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Tutorial on Component Analysis 

 

Computing PCA 

Computing LDA  

Computing Laplacian Eigenmaps 

Computing LPP 

 

 

1 



 Stefanos Zafeiriou        Adv. Statistical Machine Learning (course 495) 

𝑾0 = arg max
𝑾

 tr[𝑾𝑇𝑺𝑡𝑾] 

𝑾𝑇𝑾 = 𝑰 s.t.  

𝑺𝒕𝑾 = 𝑾𝜦 solution  

• We need to perform eigen-analysis of   

Principal Component Analysis 

𝑺𝒕 

• Assuming we need 𝑑 components we need computations of 

order 𝑂(𝑑𝐹2) (if 𝐹 is large this is quite demanding) 

𝑺𝑡 =
1

𝑁
  (𝒙𝑖 − 𝝁) (𝒙𝑖 − 𝝁)𝑇 
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𝑺𝑡 = 𝑿𝑿𝑻 𝑿 = [𝒙1 − 𝝁,… , 𝒙𝑁 −𝝁] 

• Lemma 1: Assume 𝑩 = 𝑿𝑿𝑻 and 𝑪 = 𝑿𝑻𝑿   

  𝑩 and 𝑪 have the same positive eigenvalues 𝜦 

  assuming 𝑁 < 𝐹 then eigenvectors 𝑼 of 𝑩 and 𝑽 of 𝑪 

are related as 𝑼 =  𝑿𝑽𝜦−
𝟏

𝟐   

Using Lemma 1 we can compute 𝑼 in 𝑂(𝑁3) 

Principal Component Analysis 
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𝑿𝑻𝑿 = 𝐕𝚲𝑽𝑻  
𝐕 is a 𝑁𝑥(𝑁 − 1) matrix with 

columns the eigenvectors 

𝚲 is a (𝑁 − 1)𝑥(𝑁 − 1) is a  

diagonal matrix of eigenvalues 

𝑽𝑻𝑽 = 𝑰 𝑽𝑽𝑻 ≠ 𝑰 but 
𝑼 =  𝑿𝑽𝜦−

𝟏
𝟐   

 

𝑼𝑻𝑿𝑿𝑻𝑼 = 𝜦−
𝟏
𝟐   𝑽𝑻𝑿𝑻𝑿𝑿𝑻𝑿𝑽𝜦−

𝟏
𝟐   

= 𝜦−
𝟏
𝟐   𝑽𝑻𝐕𝚲𝑽𝑻𝐕𝚲𝑽𝑻𝑽𝜦−

𝟏
𝟐 

𝑰 𝑰 𝑰 

Principal Component Analysis 

= 𝚲 
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• Step 1: Compute dot product matrix  𝑿𝑻𝑿 = [(𝒙𝑖−𝝁)𝑇(𝒙𝑗−𝝁)] 

 

• Step 2: Perform eigenanalysis of 𝑿𝑻𝑿 = 𝐕𝚲𝑽𝑻  

• Step 3: Compute eigenvectors   𝑼 =  𝑿𝑽𝜦−
𝟏

𝟐 

𝑼𝑑  = [𝒖1, … , 𝒖𝑑] 

• Step 4: Compute 𝑑 features   𝒀 = 𝑼𝑻𝑿  

Principal Component Analysis 
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Whitening 

𝒀𝒀𝑻 = 𝑼𝑻𝑿𝑿𝑻𝑼 = 𝚲 

Lets have a look at the covariance of 𝒀  

𝜆1 

𝜆2 

𝐖 = 𝑼𝚲−
𝟏
𝟐 

𝜆1= 𝜆2 = 1 

6 



 Stefanos Zafeiriou        Adv. Statistical Machine Learning (course 495) 

𝑾𝑜 = argmax𝑾 tr[𝐖T𝑺𝑏𝑾]  s.t. 𝑾𝑇𝑺𝑤𝑾=I   

the eigenvectors of 𝑺𝑤
−1𝑺𝑏that correspond to  

the largest eigenvalues 

𝑺𝑤 =  𝑺𝑗

𝐶

𝑗=1

=   (𝒙𝑖−𝝁 𝑐𝑗 )(𝒙𝑖−𝝁 𝑐𝑗 )𝑇

𝑥𝑖∈𝑐𝑗

𝐶

𝑗=1

 

𝑺𝑏 =  𝑁𝑐𝑗
𝝁 𝑐𝑗 𝝁 𝑐𝑗

Τ
𝑐

𝑗=1

 

Linear Discriminant Analysis 

rank(𝑺𝑤)=min (𝐹,𝑁 − 𝐶) 

rank(𝑺𝑏)=min (𝐹, 𝐶 − 1) 
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How can we deal with the singularity of 𝑺𝑤  

• Perform first PCA and reduce the dimensions to 𝑁 − 𝐶 

using 𝑼  

• Solve LDA on the reduced space and get 𝑸 (𝐐 has 𝐶 −
1 columns)  

• Total transform 𝑾 = 𝑼𝑸 (𝒚 = 𝑸𝑻𝑼𝑻𝒙) 
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𝑿 = [𝒙1
1  𝒙2

1  𝒙3
1 𝒙1

2 𝒙2
2] 

𝒙1
1 

𝒙2
1 𝒙3

1 

𝒙1
2 

𝒙2
2 

𝛍 𝑐1 =
1

3
(𝒙1

1 + 𝒙2
1 + 𝒙3

1) 

𝝁 𝑐2 =
1

2
(𝒙1

2 + 𝐱𝟐
2) 

𝑬1 =

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

 𝑬2 =
1/2 1/2
1/2 1/2

 

Linear Discriminant Analysis 
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𝑴 =
𝑬1 𝟎
𝟎 𝑬2

=

1/3
1/3
1/3
0
0

   

1/3
1/3
1/3
0
0

   

1/3
1/3
1/3
0
0

   

0
0
0

1/2
1/2

   

0
0
0

1/2
1/2

 

1/3
1/3
1/3
0
0

   

1/3
1/3
1/3
0
0

   

1/3
1/3
1/3
0
0

   

0
0
0

1/2
1/2

   

0
0
0

1/2
1/2

=

1/3
1/3
1/3
0
0

   

1/3
1/3
1/3
0
0

   

1/3
1/3
1/3
0
0

   

0
0
0

1/2
1/2

   

0
0
0

1/2
1/2

1/3
1/3
1/3
0
0

   

1/3
1/3
1/3
0
0

   

1/3
1/3
1/3
0
0

   

0
0
0

1/2
1/2

   

0
0
0

1/2
1/2

 

 

 
Matrix is idempotent  

Linear Discriminant Analysis 
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𝑿
𝑬1 𝟎
𝟎 𝑬2

= [𝛍 𝑐1  𝛍 𝑐1  𝛍 𝑐1  𝛍 𝑐2  𝛍 𝑐2 ] 

𝑿
𝑬1 𝟎
𝟎 𝑬2

𝑬1 𝟎
𝟎 𝑬2

𝑿𝑇 

= [𝛍 𝑐1  𝛍 𝑐1  𝛍 𝑐1  𝛍 𝑐2  𝛍 𝑐2 ]

𝛍 𝑐1
𝛍 𝑐1
𝛍 𝑐1
𝛍 𝑐2

𝑇

𝛍 𝑐2

 

 
= 3𝛍 𝑐1 𝛍 𝑐1

𝑇 + 2𝛍 𝑐2 𝛍 𝑐2
𝑇  

Linear Discriminant Analysis 
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𝑺𝑏 = 𝑿𝑴𝑴𝑿𝑇 = 𝑿𝑴𝑿𝑇 

𝑴 =

𝑬𝟏

𝟎
𝟎
.
𝟎

   

𝟎
𝑬𝟐

𝟎
.
𝟎

   

𝟎
𝟎
𝑬𝟑

.
𝟎

   

𝟎
𝟎
𝟎
.
𝟎

   

𝟎
𝟎
𝟎
.

𝑬𝒄

=diag 𝑬𝟏, … , 𝑬𝟐} 

𝑬𝒋 =
1

𝑁𝑐𝑗

𝟏𝟏𝑻 

Linear Discriminant Analysis 
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𝑺1 =  (𝒙𝑖
1− 𝛍 𝑐1 )(𝒙𝑖

1 − 𝛍 𝑐1 )𝑇
3

𝑖=1

 

=  𝒙𝑖
1𝒙𝑖

1𝑇
− 𝛍 𝑐1 𝒙𝑖

1𝑇
− 𝒙𝑖

1𝛍 𝑐1
𝑇 + 𝛍 𝑐1 𝛍 𝑐1

𝑇

3

𝑖=1

 

=  𝒙𝑖
1𝒙𝑖

1𝑇
− 3𝛍 𝑐1 𝛍 𝑐1

𝑇

3

𝑖=1

 

𝑺𝑤 = 𝑺1 + 𝑺2 

=  𝒙𝑖
1𝒙𝑖

1𝑇
+  𝒙𝑖

2𝒙𝑖
2𝑇

− 3𝛍 𝑐1 𝛍 𝑐1
𝑇 + 2𝛍 𝑐2 𝛍 𝑐2

𝑇

2

𝑖=1

3

𝑖=1

 

Linear Discriminant Analysis 
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𝑺𝑤 

=  𝒙𝑖
1𝒙𝑖

1𝑇
+  𝒙𝑖

2𝒙𝑖
2𝑇

− 3𝛍 𝑐1 𝛍 𝑐1
𝑇 + 2𝛍 𝑐2 𝛍 𝑐2

𝑇

2

𝑖=1

3

𝑖=1

 

= 𝑿𝑿𝑇 − 𝑿𝑴𝑿𝑇 = 𝑿(𝑰 − 𝑴)𝑿𝑇 

𝑺𝑡 𝑺𝑏 

𝑺𝑡 = 𝑺𝑤 + 𝑺𝑏 

𝑴 is idempotent  

so is  idempotent  𝑰 − 𝑴 

Linear Discriminant Analysis 
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𝑾𝑜 = argmax𝑾 tr[𝐖T𝑺𝑏𝑾]  s.t. 𝑾𝑇𝑺𝑤𝑾=I   

𝑾𝑜 = argmax𝑾 tr[𝑾T𝑿𝑴𝑴𝑿𝑻𝑾]   

s.t. 𝑾𝑇𝑿 𝑰 − 𝑴 𝑰 − 𝑴 𝑿𝑻𝑾=I   
  

Simultaneous Diagonalisation 
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• Assume that 𝑾 = 𝑼𝑸 

What do we want?  

 𝑼 to diagonalise 𝑺𝑤 = 𝑿 𝑰 − 𝑴 𝑰 − 𝑴 𝑿𝑇 

What does this mean? 

𝑾𝑇𝑿 𝑰 − 𝑴 𝑰 − 𝑴 𝑿𝑻𝑾 = 𝑰 

𝑸𝑇𝑼𝑇𝑿 𝑰 − 𝑴 𝑰 − 𝑴 𝑿𝑻𝑼𝑸 = 𝑰 

𝑼𝑇𝑿 𝑰 − 𝑴 𝑰 − 𝑴 𝑿𝑻𝑼 = 𝑰 

Simultaneous Diagonalisation 

𝑰 

Hence 
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𝑾𝑜 = argmax𝑾 tr[𝑾T𝑺𝑏𝑾]  s.t. 𝑾𝑇𝑺𝑤𝑾=I   

  𝑸𝑜 = argmax𝑾 tr[𝑸𝑇𝑼𝑇𝑿𝑴𝑴𝑿𝑻𝑼𝑸]   

           s.t. 𝑸𝑇𝑸=I   

𝑾 = 𝑼𝑸 

𝑾𝑇𝑿 𝑰 − 𝑴 𝑰 − 𝑴 𝑿𝑻𝑾 = 𝑰 

Simultaneous Diagonalisation 
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𝑸𝑇𝑸=I  became 
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𝑼𝑇𝑿 𝑰 − 𝑴 𝑰 − 𝑴 𝑿𝑻𝑼 = 𝑰 

(1) Find matrix 𝑼 such that  

𝑿 𝑰 − 𝑴 𝑰 − 𝑴 𝑿𝑻 = 𝑿𝑤𝑿𝑤
𝑇 𝑿𝑤 = 𝑿 𝑰 − 𝑴  

Lemma 1: 

Simultaneous Diagonalisation 

𝑿𝑤
𝑇𝑿𝑤 We need to perform eigenanalysis to  

𝑿𝑤
𝑇𝑿𝑤 = 𝑽𝑤𝚲𝑤𝑽𝑤

𝑇 𝑁 − 𝐶 positive eigenvalues 

𝑽𝑤 is a 𝑁𝑥 𝑁 − 𝐶  matrix 

𝑼 = 𝑿𝑤𝑽𝑤𝜦𝑤
−1 Hence 
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Can we verify that 𝑼𝑇𝑿 𝑰 − 𝑴 𝑰 − 𝑴 𝑿𝑻𝑼 = 𝑰? 

Simultaneous Diagonalisation 

𝑸𝑜 = argmax𝑾 tr[𝑸𝑇𝑼𝑇𝑿𝑴𝑴𝑿𝑻𝑼𝑸]   

           s.t. 𝑸𝑇𝑸=I   

(2) Now we need to solve  

𝑿 𝑏 = 𝑼𝑇 𝑿𝑴 𝑿 𝑏 is a 𝑁 − 𝐶 𝑥𝑁 matrix  

𝑸𝑜 = argmax𝑾 tr[𝑸𝑇𝑿 𝑏𝑿 𝑏
𝑇
𝑸]   

           s.t. 𝑸𝑇𝑸=I   

  Does it ring a bell?  

19 



 Stefanos Zafeiriou        Adv. Statistical Machine Learning (course 495) 

𝑸𝑜 = argmax𝑾 tr[𝑸𝑇𝑿 𝑏𝑿 𝑏
𝑇
𝑸]   

           s.t. 𝑸𝑇𝑸=I   

It is like doing PCA on the projected class means  

𝑸𝑜 is a matrix with columns the 𝑑 eigenvectors 𝑿 𝑏𝑿 𝑏
𝑇

  

that correspond to 𝑑 largest eigenvalues  (𝑑 ≤ 𝐶 − 1) 

  
𝑾𝑜 = 𝑸𝑜𝑼 

Simultaneous Diagonalisation 
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Simultaneous Diagonalisation 

(1) Find the 𝑝 eigenvectors of 𝑺𝑤that correspond to  

its non-zero eigenvectors (usually 𝑁 − 𝐶) 

𝑼 = [𝒖𝟏, … , 𝒖𝑁−𝐶] 

(2) Project the data 𝑿 𝑏 = 𝑼𝑇 𝑿𝑴 

(3) Perform PCA on 𝑿 𝑏 to find 𝑸  

𝑾 = 𝑼𝑸 (4) Total transform is   
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Laplacian Eigenmaps 

(1) Find the k-nearest neighbours and construct matrix 𝑺  

(make sure that 𝐒 is symmetric, 𝑺 =
1

2
(𝑺 + 𝑺𝑇)). 

 

 (2) Compute the Laplacian  𝑳 = 𝑫 − 𝑺 

 

(3) Perform eigenanalysis to 𝑫−1 𝑫 − 𝑺 = 𝑰 − 𝑫−1𝑺 

and keep the eigenvectors that correspond to the smallest   

   

min tr[𝒀 𝑫 − 𝑺 𝒀𝑻]  s.t. 𝒀𝑫𝒀𝑻 = 𝑰   
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Locality Preserving Projections 

𝒀=𝑾𝑇𝑿 
min tr[𝑾𝑇𝑿 𝑫 − 𝑺 𝑿𝑻𝑾]  s.t. 𝑾𝑇𝐗𝑫𝑿𝑻𝑾 = 𝑰   
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Let’s do it on the board (it will be in the notes) 


