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ABSTRACT
Component Analysis (CA) comprises of statistical techniques
that decompose signals into appropriate latent components,
relevant to a task-at-hand (e.g., clustering, segmentation,
classification). Recently, an explosion of research in CA
has been witnessed, with several novel probabilistic models
proposed (e.g., Probabilistic Principal CA, Probabilistic Lin-
ear Discriminant Analysis (PLDA), Probabilistic Canonical
Correlation Analysis). PLDA is a popular generative prob-
abilistic CA method, that incorporates knowledge regarding
class-labels and furthermore introduces class-specific and
sample-specific latent spaces. While PLDA has been shown
to outperform several state-of-the-art methods, it is neverthe-
less a static model; any feature-level temporal dependencies
that arise in the data are ignored. As has been repeatedly
shown, appropriate modelling of temporal dynamics is cru-
cial for the analysis of temporal data (e.g., videos). In this
light, we propose the first, to the best of our knowledge,
probabilistic LDA formulation that models dynamics, the
so-called Dynamic-PLDA (DPLDA). DPLDA is a generative
model suitable for video classification and is able to jointly
model the label information (e.g., face identity, consistent
over videos of the same subject), as well as dynamic varia-
tions of each individual video. Experiments on video classi-
fication tasks such as face and facial expression recognition
show the efficacy of the proposed method.

Index Terms— Probabilistic Linear Discriminant Analy-
sis, Face Recognition, Component Analysis

1. INTRODUCTION

Component analysis techniques can be grouped based on
their probabilistic or deterministic nature [1, 2, 3]. Exam-
ples of well-known deterministic techniques include Prin-
cipal CA (PCA) [4], Linear Discriminant Analysis (LDA)
[5, 6] and Canonical Correlation Analysis (CCA) [7], which
are now customarily used in many computer vision appli-
cations. Probabilistic techniques that gained popularity
include Probabilistic PCA [8, 9, 10], Probabilistic LDA

[3, 11, 12, 13, 14, 15] and Probabilistic CCA (PCCA)
[16, 17, 18]. Probabilistic formulations of component analy-
sis techniques are intuitively appealing, as they (a) explicitly
model observation noise, (b) facilitate the application of
Bayesian methods, including application of Bayesian non-
parametric methodologies [19] for learning and inference, (c)
offer the potential to build composite models via the use of
mixture models [20], (d) allow the presence of missing values
[21] and (d) can be used as general density models [10].

One of the first attempts to formulate a probabilistic gen-
erative model that incorporates information regarding labels
(e.g., facial identity) was made in [15, 22] proposing the so-
called Probabilistic Linear Discriminant Analysis (PLDA).
PLDA differs from PPCA in the sense that it models the data
generation as a process that combines two components (a) a
component which depends only on the class-label but not the
particular image (i.e., it describes between-class variation)
and (b) a component which is different for every image (i.e.,
it represents within-class variations and noise). As shown
in [22, 23], PLDA significantly outperforms many compo-
nent analysis techniques including deterministic LDA in face
recognition and verification, as well as speaker verification.
While some alternative PLDA models have been proposed,
based on e.g., Mixtures of PPCA, class modelling based
on continuous latent variables and Markov Random fields
[3, 11, 12, 13, 14, 15], all models are static, and therefore do
not capture temporal dependencies in the data at-hand, inher-
ently falling short in terms of capturing information in case
of classifying videos or temporally enriched data in general.

In this paper, we propose the first dynamic PLDA model
that captures both the identity or class of data sequences,
while modelling temporal dynamics behind individual time-
series variations that may otherwise distort the true identity
or class of the subject. Summarizing, the contributions of this
work are: (i) we introduce a generative probabilistic model
that exploits both the discriminating class-label information,
as well as temporal dynamics, (ii) we show how to efficiently
learn the model parameters and perform inference, and (iii)
we apply the proposed model in various video classifica-



tion tasks, such as face and facial expression recognition on
videos captured in unconstrained conditions (”in-the-wild”).
As shown, the proposed method performs equally well or
better to state-of-the-art challenging databases, without being
trained on vast amounts of annotated data as in other works
[24, 25] .

2. PROBABILISTIC LDA

In this section, we review the PLDA model proposed in
[15, 22] as it is arguably the most popular PLDA flavour and
is mostly relevant to our proposed DPLDA. PLDA assumes
data are generated based on two different subspaces; one that
depends on the class and one that depends on the sample.
That is, assuming that we have a total of I classes and each
class i containing a total of Ji samples, then the j-th image
of the i-th class is defined as

xij = µ + Fhi + Gwij + εij ,
εij ∼ N (0,Σ),hi ∼ N (0, I),wij ∼ N (0, I)

(1)

Put simply, xij is a vector of pixel intensities representing
the image itself. According to the generative model of (1), it
depends on hi, which is the identity latent variable specific to
the i-th class, and on wij which is the latent variable associ-
ated to the setting in which the image was taken. Both hi and
wij are latent random variables. Intuitively in case of face
recognition, hi captures the facial features of a person that
consistently determine his/her appearance, whereas wij rep-
resents incidental conditions such as pose, illumination and
expression that influenced the picture at the moment it was
taken. F is a factor matrix whose columns span the between-
individual (shared) subspace. Each class is assumed to have
a unique position in said subspace, which sets it apart from
everyone else and is represented by the hidden variable hi.
Analogously G is a matrix whose columns span the within-
individual (private) subspace. wij represents the position of
image xij therein and it is responsible for the differences in
photos of the same individual. Finally, vector µ is simply the
mean of all images and εij is a stochastic noise. Optimization
is performed with EM, while the model is exploited for infer-
ences about identity, including verification and identification
by using the maximum a-posteriori (MAP) criterion [22].

3. DYNAMICAL PLDA

While PLDA has been used for face recognition in still im-
ages, one can still employ static models on videos as a set-
to-set (probe set to gallery set) matching that compares all
frames of a probe video against all frames of a gallery video.
The most likely identity can then be identified by e.g., major-
ity voting. Nevertheless, this approach ignores the temporal
information that goes with the video. It is reasonable to expect
that two consecutive frames will look fairly similar; it’s just
as reasonable to impose proximity for the within-individual

latent variables in two consecutive frames of the same video.
Such property relies on a “video as image sequence” rep-
resentation, that specifically takes into account and models
temporal dependencies and dynamics. Motivated by the lat-
ter, in this section we present Dynamic PLDA (DPLDA). Let
xt
ij denote the observation on the t-th frame from the j-th

video of the i-th individual and wt
ij the respective private

latent variable, PLDA is defined as

xt
ij = µ + Fhi + Gwt

ij + εtij ,

wt
ij = Aijw

t−1
ij + vt

ij ,

w1
ij ∼ N (0, I),hi ∼ N (0, I)
εtij ∼ N (0,Σ),vt

ij ∼ N (0, I),

(2)

where Aij is the transition matrix, vt
ij the process noise for

the latent variable wt
ij , and εtij the observation noise affecting

frame xt
ij . We also assume that there are I individuals in the

gallery, each of which appearing in Ji videos of Ti frames
each. The idea underlying the proposed model (2), is that
the evolution of the frames in a video depicting the face of
a person, can be ascribed to the evolution of an underlying
latent variable comprising pose, illumination and expression
variations. In addition to this, a constant latent variable re-
lated to identity influences the aspect of each frame, while
remaining the same across all videos of one person. Explic-
itly modelling the dynamics of the private variable wt

ij is
likely to bring about an improvement to the discriminatory
power of PLDA models when applied to videos. Intuitively,
matrices Aij will have stable dominant eigenvalues, very
close to 1, which will force variations for wt

ij to be smooth in
time. This constraint is clearly absent in PLDA, and allows to
better differentiate the influence of the private latent variables
wt

ij , wt+1
ij from the influence of the public latent variable hi

within consecutive frames. We optimize the parameter set
θ = (µ,F,G,Σ,A11,...,IJ) with respect to the expectation
of the joint log-likelihood lnP (X,Z|θ) wrt. posterior,
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(3)
where we ignore terms independent of θ, while B and ztij are
defined as B = [F G], ztTij = [hT

i wtT
ij ]. By subsequently

taking the derivatives with respect to θ and setting to zero, we
arrive at the update equations,
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(4)
In order to complete the EM for DPLA, we need to estimate
the first and second order moments for the latent variables at



hand. The main variation of DPLDA with respect to a typical
LDS is the presence of the latent variable hi, shared across
all Ji videos corresponding to subject i. The most intuitive
way to tackle this is to formulate the augmented system

xt
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xt
i2
...

xt
ij

 =


µ
µ
...
µ
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F G 0 · · · 0
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(5)
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(6)

which can be re-written in a more compact form as

xt
i = C̄zti + µ̄ + εi, zti = Āiz

t−1
i + vt

i (7)

where εti ∼ N (0, Σ̄) with Σ̄ being a block diagonal ma-
trix, Σ̄ = blkdiag(Σ, . . . ,Σ), and vti ∼ N (0,Γ) where
Γ = blkdiag(0, I, . . . , I). By resorting to the augmented
system, we can readily apply the Rauch-Tung-Striebel (RTS)
smoother [26] thus obtaining the sufficient statistics for the
latent variables hT

i and wtT
ij since ztTij = [hT

i wtT
ij ]. Finally,

note that Kalman filtering can also be used to estimate the
likelihood of a specific sequence of frames sharing the same
identity. This allows to carry out inference tasks with simplic-
ity while exploiting the quantity cti = P (xt

i|x1
i , . . . ,x

t−1
i )

which can be computed through Kalman filtering, multiplied
across all values of t to obtain the sequence likelihood.

4. EXPERIMENTS

We evaluate the proposed PLDA by performing experiments
on various tasks, such as face recognition and verification
using a privately collected dataset, along with the widely
used Youtube face database [27] (Sec. 4.1). Furthermore,
experiments for facial expression recognition are performed
on the FERA database [28] (Sec. 4.2).

4.1. Face Verification and Identification Experiments

In video-based face recognition the database that has been
arguably used the most is the YouTube face database [27].
It consists of 3,425 videos of 1,595 different subjects, all of
which downloaded from Youtube. An average of 2.15 videos
are available per subject (ranging from 1 to 6) with a mean
duration of 181 frames. All videos have been tracked using
a publicly available implementation of the facial landmark
tracker [29]. Using the tracked landmarks the faces have been
frontalised using [30]. The images were rescaled in 60 × 60

Method Accuracy ± SE
LDA 0.723 ± 0.54
PLDA 0.830 ± 0.91
DPLDA 0.845 ± 0.65

Table 1. YTF face verification experiment accuracy

and Image Gradient orientation (IGO) features were extracted
[31]. These features were used in all compared methods.

A benchmark protocol is defined for verification tasks.
In more detail, 5000 pairs of videos were selected, half of
them depicting the same subject, the other half belonging to
different ones. The pairs are further divided into 10 splits,
onto which verification has to be performed separately, ex-
ploiting the information from the other splits. The restricted
protocol only allows access to this information, whereas the
unrestricted protocol allows to incorporate information about
the identity of the subjects during the training procedure.
Since we’re testing class-based methods derived from LDA,
we resort to the latter protocol. For each split we selected
all the people with 4 or more videos and exploit them for
training. Typically the training set for each split consists of
roughly 200 different identities, with 4-6 videos each.

For LDA, we computed the distance between all the
frames of the first video in a pair from all the frames in the
second video of the same pair. Their average is regarded
as a video-to-video distance. When considering a specific
split, we incorporate the same/not-same information from the
remaining 9 splits to learn a linear distance-based classifier,
which we then apply to the distances in the current split,
determining the final confirm/reject choice. For PLDA we
adopt a similar fusion metric, applying it to both the sum of
the likelihoods of two frames taken separately − one from
video 1, one from video 2 − and to the joint likelihood under
the hypothesis that they share the same identity. We take
their difference as a sufficient statistic for which we learn
a confirm/reject threshold, based on the remaining 9 splits,
and apply it to the current one. Finally, DPLDA was applied
in its most basic version, with Aij = A, i.e. estimating a
single state evolution matrix supposed valid for every video.
Thresholding is performed analogously to PLDA and no
score fusion is necessary since the algorithm acts directly on
whole videos instead of single frames. Separate results are
computed for each split, and finally the 10 verification rates
are averaged. The mean values are reported in Table 1.

Note that both DPLDA and PLDA perform significantly
better than deterministic LDA. Also, despite the simplifica-
tion Aij = A, DPLDA outperforms PLDA by more than 1%.
We believe that this is the case because the videos are of short
duration, hence they contain a small amount of dynamical
information. Furthermore, by inspecting the results from the
YouTube database our method produces comparable results
to the state-of-the-art, such as the method [32] which achieves



an average accuracy of 84.8%, the deep learning method in
[33] which achieves an average accuracy of 82.3% and [34]
which achieves an average accuracy of 81.3%. Of course,
our method cannot be directly compared with the deep con-
volutional methodology proposed in [25] which achieves an
average accuracy of 91.4%, since, we did not have access to
millions of annotated training data.

4.1.1. Identification

We assembled an “in-the-wild” database consisting of 250
videos (50 subjects, 5 videos each). The videos, featur-
ing famous people not present in the YTF database, were
downloaded from Youtube at 24fps in medium quality hav-
ing around 1,000 frames each. For each video we manually
checked the identity of the person depicted and the quality
of the whole sequence, in order to guarantee the presence
of significant temporal information to exploit while avoiding
still-image slide-shows. Exploiting the pipeline described
above, we test PLDA and DPLDA for closed-set and open-
set identification on this database. A five cross validation
experiment was carried out by picking one of the 5 videos
for each person to incorporate in the probe and utilizing the
remaining 4 for training. As in all PLDA methods the size of
shared subspace was fixed to the number of people (i.e., 50).
Fixing the size of the shared subspace to 50 we let the size
of the private subspace vary from 1 to 50. For the closed set
recognition PLDA achieves around 83% average accuracy,
compared to 86% achieved by DPLDA.

For open set recognition, we keep the same setting, sim-
ply adding a variable number of external videos (distractors).
For convenience we picked them from the YFT database,
with which our database has no overlap whatsoever. As
a performance measurement we pick the generalized iden-
tification accuracy, by simply contemplating an additional
external class for which no training data is available. We test
for different levels of “openness” by letting the percentage
of external videos in the probe vary from 17 % (which was
used as a validation set to derive the threshold) to 66 % of
the number of videos. For every probe video, we compute
the conditional likelihood of it sharing its identity with all the
individuals in the gallery, storing the maximum value, along
with the marginal likelihood of the probe video alone. The
probe video is labelled as external if the difference between
conditional and marginal likelihood is smaller than a specific
threshold (set to 0.4 as was learned in the validation set),
otherwise it is given the label that maximizes the conditional
likelihood. The results are summarized in Table 2.

In case of 50 % distractors, DPLDA achieves around 79%
while PLDA 68%. Finally, in the case of 66 % distractors, the
performance of DPLDA decreases to 76%, while the perfor-
mance of PLDA decreases significantly, to 58%. Hence, the
incorporation of dynamic information plays a crucial role in
dealing with distractors in open set face recognition.

Method 50 % distractors 66 % distractors
PLDA 68% 58%
DPLDA 79% 76%

Table 2. Open set identification experiment accuracy with
varying number of distractors

Method Average Classification
PLDA 74%
DPLDA 81%

Table 3. Average classification accuracy for facial expression
recognition on FERA

4.2. Facial Expression Recognition

The final experiment we conducted was a facial expression
recognition experiment using the FERA database [28]. The
FERA database provides 155 labelled videos of 10 actors
displaying five emotional states anger (32 videos), fear (31
videos), joy (30 videos), sadness (31 videos), and relief (31
videos). We tracked all videos using the same algorithms
used in the face recognition experiments. Dense SIFT fea-
tures [35] were extracted around the 49 facial landmarks
that reside within the facial region and the dimensionality
of the features was reduced to 20 around its landmark using
Principal Component Analysis (PCA) leading to a feature
vector of 980 dimensions to represent each frame. A leave-
one-subject-out facial expression recognition experiment was
carried out and the average classification rate was measured.
PLDA achieved 74% average classification while the DPLDA
81%. Even though the result is not directly comparable with
the results in FERA [28], it is worth mentioning that the best
performing methodology presented in the competition did not
achieve an average classification of more than 75.2%.

5. CONCLUSIONS

In this paper, we proposed the first, to the best of our knowl-
edge, probabilistic latent variable model designed to model
both (i) class-label information, and (ii) temporal dynamics,
deeming it suitable for video classification. In particular, the
proposed Dynamic Probabilistic Linear Discriminant Analy-
sis (DPLDA) decomposes the observed signal into two latent
parts, one based on static label information and one that mod-
els temporal dynamics and is video-dependent. The perfor-
mance of DPLDA was demonstrated via experiments on tasks
such as face and facial expression recognition from videos.
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