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Abstract

Dilated convolutions are widely used in deep semantic
segmentation models as they can enlarge the filters’ recep-
tive field without adding additional weights nor sacrificing
spatial resolution. However, as dilated convolutional fil-
ters do not possess positional knowledge about the pixels
on semantically meaningful contours, they could lead to
ambiguous predictions on object boundaries. In addition,
although dilating the filter can expand its receptive field, the
total number of sampled pixels remains unchanged, which
usually comprises a small fraction of the receptive field’s to-
tal area. Inspired by the Lateral Inhibition (LI) mechanisms
in human visual systems, we propose the dilated convolu-
tion with lateral inhibitions (LI-Convs) to overcome these
limitations. Introducing LI mechanisms improves the con-
volutional filter’s sensitivity to semantic object boundaries.
Moreover, since LI-Convs also implicitly take the pixels from
the laterally inhibited zones into consideration, they can also
extract features at a denser scale. By integrating LI-Convs
into the Deeplabv3+ architecture, we propose the Lateral
Inhibited Atrous Spatial Pyramid Pooling (LI-ASPP), the
Lateral Inhibited MobileNet-V2 (LI-MNV2) and the Lateral
Inhibited ResNet (LI-ResNet). Experimental results on three
benchmark datasets (PASCAL VOC 2012, CelebAMask-HQ
and ADE20K) show that our LI-based segmentation mod-
els outperform the baseline on all of them, thus verify the
effectiveness and generality of the proposed LI-Convs.

1. Introduction

Since the introduction of the pioneering Fully Convo-
lutional Networks (FCN) [28], deep Convolutional Neural
Networks (CNNs) [9, 57, 27, 56, 20] have made impres-
sive progress in semantic image segmentation, a task that
performs per-pixel classifications. In deep CNN models, a
series of convolutions and spatial poolings are applied to
obtain progressively more abstract and more representative
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feature descriptors with decreasing resolutions. As a con-
sequence, the deepest features can have significantly lower
resolution than the original image (e.g. only 1/16 or 1/32
of the input size in FCN [28]), hence it would be difficult
to decode these features into the segmentation map at the
same size of the input image without losing details. This is a
crucial challenge in the semantic segmentation task.

Dilated convolutions [19], which are first applied to the
semantic segmentation task by [54, 6], can effectively over-
come such difficulties and thus are widely employed in state-
of-the-art segmentation methods [27, 9, 53, 5, 48]. By in-
serting zeros (dilation) into the convolutional filters, dilated
convolutions can observe features from larger areas with-
out increasing the kernel parameters, which is important
to the extractions of global semantic features. Besides, it
can also produce feature maps that are invariant input res-
olutions. In practice, dilated convolutions can be utilised
to retain the resolution of the feature maps when encoding
representations in the backbone network [55, 48], typically
by replacing certain convolutional layers with dilated ones.
It can also be employed during the decoding stage to gen-
erate more robust semantic labels, e.g. the Atrous Spatial
Pyramid Pooling (ASPP) [8, 7] adopts three parallel dilated
convolutions with different dilation rates to aggregate the
multi-scale contextual information.

Despite its broad applications, dilated convolutions still
have several limitations. The pixels around semantically
meaningful contours separate different objects and possess
stronger semantic information. In dilated convolution, how-
ever, the importance of those pixels are not explicitly accen-
tuated, and therefore such positional significance has to be
implicitly learnt. This can leads to ambiguous and mislead-
ing boundary labels. Various approaches have been proposed
to compensate for such problems and to refine the contour
predictions, including the Conditional Random Fields (CRF)
[7, 4] and the decoder component in Deeplabv3+ [9]. How-
ever, dilated convolution’s sensitivity on spotting semanti-
cally meaningful edges still leaves room for improvement.

Additionally, although the receptive field of dilated fil-
ters is enlarged, the total number of sampled pixels stay the
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same, which only consist of a small fraction of pixels in the
area. The sparse sampling can somehow impair the poten-
tials for dense prediction tasks like semantic segmentation.
Similar concerns were address in [43, 48, 11, 52], and the
proposed improvements include a denser Gaussian sampling
process [43], a hybrid dilated convolution module [48] and
the deformable convolutional filters [11].

In this paper, we propose to overcome the drawbacks in
dilated convolutions from a biologically-inspired perspective,
which is to leverage the Lateral Inhibition (LI) mechanism
in the human visual system. Lateral inhibition [17, 38, 47]
is a neurobiological phenomenon that a neuron’s excitation
to a stimulus can be suppressed by the activation of its sur-
rounding neurons. Because of the LI mechanism, our retina
cells are sensitive to the spatially varying stimulus such as
the semantic borderlines between objects, which is crucial
to the inborn segmentation abilities of our eyes. See Fig. 1
(Left) for an intuitive illustration of the LI mechanism.

Motivated by such observations, we propose a dilated
convolution with lateral inhibitions (LI-Convs) to enhance
the convolutional filter’s sensitivity to semantic contours.
The LI-Convs also sample the receptive window in a denser
fashion by implicitly making inferences on pixels within the
lateral inhibited zones. To evaluate LI-Convs, we follow
the Deeplabv3+ [9] segmentation models and present three
LI-based variants which are 1). the Lateral Inhibited Atrous
Spatial Pyramid Pooling (LI-ASPP) for decoding semantic
features, 2). the Lateral Inhibited MobileNet-V2 (LI-MNV2)
and 3). the Lateral Inhibited ResNet (LI-ResNet) as the
backbone networks for encoding features. The performance
of LI-ASPP, LI-MNV2 and LI-ResNet surpasses the baseline
on three segmentation benchmark dataset: PASCAL VOC
2012 [12], CelebAMask-HQ [24] and ADE20K [58], which
verifies the effectiveness and generality of the proposed LI-
Convs.

2. Related Works
Semantic Image Segmentation Fully Convolutional

Networks (FCN) [28] is the pioneering work of using deep
models for semantic segmentation. The fully connected
layers in deep image classification models are replaced
with convolutional ones to produce semantic heat maps
for segmentation predictions. The resolution of such heat
maps is typically much smaller than that of the input im-
age (e.g. 1/32), and various works are proposed to com-
pensate the information loss during decoding such features,
including the de-convolutional layers [35, 39, 36], the skip-
connections of low-level features [2, 16] and dilated convo-
lutions [54, 8, 53, 27, 5]. Yu et al. [54] stacks dilated con-
volutional layers with different dilation rates in a cascaded
manner, leading to a context module for aggregating the
multi-scale contextual information. Deeplabv3 [8] builds an
Atrous Spatial Pyramid Pooling (ASPP) module consisting

of three parallel dilated convolutions, one 1*1 convolution
and one image-level pooling, and it also employs dilated
convolutions in the backbone network. DenseASPP [53] in-
troduces dense connection into the ASPP module to enlarge
its receptive fields and to acquire denser feature pyramid,
while the technique of Neural Architecture Search [60] is
utilised by [5] to search for an optimal decoding structure of
organising dilated convolutions layers. For other segmenta-
tion practice [37, 50, 29, 49], readers are referred to [33] for
more details.

Dilated Convolutions Dilated convolutions, also
known as atrous convolutions, is first introduced by
Holschneider et al. [19] in signal analysis and have broad
applications such as object detection [25, 34], lip-reading
[51, 32, 30] and optical flow [59, 46]. It is first applied
to semantic segmentation by authors of [54, 6] to enlarge
filter’s receptive fields without sacrificing the spatial reso-
lution. Conditional Random Fields (CRF) are involved in
[4, 7] as a post-processing procedure to refine the ambiguous
semantic contour predictions. Similar ideas can be found
in Deeplabv3+ [9], which designs a decoding module to
incorporate low-level backbone features to improve the qual-
ities of contouring pixels. Deformable convolutions [11]
introduce the offsets into the sampling grids of filters to bet-
ter model the spatial relationships. Gaussian kernels are
adopted by [43] to obtain pixels at a wider range in dilated
convolutions. Wang et al. [48] observe the gridding effects
brought by the fixed sampling locations in dilated kernels
and demonstrate a hybrid dilated convolution with different
dilated rates. Different from those approaches, we employ
the lateral inhibition (LI) mechanisms [17] to enhance the
dilated convolutions’ sensitivity on semantically meaning-
ful contours and to implicitly sample features in a denser
fashion.

Lateral Inhibitions The study on the eyes of horseshoe
crab (Limulus) performed by Hartline et al. [17] reveals the
lateral inhibition (LI) effects in visual systems, where the
excitation of neighbouring neurons can suppress a cell’s
response to the stimuli. Although lateral inhibitions are
mainly studied in the field of neuroscience [40, 45, 38], the
computer vision community has also shown interests in this
mechanism. The recurrent neural network with lateral inhi-
bitions is studied in [31] and it is shown that LI can improve
the robustness and efficiency of the network. Authors of
[13] introduce LI into a shallow CNN to improve image
classification. Similar ideas can be found in the work for
colour video segmentation [14]. Those network architectures
are somehow too shallow to be useful for recent methods
using deep backbones like MobileNet-V2 (MNV2) [42] or
ResNet [18]. The idea of LI can also be found in the Local
Response Normalisation (LRN) proposed by AlexNet [23],
yet the inhibitions in LRN come from different channels on
the same spatial locations, which might not be suitable for
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Figure 1. Left: A toy example to illustrate the lateral inhibition mechanisms where the LI intensity is set to 0.25. The difference between the
two neurons at the centre (representing a semantic contour) becomes more significant after LI. Middle: A 3 ∗ 3 convolutional filter where
d = 4. The sampled pixels (denoted as red dots) only comprises a small fraction of all pixels in the receptive field. Right: An illustration of
the proposed LI-Convs with 3 ∗ 3 lateral inhibition zones. Each sampled pixel receives inhibition signals from eight neighbours to enhance
sensitivity on semantic contours and to extract information at a denser scale.

segmentation tasks, also there are no learnable parameters in
it. Recently, authors of [3] employ LI in VGG model [44]
to improve the performance on saliency detection. However,
none of the previous works has evaluated LI’s potentials for
semantic segmentation, while their methods of integrating
LI do not touch the core mechanisms in deep CNNs such
as the convolutional operations. In this work, however, lat-
eral inhibitions work closely with the convolutional filters to
fundamentally augment the model’s segmentation powers.

3. Dilated Convolutions with Lateral Inhibi-
tions

3.1. Definition

Define Ψk = Z2 ∩ [−k, k]2 where k ∈ Z≥0, and let a
discrete function F : Ψk 7→ R represents a convolutional
filter of size (2k + 1)2. Define another discrete function
G : Z2 7→ R representing features of arbitrary sizes. Let d
be the dilation rate, a dilated convolutional operator ∗d is
written as

(F ∗d G)(p) =
∑

dm+n=p

F (m)G(n) (1)

where p,m,n ∈ Z2. Note that ∗d turns into a regular con-
volutional operator when d = 1, i.e. no dilation is inserted.

With the introduction of lateral inhibitions (LI), the ac-
tivation of each sampled pixel, i.e. G(n) in Eq. 1, would
be suppressed by its neighbours within a certain range. Let
the lateral inhibitions come from a square region of size
(2t + 1)2 centred on n where t ∈ Z≥0, and refer this re-
gion as the lateral inhibition zone (the LI zone). Define
Ψt = Z2 ∩ [−t, t]2 and let L : Ψt,Z2 7→ R be a dis-
crete function describing the spatially-varying inhibition
intensities in the LI zones, the amount of the total inhibi-
tions received by a sampled pixel G(n) can be described

as
∑

u+v=n L(u,n)G(v) where u,v ∈ Z2. Consequently,
a dilated convolutional operator with lateral inhibition ?d
(LI-Convs) can be defined as

(F?dG)(p) =
∑

dm+n=p

F (m)φ(G(n)−
∑

u+v=n

L(u,n)G(v)) (2)

where φ represents an activation function like ReLu. The
introduced LI terms and non-linearity distinguish LI-Convs
in Eq. 2 with Eq. 1. An intuitive comparison between dilated
convolutions and the proposed LI-Convs is shown in Fig. 1
(Middle & Right).

We can also ”dilate” the lateral inhibition zone to effi-
ciently expand its field-of-views, in a similar way to that of
dilated convolutions. Consequently, a generalised LI-Convs
operator ?ed is defined as

(F?edG)(p) =
∑

dm+n=p

F (m)φ(G(n)−
∑

eu+v=n

L(u,n)G(v)) (3)

where e denotes the dilation rate in LI zones.
Although a wide variety of kernel forms can be taken by

the LI intensity descriptor L, we opt for an intuitive formula-
tion that is also easy to implement. In particular, L(u,n) in
Eq. 3 simply takes the production of a differentiable weight
WL ∈ [0, 1] ∩ R and an exponentially decaying factor that
is related to the distance between u and n, which can be
described as

L(u,n) = WL exp(
−D2(u,n)

2σ2
) (4)

where σ is a parameter representing the standard deviation,
exp denotes the exponential function and D(u,n) refers to
a certain distance measurement between u and n. Here we
employ the Euclidean distance.
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Figure 2. The structure of LI-Convs. The lateral inhibitions is first calculated by the LI layer, and the inhibited features are fed into the
dilated convolution layer. The dilated convolution part can be any kind of convolution implementations such as the depthwise one [10].

3.2. Implementation of LI-Convs

We take a straight-forward approach to implement the
LI-Convs in Eq. 3. We first design a Lateral Inhibition layer
(the LI layer) to perform pixel-wise lateral inhibitions, while
a dilated convolutional layer is subsequently applied to the
inhibited features. The LI layer is essentially a light-weight
module that can be flexibly inserted into deep models, while
it can be easily implemented as a dilated convolutional layer
with specifically shaped filters. In particular, let a discrete
function K : Ψt 7→ R represent one such LI filter, K can be
described as:

K(u) =

{
1.0 u = 0.

−WL exp(−D
2(u,0)
2σ2 ) u 6= 0.

(5)

Note that the LI filter K has identical size with the LI zones
which is (2t + 1)2, and applying K with a stride of 1 can
generate pixel-wise inhibited features. We empirically set σ
in Eq. 5 to a fixed value during training, thus there is only one
weight WL to learn for each LI filter, which is significantly
less than that of regular convolutional filters. In practice, we
learn the lateral inhibition weights in a channel-wise manner,
i.e. each LI filter learns a separate WL. Therefore, a LI layer
will introduce a total of C learnable weights where C is the
channel number of the input tensor.

A detailed illustration for the LI-Convs implementations
can be found in Fig. 2. A ReLu activation is first applied
to remove negative neuron response. Then a LI layer with
filters in Eq. 5 is employed to extract inhibited features,
followed by the activation function φ in Eq. 3. A dilated
convolution layer of arbitrary form such as the depthwise
convolution [10] is subsequently employed.

3.3. LI-ASPP, LI-MNV2 and LI-ResNet

We introduce the proposed LI-Convs into the state-of-
the-art segmentation model Deeplabv3+ [9] to evaluate the
proposed LI-Convs. As shown in Fig. 3, we replace the three
3∗3 parallel dilated convolution operations in Atrous Spatial
Pyramid Pooling (ASPP) [9] with the proposed LI-Convs,
leading to the LI-ASPP model. Besides, we also investigate
the potentials of LI layer in the backbone network such as
the MobileNet-V2 (MNV2) [42] and ResNet [18].

As illustrated in Fig. 4 (Left), we insert the LI layer into
the residual bottleneck (RB) of MobileNet-V2 [42], which is
between the 1 ∗ 1 expansion convolution and 3 ∗ 3 depthwise

Figure 3. The structures of ASPP and LI-ASPP. ASPP consists of
five parallel branches including three dilated convolutions, which
are replaced with the proposed LI-Convs in LI-ASPP.

convolution, and we refer the resulting structure as the LI
bottleneck layer. In the original MNV2 architecture, there
are a total of 17 residual bottleneck layers, and we replace
the 10th, 13th and 16th (16th refers to the second-highest
RB layer) reisudal bottlenecks with the LI bottlenecks to
obtain the LI-MNV2 network.

Similarly, we modify the bottleneck unit (we adopt the
one with 3 convolutional layers) in ResNet by inserting a LI
layer between the first two weighted layers, as shown in Fig.
4 (Right), and name the new architecture as the LI bottleneck
unit. Among those ResNet variants, we select the ResNet-50
architecture in this work and replace its “conv5 3” layer with
the LI bottleneck unit to get the LI-ResNet-50 network.

4. Experiments

4.1. Datasets

We conduct our experiments on three public benchmark
segmentation datasets, which are PASCAL VOC 2012 [12],
CelebAMask-HQ [24] and ADE20K [58]. There are a total
of 21 semantic classes in PASCAL VOC 2012 dataset [12]
which contains 1,464/1,449/1,456 pixel-wise annotated im-
ages for train/validation/test. Following [15, 9], we use an
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Figure 4. Left: The structures of the residual bottleneck convolution in MobileNet-V2 and the LI bottleneck. The LI layer is inserted between
the 1 ∗ 1 expansion convolution and 3 ∗ 3 depthwise convolution. Right: The architecture of the 3-layer bottleneck unit in ResNet and the
LI bottleneck unit. The LI layer is inserted between the 1 ∗ 1 conv and 3 ∗ 3 conv layers.

augmented train set with a total of 10,582 annotated images.
CelebAMask-HQ [24] is a large-scale face parsing dataset
with 30,000 pixel-wise labelled face images of 19 classes,
and they are split into sets with 24,183/2,993/2,824 images
for train, validation and test. ADE20K [58] is a benchmark
dataset for scene parsing with 20,210/2,000/3,000 pixel-wise
labelled images for train/validation/test. It is a quite challeng-
ing dataset, as there are a total of 151 classes in this dataset,
and the huge variations of image resolutions also increase
the difficulties. We utilise the validation set to evaluate per-
formance on PASCAL VOC 2012 and ADE20K datasets,
considering that their test sets are not publicly available,
while we follow the standard protocol on CelebAMask-HQ
dataset and use the test set for evaluation.

4.2. Experimental Setup

Evaluation metric Mean Intersection-over-Union
(mIoU) is the most widely used evaluation metric for the
segmentation task, and we adopt it to evaluate the quality of
model predictions. We also report the model parameters and
the FLOPs to provide more comprehensive analyses.

Training Settings We generally follow the training set-
tings in Deeplabv3+ [9], while we have also made some mod-
ifications to suit our needs. Particularly, we use the ImageNet
[41] checkpoints provided by the authors of MobileNet-V2
[42] and ResNet [18] to initialise LI-MNV2 and LI-ResNet-
50, respectively, while the weights of LI-ASPP are randomly
initialised. Note that we do not use the MS COCO dataset
[26] to pre-train the model. During training, we set the image
crop size to be 513∗513 for all three datasets, except that we
use 257 ∗ 257 crop size when evaluating on ADE20K with
the MNV2-based backbone. We train for 120 epochs using
a batch size of 16 and Adam [22] is applied to optimise the
pixel-wise cross-entropy loss with L2-regularisation. The
initial learning rate and the epsilon value in Adam optimiser

are set to 0.0003 and 0.01, respectively. The output stride,
which is defined in [8] denoting the ratio of original input
resolution to the final feature’s resolution, is set to be 16 for
all datasets. We adopt strategies in [9, 8] to use the Batch-
Norm layers [21] and to randomly scale the training data
for augmentation. Depthwise convolution [10] is used in the
ASPP implementations following [9]. During evaluations,
we set the output stride to be 16 for all datasets and employ
a single evaluation scale of 1.0, and all crop sizes are set
to 513 ∗ 513 except that 257 ∗ 257 is utilised for evaluating
MNV2-based backbones on ADE20K.

LI Layer Settings A lateral inhibition layer has several
key hyper-parameters that can affect the performance. We
fine-tune those parameters on the Pascal Voc 2012 validation
set to determine a best-performing combination. Particularly,
we set the size of LI zones to be 3 ∗ 3, the value for the
standard deviation σ in Eq. 5 is selected to be 1.0, the LI
rate e in Eq. 3 is set to 1, and all LI intensities WL in
Eq. 5 are initialised as 0.0 such that the training can start
smoothly from any pre-trained checkpoints that do not use LI
layers. Moreover, we evaluate different positions of adding
LI bottlenecks in MNV2 and ResNet-50 architectures, and a
general trend can be observed that adding LI to higher layers
can produce better results than to bottom ones. Besides, we
select ReLu as the activation φ in Eq. 3.

Implementations We implement our method in the Ten-
sorflow framework [1]. For the implementation of the base-
line Deeplabv3+ [9] model, we directly use the code pro-
vided by authors. It takes around one day per GPU (2080TI)
to train a model with LI-MNV backbone on Pascal Voc
2012 dataset, and it requires about 2.5/0.6 days to do so
on CelebAMask-HQ and ADE20K datasets. For the LI-
ResNet-50 backbone, the training will take longer which are
approximately 1.5/3.2/4.5 days on Pascal Voc/CelebAMask-
HQ/ADE20K using two parallel GPUs.
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Backbone Decoding
model

LI Zone
Sizes

LI
Rates

WL Init.
Range mIoU (%)

MNV2 ASPP - - - 72.19

MNV2 LI-ASPP

{3, 3, 3} {1,1,1} [0.0,0.0] 72.77
{3, 3, 3} {1,3,5} [0.0,0.0] 72.56
{3, 3, 3} {5,5,5} [0.05,0,15] 72.43
{5, 5, 5} {1,1,1} [0.05,0,15] 72.13
{3, 3, 3} {1,1,1} [0.05,0.35] 72.64

Table 1. The performance of different LI-Conv’s parameters for
LI-ASPP on Pascal Voc 2012 validation set. The three numbers in
“LI Zone Sizes” refers to the sizes of the LI zones (“3” stands for a
3 ∗ 3 LI zone) of the three LI-Conv layers in LI-ASPP, respectively,
while “LI Rates” indicates the selections of e in Eq. 3 for those
LI-Conv layers.

Backbone Decoding
model Positions to add LI mIoU (%)

MNV2 ASPP - 72.19

LI-MNV2 ASPP

{1 − 6}th RB 72.07
{16}th RB 72.21
{13, 16}th RB 72.43
{10, 13, 16}th RB 72.79

Table 2. The performance when adding LI layers to different posi-
tions of MNV2 on Pascal Voc 2012 validation set. “RB” refers to
the Residual Bottleneck layer in MNV2 [42].

4.3. Results

LI Parameters In Table 1 we demonstrate the perfor-
mance of different LI parameters for LI-ASPP (with MNV2
as backbone) on Pascal Voc 2012 validation set. In particu-
lar, we investigate the performance of varying settings of LI
hyper-parameters such as the size of LI Zones, the LI rates e
and WL’s initialisation range for the three LI-Convs layers
in LI-ASPP. As shown in Table 1, most settings can lead
to superior performance than the baseline method without
any LI-Convs, while using a 3 ∗ 3 LI zone and setting e = 1
can generally yield better performance than other settings
like a 5 ∗ 5 LI Zone or e = 5. LI-ASPP achieves the best
performance when all WL is initialised from 0.0, potentially
due to that the zero initialisation can better encourage a
smooth learning of LI intensities, and therefore we opt for
this setting for all LI layers.

Adding LI to MNV2 In addition, we evaluate different
options of adding LI-Convs in the Residual Bottleneck (RB)
layers of the MNV2 architecture [42] on the validation set of
Pascal Voc 2012. It can be spotted from Table 2 that adding
LI mechanisms to the early RB layers (e.g. the earliest six
RB layers) cannot promote the accuracy. In contrast, LI-
Convs integrated with top layers such as the {10, 13, 16}th
RB layers can produce higher mIoUs. This observation is
somehow in line with the expectations since the higher-level
layers are generally encoding more semantic representations,
which can better benefit from the improved sensitivity to

Backbone Decoding
model Positions to add LI mIoU (%)

ResNet-50 ASPP - 76.22

LI-ResNet-50 ASPP
conv5 3 76.90

conv4 6, conv5 3 76.53
conv3 4 76.21

ResNet-50 LI-ASPP Three dilated convs 76.94

Table 3. The performance of models with ResNet-50-based back-
bones on Pascal Voc 2012 validation set. We also explore different
positions of adding LI layers to ResNet-50.

semantic contours introduced by LI layers.
Adding LI to ResNet-50 Table 3 demonstrates the re-

sults on Pascal Voc 2012 validation set when adding LI layer
to different layers of ResNet-50 architecture with ASPP as
the decoding model. We can discover that adding LI to ear-
lier layers of ResNet such as the “conv3 4” may not improve
the performance, however, top layers like “conv4 6” and
“conv5 3” can better benefit from the integration of LI lay-
ers. Such observations are consistent with the trend that is
found in the LI-MNV2 experiments of Table 2, which is also
in accordance with our intuitions for LI layer’s effects. A
slight difference is that the best result is achieved when LI
is added to the “conv5 3” layer other than to both “conv4 6”
and “conv5 3” layers. Besides, we report in Table 3 the
performance of LI-ASPP with ResNet-50 as the backbone,
which still shows significant improvement over the baseline.

Performance Evaluations In Table 4, we report the
evaluation results of different methods with MNV2-based
backbones on the three segmentation benchmark datasets.
Note that we disable the Deeplabv3+ Decoder [9] in this
experiment to ensure a fair and clean comparison. Com-
pared with the baseline method which is MNV2+ASPP, i.e.
Deeplabv3 [8], LI-MNV2 and LI-ASPP both demonstrate su-
perior performance when used solely, while the best mIoUs
on three datasets are all achieved by using them together.
Particularly, our method (LI-MNV2+LI-ASPP) gains a rel-
ative improvement of 1.32%, 1.30% and 2.30% over the
baseline (MNV2+ASPP) on Pascal Voc 2012, CelebAMask-
HQ and ADE-20K datasets, respectively, which verifies the
effectiveness of LI-Convs. The LI-based model’s parameters
and FLOPs, however, are only slightly increased by 0.097%
and 0.76% compared with the baseline, which is arguably
acceptable considering the accuracy compensations.

The evaluation results of ResNet-50-based models are
shown in Table 5, where our methods are additionally com-
pared with Deeplabv3+ Decoder [9], a module that also aims
to refine the semantic contours. We can see from the ta-
ble that when Deeplabv3+ Decoder is disabled, our method
(LI-ResNet-50+LI-ASPP) outperforms the baseline (ResNet-
50+ASPP) on all three datasets at the cost of slightly in-
creased parameters and FLOPs, which is consistent with
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Method
mIoU (%) Parameters

(Kilo)
FLOPs
(Mega)Pascal Voc 2012 CelebAMask-HQ ADE-20K

MNV2 + ASPP 72.19 74.73 29.97 2568.02 6479
MNV2 + LI-ASPP 72.77 75.3 30.47 2568.98 6498
LI-MNV2 + ASPP 72.79 75.46 30.59 2569.94 6517

LI-MNV2 + LI-ASPP 73.14 75.70 30.66 2570.52 6528

Table 4. Performance of different methods with MNV2-based backbones on the Pascal Voc 2012 and ADE20K (validation set) and on the
CelebAMask-HQ (test set). The model parameters and FLOPs (for crop size 513 ∗ 513) are also included.

Method
Deeplabv3+
Decoder [9]

mIoU (%) Parameters
(Kilo)

FLOPs
(Giga)Pascal Voc 2012 CelebAMask-HQ ADE-20K

ResNet-50 + ASPP - 76.22 76.03 39.14 26656 87.35
LI-ResNet-50 + LI-ASPP - 77.24 76.62 39.42 26663 87.48

ResNet-50 + ASPP X 77.01 77.73 39.87 26819 92.85
LI-ResNet-50 + LI-ASPP X 77.54 78.46 40.22 26826 92.98

Table 5. Performance of different methods with ResNet-based backbones on the Pascal Voc 2012 and ADE20K (validation set) and on the
CelebAMask-HQ (test set). The performance of disabling/enabling Deeplabv3+ Decoder [9] is reported. The model parameters and FLOPs
(for crop size 513 ∗ 513) are also included.

the MNV2-based results in Table 4. Enabling Deeplabv3+
Decoder introduces mIoU boosts to both our method and
the baseline, while our LI models still demonstrate greater
improvement over the baseline on all datasets. This indicates
that LI-Convs can work closely with Deeplabv3+ Decoder to
produce dense predictions with higher-qualities, exhibiting
the compatibility and the flexibility of integrating LI-Convs
into other deep models. Moreover, our LI-based models (LI-
ResNet-50+LI-ASPP) with Deeplabv3+ Decoder disabled
can achieve similar performance as the baseline (ResNet-
50+ASPP) that enables it, while the former model of ours
contains 0.58% fewer parameters and operates at approxi-
mately 5.78% faster speed than the latter one, respectively,
which validates the light-weighted features of the proposed
LI-Convs.

Multi-scale Evaluations We further compare the per-
formance of different methods when applying the multi-scale
evaluation techniques [8, 9]. Particularly, we evaluate results
of the LI-based models and the baseline on Pascal Voc 2012
validation set using three different multi-scale settings and
with Deeplabv3+ Decoder [9] disabled/enabled. As shown in
Table 6, the application of the multi-scale techniques signifi-
cantly increases the segmentation accuracy of both our and
baseline models, while our method consistently outperforms
the baseline no matter which multi-scale setting is employed.
This is following our expectations, since the proposed LI-
Convs can fundamentally enhance the model’s sensitivity
to semantic contours, thus will benefit the segmentation re-
sults of varying input scales. Additionally, our LI models
can work seamlessly with Deeplabv3+ Decoder to achieve
the highest mIoUs for all multi-scale settings, which again
verifies the generality of LI-Convs.

Figure 5. Visualisations of the channel-level features before and
after LI layers on CelebAMask-HQ. Although the activation is
inhibited globally, the feature patterns after LI layer are generally
easier to recognise mainly due to the clarifications on semantic
contours.

4.4. Discussion

How the LI layer works To intuitively understand the
LI mechanisms, we dive into the channel-level features to
visualise the patterns before and after LI layers. As demon-
strated in Fig. 5, we plot several feature channels before and
after the LI layers in LI-ASPP on CelebAMask-HQ dataset.
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Method
Deeplabv3+
Decoder [9]

Evaluation Scales

[1.0] [0.5, 1.0, 1.75]
[0.5, 0.75, 1.0,

1.25, 1.75]
[0.5, 0.75, 1.0,
1.25, 1.5, 1.75]

ResNet-50 + ASPP - 76.22 76.58 77.41 77.60
LI-ResNet-50 + LI-ASPP - 77.24 77.93 78.37 78.58

ResNet-50 + ASPP X 77.01 78.33 78.71 78.72
LI-ResNet-50 + LI-ASPP X 77.54 78.66 79.05 79.19

Table 6. Performance (measured by mIoU (%)) of different methods using multi-scale evaluations on Pascal Voc 2012 validation set. “[1.0]”
refers to using the single evaluation scale, i.e. no multi-scale is utilised.

Figure 6. Visualisations of the class-level heat maps and semantic predictions of the baseline (MNV2+ASPP) and our method (LI-MNV2+LI-
ASPP) on CelebAMask-HQ. Deeper reds in heat maps represent higher positive responses or more attention from the model, and vice versa
for deeper blues. Our method allocates more attention to shape the semantic boundary areas and thus can produce predictions with higher
visual qualities.

It can be discovered that although the intensity of activation
is suppressed globally after the LI layer, the inhibited fea-
ture exhibits more recognisable patterns with clarified and
emphasised contours, which can be more desirable in the
segmentation domain.

What interests the model In Fig. 6, we visualise the
class-level heat maps and the segmentation predictions gen-
erated by the baseline (MNV2+ASPP) and our method (LI-
MNV2+LI-ASPP) on CelebAMask-HQ. We utilise deeper
reds to denote higher positive neurons responses (more
model attention) in heat maps, and vice versa for deeper
blues. Compared with the baseline, the semantically mean-
ingful contouring areas receive more attention from our
model, e.g. the “glasses” and “skin” heat maps in Fig. 6.
Such kind of contour sensitivity can be reasonably attributed
to the proposed LI-Convs. Besides, the segmentation predic-

tions generated by our method have better visual qualities,
which also verifies the superiority of the LI-Convs.

5. Conclusion

We describe a dilated convolution with lateral inhibitions
(LI-Convs) to enhance the model’s sensitivity to semantic
contours and to extract features at denser scales. The perfor-
mance of the proposed LI-ASPP, LI-MNV2 and LI-ResNet
architectures is shown to outperform the baseline method
on three segmentation benchmark datasets, which verify the
effectiveness and generality of the LI-Convs. We also inves-
tigate and try to understand the working mechanisms hidden
behind. The proposed LI-Convs can be seamlessly integrated
into deep models for other tasks, such as lip-reading and ob-
ject detection, that require explicit awareness of the semantic
boundaries.
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