

Tutorial on Component Analysis

Computing PCA

Computing LDA

Computing Laplacian Eigenmaps

Computing LPP

Principal Component Analysis

$$\mathbf{W}_0 = \arg \max_{\mathbf{W}} \text{tr}[\mathbf{W}^T \mathbf{S}_t \mathbf{W}]$$

$$\text{s.t. } \mathbf{W}^T \mathbf{W} = \mathbf{I} \quad \mathbf{S}_t = \frac{1}{N} \sum (\mathbf{x}_i - \boldsymbol{\mu}) (\mathbf{x}_i - \boldsymbol{\mu})^T$$

$$\text{solution } \mathbf{S}_t \mathbf{W} = \mathbf{W} \boldsymbol{\Lambda}$$

- We need to perform eigen-analysis of \mathbf{S}_t
- Assuming we need d components we need computations of order $O(dF^2)$ (if F is large this is quite demanding)

Principal Component Analysis

$$\mathbf{S}_t = \mathbf{X}\mathbf{X}^T \quad \mathbf{X} = [\mathbf{x}_1 - \boldsymbol{\mu}, \dots, \mathbf{x}_N - \boldsymbol{\mu}]$$

- Lemma 1: Assume $\mathbf{B} = \mathbf{X}\mathbf{X}^T$ and $\mathbf{C} = \mathbf{X}^T\mathbf{X}$
⇒ \mathbf{B} and \mathbf{C} have the same positive eigenvalues Λ
⇒ assuming $N < F$ then eigenvectors \mathbf{U} of \mathbf{B} and \mathbf{V} of \mathbf{C}
are related as $\mathbf{U} = \mathbf{X}\mathbf{V}\Lambda^{-\frac{1}{2}}$

Using Lemma 1 we can compute \mathbf{U} in $O(N^3)$

Principal Component Analysis

$$X^T X = V \Lambda V^T$$

V is a $N \times (N - 1)$ matrix with columns the eigenvectors

Λ is a $(N - 1) \times (N - 1)$ is a diagonal matrix of eigenvalues

$$U = X V \Lambda^{-\frac{1}{2}}$$

$$V^T V = I \quad \text{but} \quad V V^T \neq I$$

$$\begin{aligned} U^T X X^T U &= \Lambda^{-\frac{1}{2}} V^T X^T X X^T X V \Lambda^{-\frac{1}{2}} \\ &= \Lambda^{-\frac{1}{2}} V^T V \Lambda V^T V \Lambda V^T V \Lambda^{-\frac{1}{2}} = \Lambda \\ &\quad \quad \quad I \quad I \quad I \end{aligned}$$

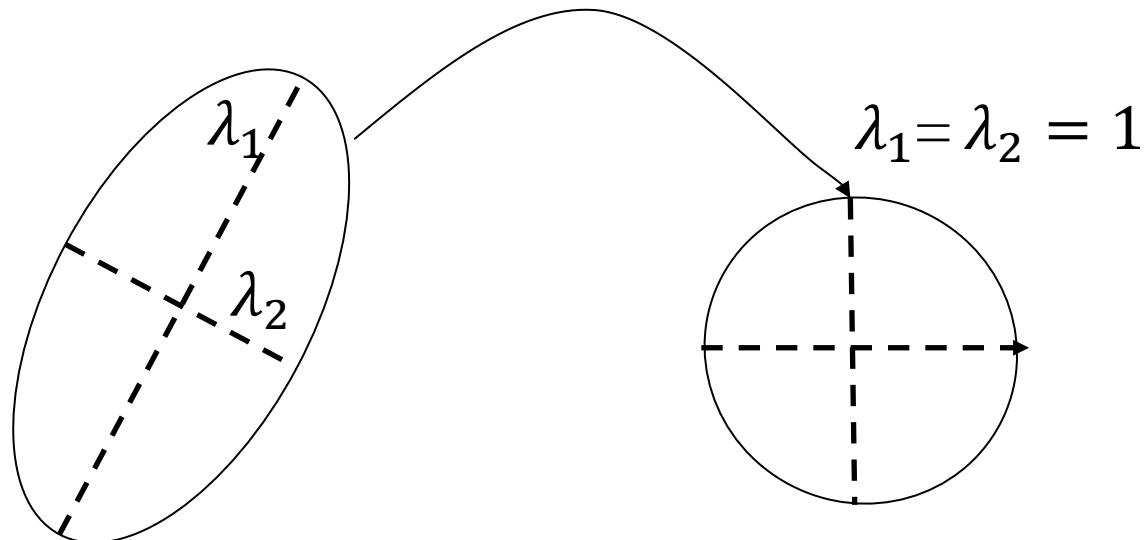
Principal Component Analysis

- Step 1: Compute dot product matrix $\mathbf{X}^T \mathbf{X} = [(\mathbf{x}_i - \boldsymbol{\mu})^T (\mathbf{x}_j - \boldsymbol{\mu})]$
- Step 2: Perform eigenanalysis of $\mathbf{X}^T \mathbf{X} = \mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^T$
- Step 3: Compute eigenvectors $\mathbf{U} = \mathbf{X} \mathbf{V} \boldsymbol{\Lambda}^{-\frac{1}{2}}$
$$\mathbf{U}_d = [\mathbf{u}_1, \dots, \mathbf{u}_d]$$
- Step 4: Compute d features $\mathbf{Y} = \mathbf{U}^T \mathbf{X}$

Whitening

Lets have a look at the covariance of \mathbf{Y}

$$\mathbf{Y}\mathbf{Y}^T = \mathbf{U}^T \mathbf{X} \mathbf{X}^T \mathbf{U} = \Lambda$$



$$\mathbf{W} = \mathbf{U} \Lambda^{-\frac{1}{2}}$$

Linear Discriminant Analysis

$$\mathbf{W}_o = \operatorname{argmax}_{\mathbf{W}} \operatorname{tr}[\mathbf{W}^T \mathbf{S}_b \mathbf{W}] \text{ s.t. } \mathbf{W}^T \mathbf{S}_w \mathbf{W} = \mathbf{I}$$

the eigenvectors of $\mathbf{S}_w^{-1} \mathbf{S}_b$ that correspond to the largest eigenvalues

$$\mathbf{S}_w = \sum_{j=1}^C \mathbf{S}_j = \sum_{j=1}^C \sum_{x_i \in c_j} (\mathbf{x}_i - \boldsymbol{\mu}(c_j))(\mathbf{x}_i - \boldsymbol{\mu}(c_j))^T$$

rank(\mathbf{S}_w) = min($F, N - C$)

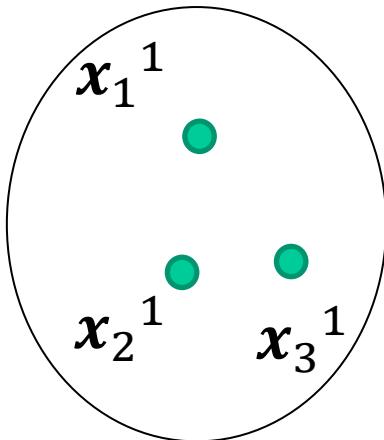
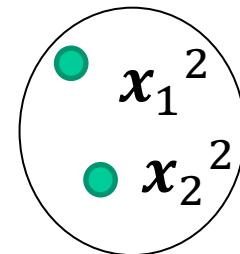
$$\mathbf{S}_b = \sum_{j=1}^C N_{c_j} \boldsymbol{\mu}(c_j) \boldsymbol{\mu}(c_j)^T$$

rank(\mathbf{S}_b) = min($F, C - 1$)

How can we deal with the singularity of S_w

- Perform first PCA and reduce the dimensions to $N - C$ using \mathbf{U}
- Solve LDA on the reduced space and get \mathbf{Q} (\mathbf{Q} has $C - 1$ columns)
- Total transform $\mathbf{W} = \mathbf{U}\mathbf{Q}$ ($\mathbf{y} = \mathbf{Q}^T\mathbf{U}^T\mathbf{x}$)

Linear Discriminant Analysis



$$X = [\underline{x_1^1 \ x_2^1 \ x_3^1} \ \underline{x_1^2 \ x_2^2}]$$

c_1 c_2

$$\mu(c_2) = \frac{1}{2}(x_1^2 + x_2^2)$$

$$\mu(c_1) = \frac{1}{3}(x_1^1 + x_2^1 + x_3^1)$$

$$E_1 = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix} \quad E_2 = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

Linear Discriminant Analysis

$$\mathbf{M} = \begin{bmatrix} \mathbf{E}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{E}_2 \end{bmatrix} = \begin{bmatrix} 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1/2 & 1/2 \end{bmatrix}$$

$$\begin{bmatrix} 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1/2 & 1/2 \end{bmatrix} = \begin{bmatrix} 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 1/2 & 1/2 \end{bmatrix}$$

Matrix is idempotent

Linear Discriminant Analysis

$$X \begin{bmatrix} E_1 & \mathbf{0} \\ \mathbf{0} & E_2 \end{bmatrix} = [\boldsymbol{\mu}(c_1) \ \boldsymbol{\mu}(c_1) \ \boldsymbol{\mu}(c_1) \ \boldsymbol{\mu}(c_2) \ \boldsymbol{\mu}(c_2)]$$

$$\begin{aligned} X \begin{bmatrix} E_1 & \mathbf{0} \\ \mathbf{0} & E_2 \end{bmatrix} \begin{bmatrix} E_1 & \mathbf{0} \\ \mathbf{0} & E_2 \end{bmatrix} X^T \\ = [\boldsymbol{\mu}(c_1) \ \boldsymbol{\mu}(c_1) \ \boldsymbol{\mu}(c_1) \ \boldsymbol{\mu}(c_2) \ \boldsymbol{\mu}(c_2)] \begin{bmatrix} \boldsymbol{\mu}(c_1) \\ \boldsymbol{\mu}(c_1) \\ \boldsymbol{\mu}(c_1) \\ \boldsymbol{\mu}(c_2)^T \\ \boldsymbol{\mu}(c_2) \end{bmatrix} \\ = 3\boldsymbol{\mu}(c_1)\boldsymbol{\mu}(c_1)^T + 2\boldsymbol{\mu}(c_2)\boldsymbol{\mu}(c_2)^T \end{aligned}$$

Linear Discriminant Analysis

$$\mathbf{S}_b = \mathbf{X} \mathbf{M} \mathbf{M}^T \mathbf{X}^T = \mathbf{X} \mathbf{M} \mathbf{X}^T$$

$$\mathbf{E}_j = \frac{1}{N_{c_j}} \mathbf{1} \mathbf{1}^T$$

$$\mathbf{M} = \begin{bmatrix} \mathbf{E}_1 & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{E}_2 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{E}_3 & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{E}_c \end{bmatrix} = \text{diag}\{\mathbf{E}_1, \dots, \mathbf{E}_c\}$$

Linear Discriminant Analysis

$$\begin{aligned} \mathbf{S}_1 &= \sum_{i=1}^3 (\mathbf{x}_i^1 - \boldsymbol{\mu}(c_1))(\mathbf{x}_i^1 - \boldsymbol{\mu}(c_1))^T \\ &= \sum_{i=1}^3 \mathbf{x}_i^1 \mathbf{x}_i^{1T} - \boldsymbol{\mu}(c_1) \mathbf{x}_i^{1T} - \mathbf{x}_i^1 \boldsymbol{\mu}(c_1)^T + \boldsymbol{\mu}(c_1) \boldsymbol{\mu}(c_1)^T \\ &= \sum_{i=1}^3 \mathbf{x}_i^1 \mathbf{x}_i^{1T} - 3\boldsymbol{\mu}(c_1) \boldsymbol{\mu}(c_1)^T \end{aligned}$$

$$\begin{aligned} \mathbf{S}_w &= \mathbf{S}_1 + \mathbf{S}_2 \\ &= \sum_{i=1}^3 \mathbf{x}_i^1 \mathbf{x}_i^{1T} + \sum_{i=1}^2 \mathbf{x}_i^2 \mathbf{x}_i^{2T} - (3\boldsymbol{\mu}(c_1) \boldsymbol{\mu}(c_1)^T + 2\boldsymbol{\mu}(c_2) \boldsymbol{\mu}(c_2)^T) \end{aligned}$$

Linear Discriminant Analysis

$$\begin{aligned} \mathbf{S}_w &= \sum_{i=1}^3 \mathbf{x}_i^1 \mathbf{x}_i^{1T} + \sum_{i=1}^2 \mathbf{x}_i^2 \mathbf{x}_i^{2T} - (3\boldsymbol{\mu}(c_1)\boldsymbol{\mu}(c_1)^T + 2\boldsymbol{\mu}(c_2)\boldsymbol{\mu}(c_2)^T) \\ &= \mathbf{X}\mathbf{X}^T - \mathbf{X}\mathbf{M}\mathbf{X}^T = \mathbf{X}(\mathbf{I} - \mathbf{M})\mathbf{X}^T && \mathbf{M} \text{ is idempotent} \\ & \quad \mathbf{S}_t \qquad \qquad \mathbf{S}_b && \text{so is idempotent } \mathbf{I} - \mathbf{M} \end{aligned}$$

$$\mathbf{S}_t = \mathbf{S}_w + \mathbf{S}_b$$

Simultaneous Diagonalisation

$$\mathbf{W}_o = \operatorname{argmax}_{\mathbf{W}} \operatorname{tr}[\mathbf{W}^T \mathbf{S}_b \mathbf{W}] \text{ s.t. } \mathbf{W}^T \mathbf{S}_w \mathbf{W} = \mathbf{I}$$

$$\Rightarrow \mathbf{W}_o = \operatorname{argmax}_{\mathbf{W}} \operatorname{tr}[\mathbf{W}^T \mathbf{X} \mathbf{M} \mathbf{M}^T \mathbf{X}^T \mathbf{W}]$$
$$\text{s.t. } \mathbf{W}^T \mathbf{X} (\mathbf{I} - \mathbf{M}) (\mathbf{I} - \mathbf{M})^T \mathbf{X}^T \mathbf{W} = \mathbf{I}$$

Simultaneous Diagonalisation

- Assume that $\mathbf{W} = \mathbf{U}\mathbf{Q}$

What do we want?

\mathbf{U} to diagonalise $\mathbf{S}_w = \mathbf{X}(\mathbf{I} - \mathbf{M})(\mathbf{I} - \mathbf{M})\mathbf{X}^T$

What does this mean?

$$\mathbf{W}^T \mathbf{X}(\mathbf{I} - \mathbf{M})(\mathbf{I} - \mathbf{M})\mathbf{X}^T \mathbf{W} = \mathbf{I}$$

$$\mathbf{Q}^T \mathbf{U}^T \mathbf{X}(\mathbf{I} - \mathbf{M})(\mathbf{I} - \mathbf{M})\mathbf{X}^T \mathbf{U}\mathbf{Q} = \mathbf{I}$$

$$\mathbf{I}$$

$$\text{Hence } \mathbf{U}^T \mathbf{X}(\mathbf{I} - \mathbf{M})(\mathbf{I} - \mathbf{M})\mathbf{X}^T \mathbf{U} = \mathbf{I}$$

Simultaneous Diagonalisation

$$\mathbf{W}_o = \operatorname{argmax}_{\mathbf{W}} \operatorname{tr}[\mathbf{W}^T \mathbf{S}_b \mathbf{W}] \text{ s.t. } \mathbf{W}^T \mathbf{S}_w \mathbf{W} = \mathbf{I}$$

$$\mathbf{W} = \mathbf{U} \mathbf{Q}$$

$$\Rightarrow \mathbf{Q}_o = \operatorname{argmax}_{\mathbf{W}} \operatorname{tr}[\mathbf{Q}^T \mathbf{U}^T \mathbf{X} \mathbf{M} \mathbf{M} \mathbf{X}^T \mathbf{U} \mathbf{Q}] \\ \text{s.t. } \mathbf{Q}^T \mathbf{Q} = \mathbf{I}$$

Hence the constraint $\mathbf{W}^T \mathbf{X} (\mathbf{I} - \mathbf{M}) (\mathbf{I} - \mathbf{M}) \mathbf{X}^T \mathbf{W} = \mathbf{I}$

became $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$

Simultaneous Diagonalisation

(1) Find matrix \mathbf{U} such that

$$\mathbf{U}^T \mathbf{X}(\mathbf{I} - \mathbf{M})(\mathbf{I} - \mathbf{M})\mathbf{X}^T \mathbf{U} = \mathbf{I}$$

$$\mathbf{X}(\mathbf{I} - \mathbf{M})(\mathbf{I} - \mathbf{M})\mathbf{X}^T = \mathbf{X}_w \mathbf{X}_w^T \quad \mathbf{X}_w = \mathbf{X}(\mathbf{I} - \mathbf{M})$$

Lemma 1: We need to perform eigenanalysis to $\mathbf{X}_w^T \mathbf{X}_w$

$$\mathbf{X}_w^T \mathbf{X}_w = \mathbf{V}_w \mathbf{\Lambda}_w \mathbf{V}_w^T \quad N - C \text{ positive eigenvalues}$$

\mathbf{V}_w is a $N \times (N - C)$ matrix

Hence $\mathbf{U} = \mathbf{X}_w \mathbf{V}_w \mathbf{\Lambda}_w^{-1}$

Simultaneous Diagonalisation

Can we verify that $\mathbf{U}^T \mathbf{X}(\mathbf{I} - \mathbf{M})(\mathbf{I} - \mathbf{M})\mathbf{X}^T \mathbf{U} = \mathbf{I}$?

(2) Now we need to solve

$$\begin{aligned} \mathbf{Q}_o &= \operatorname{argmax}_{\mathbf{W}} \operatorname{tr}[\mathbf{Q}^T \mathbf{U}^T \mathbf{X} \mathbf{M} \mathbf{M} \mathbf{X}^T \mathbf{U} \mathbf{Q}] \\ \text{s.t. } \mathbf{Q}^T \mathbf{Q} &= \mathbf{I} \end{aligned}$$

$$\tilde{\mathbf{X}}_b = \mathbf{U}^T \mathbf{X} \mathbf{M} \quad \tilde{\mathbf{X}}_b \text{ is a } (N - C) \times N \text{ matrix}$$

$$\begin{aligned} \Rightarrow \mathbf{Q}_o &= \operatorname{argmax}_{\mathbf{W}} \operatorname{tr}[\mathbf{Q}^T \tilde{\mathbf{X}}_b \tilde{\mathbf{X}}_b^T \mathbf{Q}] \quad \text{Does it ring a bell?} \\ \text{s.t. } \mathbf{Q}^T \mathbf{Q} &= \mathbf{I} \end{aligned}$$

Simultaneous Diagonalisation

It is like doing PCA on the projected class means

$$\begin{aligned} \mathbf{Q}_o &= \operatorname{argmax}_{\mathbf{W}} \operatorname{tr}[\mathbf{Q}^T \tilde{\mathbf{X}}_b \tilde{\mathbf{X}}_b^T \mathbf{Q}] \\ \text{s.t. } \mathbf{Q}^T \mathbf{Q} &= \mathbf{I} \end{aligned}$$

\mathbf{Q}_o is a matrix with columns the d eigenvectors $\tilde{\mathbf{X}}_b \tilde{\mathbf{X}}_b^T$ that correspond to d largest eigenvalues ($d \leq C - 1$)

$$\mathbf{W}_o = \mathbf{Q}_o \mathbf{U}$$

Simultaneous Diagonalisation

(1) Find the p eigenvectors of \mathbf{S}_w that correspond to its non-zero eigenvectors (usually $N - C$)

$$\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_{N-C}]$$

(2) Project the data $\tilde{\mathbf{X}}_b = \mathbf{U}^T \mathbf{X} \mathbf{M}$

(3) Perform PCA on $\tilde{\mathbf{X}}_b$ to find \mathbf{Q}

(4) Total transform is $\mathbf{W} = \mathbf{U} \mathbf{Q}$

Laplacian Eigenmaps

$$\min \text{tr}[Y(D - S)Y^T] \text{ s.t. } YDY^T = I$$

- (1) Find the k-nearest neighbours and construct matrix S
(make sure that S is symmetric, $S = \frac{1}{2}(S + S^T)$).
- (2) Compute the Laplacian $L = D - S$
- (3) Perform eigenanalysis to $D^{-1}(D - S) = I - D^{-1}S$
and keep the eigenvectors that correspond to the smallest

Locality Preserving Projections

$$\underset{Y=W^T X}{\implies} \min \text{tr}[W^T X (D - S) X^T W] \text{ s.t. } W^T X D X^T W = I$$

Let's do it on the board (it will be in the notes)