control the
global similarity transform [14]. The resulting shape model
{Us, s̄} consists of the orthonormal basis Us ∈ R2n×ns with
ns eigenvectors and the mean shape vector s̄ ∈ R2n. A new
shape instance is generated via s(p) = s̄ + Usp where p =
[p1, . . . , pns ]T ∈ Rns×1 are the shape parameters.
Appearance model Let us define the function φ(s) that re-
turns a vector which concatenates the features (e.g. SIFT [22])
extracted from the patches centred at the landmarks of the
provided shape instance s. Given that each vector has

length m, then φ(s) ∈ Rmn×1. Given a set of appear-
ance samples {φi} and then applying PCA, we obtain a
parametric appearance model {Ua, ā} that consists of the
orthonormal basis Ua ∈ Rmn×na with na eigenvectors
and the mean appearance vector ā ∈ Rmn. An appear-
ance instance can be generated as a(c) = ā + Uac where
c = [c1, . . . , cna

]T ∈ Rna×1 are the appearance parameters.
We also define P = E − UaU

T
a as the orthogonal comple-

ment of the appearance subspace Ua, where E ∈ Rmn×mn

denotes an identity matrix.
Adaptive Cascaded Regression ACR combines the re-
gressed descent directions with Gauss-Newton descent di-
rections into a single unified cost function. Assume that we
have a set of N training images {I1, . . . , IN} and their corre-
sponding annotated shapes {s1, . . . , sN}. By projecting each
ground-truth shape onto the shape basis Us, we compute
the ground-truth shape parameters {p∗

1, . . . ,p
∗
N}. During

the training process of each cascade level, we generate a set
of P perturbed shape parameters pk

i,j , j = 1, . . . , P, i =
1, . . . , N , which are sampled from a distribution that models
the statistics of the detector employed for initialisation. By
defining ∆pk

i,j = p∗
i − pk

i,j , j = 1, . . . , P, i = 1, . . . , N to
be a set of shape parameter increments, the training procedure
of ACR aims to learn a cascade ofK optimal linear regressors
given the gradient descent directions of each training image
at each level k = 1, . . . ,K by minimizing

N∑
i=1

P∑
j=1

∥∥∥∆pk
i,j −

(
λkWk − (1− λk)H−1

i,j JT
i,j

)
φ̂i,j,k

∥∥∥2

2

(1)
with respect to Wk. φ̂i,j,k denotes the projected-out residual
defined as

φ̂i,j,k ≡ φ̂i(s(pk
i,j)) = P

(
φi(s(pk

i,j))− ā
)

(2)

and Hi,j and Ji,j denote the Hessian and Jacobian matrices,
respectively, of the Gauss-Newton algorithm per image i =
1, . . . , N and per perturbation j = 1, . . . , P . λk is a hyper-
parameter that controls the weighting between the regression-
based and gradient descent directions at each cascade level k.
The training procedure involves the following steps:

Step 1: Shape Parameters Increments Given the set of vec-
tors pk

i,j , we formulate the set of shape parameters incre-
ments vectors ∆pk

i,j = p∗
i − pk

i,j , ∀i = 1, . . . , N, ∀j =
1, . . . , P and concatenate them in an ns×NP matrix ∆Pk =[
∆pk

1,1 · · · ∆pk
N,P

]
.

Step 2: Projected-Out Residuals The next step is to com-
pute the part-based appearance vectors from the perturbed
shape locations φi(s(pk

i,j)) and then the projected-out resid-
uals of Eq. 2 ∀i = 1, . . . , N, ∀j = 1, . . . , P . These vec-
tors are then concatenated in a single mn × NP matrix as
Φ̂k =

[
φ̂1(s(pk

1,1)) · · · φ̂N (s(pk
N,P ))

]
.

Step 3: Gradient Descent Directions Compute the Gauss-



Newton solutions for all the images and their perturbed shapes
and concatenate them in an ns ×NP matrix as

Gk = (1− λk)



[H−1
1,1J

T
1,1φ̂1(s(pk

1,1))]T

...
[H−1

i,j JT
i,jφ̂i(s(pk

i,j))]
T

...
[H−1

N,PJT
N,P φ̂N (s(pk

N,P ))]T



T

(3)

This involves the calculation of the Jacobian and Hessian per
image as

Ji,j = Ja
i,j

Hi,j = JT
i,jPJi,j

(4)

where

Ja
i,j = Jā +

m∑
l=1

cli,jJl (5)

is the model Jacobian that consists of the mean appearance Ja-
cobian Jā = ∂ā

∂p and the Jacobian of each appearance eigen-
vector denoted as Jl, l = 1, . . . ,m. Note that both Jā and Jl

can be pre-computed. Thus, Eq. 5 requires the calculation
of the appearance parameters ci,j , given their current esti-
mate from the previous cascade cci,j and the shape increments
∆pk

i,j , as

ci,j = cci,j + UT
a

(
φi(s(pk

i,j))− ā−Uacci,j − Ja
i,j∆pk

i,j

)
(6)

Step 4: Regression Descent Directions By using the pre-
viously above defined matrices, the cost function of ACR in

Eq. 1 takes the form arg minWk

∥∥∥∆Pk − λkWkΦ̂k + Gk

∥∥∥2

2
The closed-form solution of the above least-squares problem
is

Wk =
1

λk
(∆Pk + Gk)

(
Φ̂

T

k Φ̂k

)−1

Φ̂
T

k (7)

Note that the regression matrix of this step is estimated only in
case λk ≥ 0. If λk = 0, then we directly set Wk = 0ns×mn

Step 5: Shape Parameters Update The final step is to gen-
erate the new estimates of the shape parameters per training
image as

pk+1
i,j = pk

i,j +
(
λkWk − (1− λk)H−1

i,j JT
i,j

)
φi(s(pk

i,j))
(8)

∀i = 1, . . . , N and ∀j = 1, . . . , P . After obtaining pk+1
i,j ,

steps 1-5 are repeated for the next cascade level.

Fitting In the fitting phase, given an unseen testing image I
and its initial shape parameters p0 = [p0

1, p
0
2, p

0
3, p

0
4,0]T , we

compute the parameters update at each cascade level k as

pk = pk−1 +
(
λkWk − (1− λk)H−1JT

)
φ(s(pk−1)) (9)

where the Jacobian and Hessian are computed as described in
Step 3 of the training procedure (Eq. 4). The computational
complexity per iteration is O(nsmn(na + ns + 1)).

(a) 0.03 (b) 0.04 (c) 0.05 (d) 0.06

Fig. 2: Representative examples of normalised errors.

3. EXPERIMENTAL RESULTS

Datasets We use the 68-point annotations provided by [2, 1,
3] for LFPW [23], HELEN [24], AFW [25] and IBUG [2, 3]
databases. For all experiments, we used the bounding boxes
provided by the 300-W competition [2].
Error Metric To maintain consistency with the 300-W
competition, we report cumulative error distribution (CED)
graphs using the point-to-point error normalised by the inte-
rocular distance defined by the outer eye corners. We also
report the failure rate, as well as the area under the curve
(AUC). We fix a maximum error that we believe represents a
failed fitting, and thus the higher the AUC, the more fittings
are concentrated within this acceptable fitting area. In all
experiments, CED curves and AUC errors are reported up to
0.06. Examples of different errors are given in Fig. 2, which
shows that 0.06 represents an alignment failure. Finally, note
that the error is computed on 49 points to be consistent with
public implementations of state-of-the-art techniques.
Implementation Details 20 and 300 components were kept
for the shape and appearance models, respectively. After per-
forming cross-validation, we found that a cascade of 14 lev-
els with λ = [1, 0.75, 0.5, 0.25, 0, 0, . . .] was sufficient.
Intuitively, this means that the regression-based descent di-
rections need to dominate the optimisation for the first few
iterations, as they move towards the optimum with steps of
large magnitude. After that, the gradient descent steps are
sufficient in order to converge to an accurate local minimum.
The first two iterations are performed on the image at half
scale, the rest at full scale (120× 120). The patch sizes were
[32×32, 24×24, 24×24, 16×16, 24×24, 24×24, . . .]. Dense
SIFT [26, 22] features were used for all methods. When per-
forming a regression, a ridge parameter of 100 was used. The
training data is augmented by perturbing the provided bound-
ing boxes of [2, 3] with uniform noise of 0.005 for scaling and
0.07 for translation. The same options were used for training
the AAM and SDM using the Menpo Project [27].
Self Evaluation Fig. 3 compares ACR to both the generative
AAM and the discriminative SDM. We trained all 3 meth-
ods on LFPW training set, HELEN training set and IBUG.
The testing database was chosen as AFW as recent works
(e.g. [12]) have shown that AFW is still a challenging dataset.
Fig. 3 (left) shows the CED curve for the SDM, AAM and
ACR. The curves clearly show the improved performance of
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Fig. 3: ACR, AAM (Gauss-Newton) and SDM (Discriminative), trained identically, tested on the images of AFW. (Left) CED
on 49 points using the bounding boxes of [2, 3]. (Right) Sorted initial errors of 10 random initialisations of each image. As the
error increases, the AAM is unable to converge, whereas ACR is robust to initialisations and accurate.
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Fig. 4: Normalized error on 49 points for the testing dataset
of the 300-W challenge [2, 3].

ACR over both SDM and AAM. Fig. 3 (right) demonstrates
the sensitivity of generative methods to initialisations by gen-
erating 10 random initialisations per image of AFW and then
sorting the initialisation errors (low-to-high). The initialisa-
tion errors wered binned and the final error of the SDM, AAM
and ACR is plotted with respect to increasing initial errors.
As the initialisation error increases, the AAM is incapable of
converging towards an acceptable local minima. In contrast,
both the SDM and ACR perform well, though ACR outper-
forms SDM across all errors.
Comparison with state-of-the-art The testing dataset of the
300-W competition [2, 3] includes 600 “in-the-wild” images
and is described as being drawn from the same distribution
as the IBUG dataset. ACR was trained using LFPW training
set, HELEN training set, AFW and IBUG. Fig. 4 compares
the performance of ACR against the state-of-the-art methods

Method AUC Failure rate (%)
ACR 0.43 11.0

300W 1 [28] 0.42 9.3
CFSS [13] 0.40 13.5

300W 2 [29] 0.38 14.2
PO-CR [12] 0.37 17.7

ERT [9] 0.28 23.7
Intraface [6, 30] 0.27 23.8

Chehra [11] 0.24 46.8
Initialisation 0.01 96.8

Table 1: The area under the curve (AUC) and failure rate (%
of images with error > 0.06) for the CED curve in Fig. 4.

of Zhou et al. (300W 1) [28], Yan et al. (300W 2) [29],
CFSS [13], PO-CR [12], ERT [9], Intraface [6, 30] and
Chehra [11]. In all cases, the testing was initialised using the
bounding boxes from [2, 3]. It can be seen that ACR is the
most accurate technique and slightly outperforms [28], which
is a much more complex deep learning method provided by
industry. Table 1 reinforces the results of Fig. 4 by showing
that ACR is highly accurate and slightly less robust than the
method of [28].

4. CONCLUSION

We have shown that by combining the descent directions of
cascaded regression with the descent directions from Gauss-
Newton optimisation, we can achieve both robustness to chal-
lenging initialisations and accuracy w.r.t fine details. We re-
port state-of-the-art performance on the task of facial align-
ment, using the most recent benchmark challenge and have
experimentally verified that ACR outperforms both AAM and
SDM for a range of initialisations.



5. REFERENCES

[1] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic, “A
semi-automatic methodology for facial landmark annotation,”
in Proc. of IEEE Conf. on Computer Vision and Pattern Recog-
nition Workshops (CVPR’W), 2013.

[2] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic,
“300 faces in-the-wild challenge: The first facial landmark lo-
calization challenge,” in Proc. of IEEE Conf. on Computer
Vision and Pattern Recognition Workshops (CVPR’W), 2013.

[3] C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. Zafeiriou, and
M. Pantic, “300 faces in-the-wild challenge: Database and
results,” Image and Vision Computing, 2016.

[4] M. Koestinger, P. Wohlhart, P. M. Roth, and H. Bischof, “An-
notated facial landmarks in the wild: A large-scale, real-world,
database for facial landmark localization,” in Proc. of IEEE
Int’l Conf. on Computer Vision Workshops (ICCV’W), 2011.

[5] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appear-
ance models,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 23, no. 6, pp. 681–685, 2001.

[6] X. Xiong and F. De la Torre, “Supervised descent method and
its applications to face alignment,” in Proc. of IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2013, pp.
532–539.

[7] X. Xiong and F. De la Torre, “Global supervised descent
method,” in Proc. of IEEE Conf. on Computer Vision and Pat-
tern Recognition (CVPR), 2015, pp. 2664–2673.

[8] X. Cao, Y. Wei, F. Wen, and J. Sun, “Face alignment by explicit
shape regression,” Int’l Journal of Computer Vision, vol. 107,
no. 2, pp. 177–190, 2014.

[9] V. Kazemi and J. Sullivan, “One millisecond face alignment
with an ensemble of regression trees,” in Proc. of IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2014,
pp. 1867–1874.

[10] S. Ren, X. Cao, Y. Wei, and J. Sun, “Face alignment at 3000 fps
via regressing local binary features,” in Proc. of IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2014, pp.
1685–1692.

[11] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic, “Incre-
mental face alignment in the wild,” in Proc. of IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2014, pp.
1859–1866.

[12] G. Tzimiropoulos, “Project-out cascaded regression with an
application to face alignment,” in Proc. of IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), 2015, pp. 3659–
3667.

[13] S. Zhu, C. Li, C. Loy, and X. Tang, “Face alignment by coarse-
to-fine shape searching,” in Proc. of IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2015, pp. 4998–5006.

[14] I. Matthews and S. Baker, “Active appearance models revis-
ited,” Int’l Journal of Computer Vision, vol. 60, no. 2, pp.
135–164, 2004.

[15] S. Baker and I. Matthews, “Lucas-kanade 20 years on: A uni-
fying framework,” Int’l Journal of Computer Vision, vol. 56,
no. 3, pp. 221–255, 2004.

[16] J. Alabort-i-Medina and S. Zafeiriou, “Bayesian active appear-
ance models,” in Proc. of IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2014.

[17] J. Alabort-i-Medina and S. Zafeiriou, “Unifying holistic and
parts-based deformable model fitting,” in Proc. of IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2015.

[18] G. Tzimiropoulos and M. Pantic, “Gauss-newton deformable
part models for face alignment in-the-wild,” in Proc. of IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2014, pp. 1851–1858.

[19] E. Antonakos, J. Alabort-i-Medina, G. Tzimiropoulos, and
S. Zafeiriou, “Hog active appearance models,” in Proc. of
IEEE Int’l Conf. on Image Processing (ICIP), 2014, pp. 224–
228.

[20] G. Tzimiropoulos, J. Alabort-i-Medina, S. Zafeiriou, and
M. Pantic, “Active orientation models for face alignment in-
the-wild,” IEEE Trans. on Information Forensics and Security,
vol. 9, no. 12, pp. 2024–2034, 2014.

[21] E. Antonakos, J. Alabort-i-Medina, G. Tzimiropoulos, and
S. Zafeiriou, “Feature-based lucas-kanade and active appear-
ance models,” IEEE Trans. on Image Processing, vol. 24, no.
9, pp. 2617–2632, 2015.

[22] D. Lowe, “Object recognition from local scale-invariant fea-
tures,” in Proc. of IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 1999, pp. 1150–1157.

[23] P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Ku-
mar, “Localizing parts of faces using a consensus of exem-
plars,” IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, vol. 35, no. 12, pp. 2930–2940, 2013.

[24] V. Le, J. Brandt, Z. Lin, L. Bourdev, and T. S. Huang, “Inter-
active facial feature localization,” Lecture Notes of Computer
Science, vol. 7574, pp. 679–692, 2012.

[25] X. Zhu and D. Ramanan, “Face detection, pose estimation, and
landmark localization in the wild,” in Proc. of IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2012, pp.
2879–2886.

[26] A. Vedaldi and B. Fulkerson, “Vlfeat: An open and portable
library of computer vision algorithms,” in Proc. of the Int’l
Conf. on Multimedia. ACM, 2010, pp. 1469–1472.

[27] J. Alabort-i-Medina, E. Antonakos, J. Booth, P. Snape, and
S. Zafeiriou, “Menpo: A comprehensive platform for paramet-
ric image alignment and visual deformable models,” in Proc.
of the ACM Int’l Conf. on Multimedia, Orlando, Florida, USA,
November 2014, pp. 679–682, ACM.

[28] E. Zhou, H. Fan, Z. Cao, Y. Jiang, and Q. Yin, “Extensive
facial landmark localization with coarse-to-fine convolutional
network cascade,” in Proc. of IEEE Int’l Conf. on Computer
Vision Workshops (ICCV’W), 2013, pp. 386–391.

[29] J. Yan, Z. Lei, D. Yi, and S. Z. Li, “Learn to combine multi-
ple hypotheses for accurate face alignment,” in Proc. of IEEE
Int’l Conf. on Computer Vision Workshops (ICCV’W), 2013,
pp. 392–396.

[30] F. De la Torre, W.-S. Chu, X. Xiong, F. Vicente, X. Ding, and
J. F. Cohn, “Intraface,” in Automatic Face and Gesture Recog-
nition, 2015.


