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Abstract

For real-time semantic video segmentation, most recent

works utilised a dynamic framework with a key scheduler

to make online key/non-key decisions. Some works used a

fixed key scheduling policy, while others proposed adaptive

key scheduling methods based on heuristic strategies, both

of which may lead to suboptimal global performance. To

overcome this limitation, we model the online key decision

process in dynamic video segmentation as a deep reinforce-

ment learning problem and learn an efficient and effective

scheduling policy from expert information about decision

history and from the process of maximising global return.

Moreover, we study the application of dynamic video segmen-

tation on face videos, a field that has not been investigated

before. By evaluating on the 300VW dataset, we show that

the performance of our reinforcement key scheduler outper-

forms that of various baselines in terms of both effective

key selections and running speed. Further results on the

Cityscapes dataset demonstrate that our proposed method

can also generalise to other scenarios. To the best of our

knowledge, this is the first work to use reinforcement learning

for online key-frame decision in dynamic video segmentation,

and also the first work on its application on face videos.

1. Introduction

In computer vision, semantic segmentation is a compu-

tationally intensive task which performs per-pixel classifi-

cation on images. Following the pioneering work of Fully

Convolutional Networks (FCN) [25], tremendous progress

has been made in recent years with the propositions of var-

ious deep segmentation methods [5, 2, 52, 59, 24, 8, 22,

34, 6, 58, 30]. To achieve accurate result, these image
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segmentation models usually employ heavy-weight deep

architectures and additional steps such as spatial pyramid

pooling [59, 6, 5] and multi-scaled paths of inputs/features

[7, 58, 23, 5, 4, 22, 35], which further increase the compu-

tational workload. For real-time applications such as au-

tonomous driving, video surveillance, and facial analysis

[49], it is impractical to apply such methods on a per-frame

basis, which will result in high latency intolerable to those

applications. Therefore, acceleration becomes a necessity for

these models to be applied in real-time video segmentation.

Various methods [40, 64, 54, 20, 16, 29, 17, 31, 11] have

been proposed to accelerate video segmentation. Because

adjacent frames in a video often share a large proportion

of similar pixels, most of these works utilise a dynamic

framework which separates frames into key and non-key

frames and produce their segmentation masks differently. As

illustrated in Fig. 1 (up), a deep image segmentation model

N is divided into a heavy feature extraction part Nfeat and

a light task-related part Ntask. To produce segmentation

masks, key frames would go through both Nfeat and Ntask,

while a fast feature interpolation method is used to obtain

features for the non-key frames by warping Nfeat’s output

on the last key frame (LKF), thus to avoid the heavy cost

of running Nfeat on every frame. On top of that, a key

scheduler is used to predict whether an incoming frame

should be a key or non-key frame.

As an essential part of dynamic video segmentation, deci-

sions made by the key scheduler could significantly affect the

overall performance [20, 54, 62] of the video segmentation

framework. However, this topic is somewhat underexplored

by the community. Recent works have either adopted a fixed

key scheduler [29, 64, 17, 16], or proposed adaptive sched-

ulers [54, 20, 62] which are trained to heuristically predict

similarities (or deviations) between two video frames. Those

key schedulers lack awareness of the global video context

and can lead to suboptimal performance in the long run.

To overcome this limitation, we propose to apply Re-

inforcement Learning (RL) techniques to expose the key
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Figure 1: Up: The dynamic video segmentation framework

in which a key scheduler is used to make online key/non-key

predictions. Bottom: a comparison between previous key

schedulers and ours. Previous works only consider devia-

tions between current frame (C) and the last key frame (K),

while our scheduler takes into account C, K and historical

information from non-key frames (N), aiming to maximise

the global return.

scheduler to the global video context. Leveraging additional

expert information about decision history, our scheduler is

trained to learn key-decision policies that maximise the long-

term returns in each episode, as shown in Fig. 1 (bottom).

We further study the problem of dynamic face video seg-

mentation with our method. Comparing to semantic im-

age/video segmentation, segmentation of face parts is a less

investigated field [13, 61, 18, 45, 32, 50, 39, 55, 19, 12],

and there are fewer works on face segmentation in videos

[49, 37]. Existing works either used engineered features

[18, 45, 50, 39, 55, 19], or employed outdated image segmen-

tation models like FCN [25] on a per-frame basis [32, 37, 49]

without a dynamic acceleration mechanism. Therefore, we

propose a novel real-time face segmentation system utilising

our key scheduler trained by Reinforcement Learning (RL).

We evaluate the performances of the proposed method

on the 300 Videos in the Wild (300VW) dataset [41] for the

task of real-time face segmentation. Comparing to several

baseline approaches, we show that our reinforcement key

scheduler can make more effective key-frame decisions at

the cost of fewer resource. Through further experiment

conducted on the Cityscapes dataset [10] for the task of

semantic urban scene understanding, we demonstrate that

our method can also generalise to other scenarios.

2. Related works

Semantic image segmentation Fully Convolutional

Networks (FCN) [25] is the first work to use fully convo-

lutional layers and skip connections to obtain pixel-level

predictions for image segmentation. Subsequent works

have made various improvements, including the usage of

dilated convolutions [4, 5, 6, 56, 57], encoder-decoder ar-

chitecture [2, 22, 8], Conditional Random Fields (CRF) for

post-processing [60, 4, 5], spatial pyramid pooling to cap-

ture multi-scale features [59, 5, 6] and Neural Architecture

Search (NAS) [65] to search for the best-performing archi-

tectures [3, 24]. Nonetheless, such models usually require

intensive computational resources, and thus may lead to

unacceptably high latency in video segmentation.

Dynamic video segmentation Clockwork ConvNet

[40] promoted the idea of dynamic segmentation by fixing

part of the network. Deep Feature Flow (DFF) [64] acceler-

ated video recognition by leveraging optical flow (extracted

by FlowNet [63, 15] or SpyNet [36]) to warp key-frame

features. Similar ideas are explored in [54, 17, 31, 11]. Inter-

BMV [16] used block motion vectors in compressed videos

for acceleration. Mahasseni et al. [26] employed convolu-

tions with uniform filters for feature interpolation, while Li et

al. [20] used spatially-variant convolutions instead. Potential

interpolation architectures were searched in [29].

On the other hand, studies of key schedulers are compara-

tively rare. Most existing works adopted fixed key schedulers

[29, 64, 17, 16], which is inefficient for real-time segmenta-

tion. Mahasseni et al. [26] suggested a budget-aware, LSTM-

based key selection strategy trained with reinforcement learn-

ing, which is only applicable for offline scenarios. DVSNet

[54] proposed an adaptive key decision network based on the

similarity score between the interpolated mask and the key

predictions, i.e., low similarity scores leading to new keys

and vice versa. Similary, Li et al. [20] introduced a dynamic

key scheduler trained to predict the deviations between two

video frames by the inconsistent low-level features, and [62]

proposed to adaptively select key frames depending on the

pixels with inconsistent temporal features. Those adaptive

key schedulers only consider deviations between two frames,

and therefore lack understandings of global video context,

leading to suboptimal performances.

Semantic face segmentation Semantic face parts seg-

mentation received far less attention than that of image/video

segmentation. Early works on this topic mostly used engi-

neered features [18, 45, 50, 39, 55, 19] and were designed

for static images. Saito et al. [37] employed graphic cut al-

gorithm to refine the probabilistic maps from a FCN trained

with augmented data. In [32], a semi-supervised data col-

lection approach was proposed to generate more labelled

facial images with random occlusions to train FCN. Re-

cently, Wang et al. [49] integrated Conv-LSTM [53] with

FCN [25] to extract face masks from video sequence, while

the run-time speed did not improve. None of the se works

considered to adopt video dynamics for accelerations, and

we are the first to do so for real-time face segmentation.
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Reinforcement learning In model-free Reinforcement

Learning (RL), an agent receives a state st at each time step

t from the environment, and learns a policy πθ(aj |st) with

parameters θ that guides the agent to take an action aj ∈ A
to maximise the cumulative rewards J =

∑

∞

t=1
γt−1rt. RL

has demonstrated impressive performance on various fields

such as robotics and complicated strategy games [21, 43,

28, 48, 42, 47]. In this paper, we show that RL can be

seamlessly applied to online key decision problem in real-

time video segmentation, and we chose the policy gradient

with reinforcement [51] to learn πθ, where gradient ascend

was used for maximising the objective function Jπ(θ).

3. Methodology

3.1. System Overview

Our target is to develop an efficient and effective key

scheduling policy πθ(a|s) for the dynamic video segmenta-

tion system. To this end, we use Deep Feature Flow [64] as

the feature propagation framework, in which the optical flow

is calculated by a light-weight flow estimation model F such

as FlowNet [63, 15] or SpyNet [36]. Specifically, an image

segmentation model N can be divided into a time-consuming

feature extraction module Nfeat and a task specified module

Ntask. We denote the last key frame as Ik and its features

extracted by Nfeat as fk, i.e., fk = Nfeat(Ik). For an incom-

ing frame Ii, if it is a key frame, the feature is fi = Nfeat(Ii)
and the segmentation mask is yi = Ntask(fi); if not, instead

of using the resource-intensive module Nfeat for feature ex-

traction, its feature fi will be propagated by a feature interpo-

lation function W , which involves the flow field Mi→k from

Ii to Ik, the scale field Si→k from Ii to Ik, and key frame fea-

ture fk, hence the predicted mask becomes yi = Ntask(fi).
Please check [64] for more details on the feature propagation

process.

On top of the DFF framework, we design a light-weight

policy network πθ to make online key predictions. The state

si at frame Ii consists of two parts, the deviation information

Di→k which describes the differences between Ik and Ii, and

the expert information Ei regarding key decision history (see

Section 3.2 for details), i.e., si = {Di→k, Ei}. Feeding si
as input, the policy network outputs the action probabilities

πθ(aj |si) where aj ∈ {a0, a1} and πθ(a0|si)+πθ(a1|si) =
1.0 (we define a0 for non-key action and a1 for the key one).

For an incoming frame Ii, if πθ(a1|st) > τ where τ is a

threshold, it will be identified as a key frame, vice versa. In

general, key action a1 will lead to a segmentation mask with

better quality than the ones given by action a0.

In this work, we utilise the FlowNet2-s model [15] as

the optical flow estimation function F . DVSNet [54] has

shown that the high-level features from FlowNet models

contain sufficient information about the deviations between

two frames, and it can also be easily fetched along with

optical flow without additional cost. Therefore, we adopt the

features of FlowNet2-s model for Di→k. It is worthwhile

to notice that by varying Di→k properly, our key scheduler

can be easily integrated into other dynamic segmentation

frameworks [17, 20, 29, 16, 62] which do not use optical

flow. Fig. 2 gives an overview of our system.

3.2. Training Policy Network

Network structure Our policy network comprises of

one convolution layer and four fully connected (FC) layers.

The FlowNet2-s feature Di→k is fed into the first convolu-

tion layer Conv0 with 96 channels, followed by FC layers

(FC0, FC1 and FC2) with output size being 1024, 1024 and

128 respectively. Two additional channels containing expert

information about decision history Ei are concatenated to

the output of FC2 layer. The first channel records the Key

All Ratio (KAR), which is the ratio between the key frame

and every other frames in decision history, while the sec-

ond channel contains the Last Key Distance (LKD), which

is the interval between the current and the last key frame.

KAR provides information on the frequency of historical

key selection, and LKD gives awareness about the length

of continuous non-key decisions. Hence, the insertion of

KAR and LKD extends the output dimension of FC2 to 130,

while FC3 layer summarises all these information and gives

action probabilities πθ(aj |si) where aj ∈ {a0, a1}, a0 and

a1 stand for non-key and key action correspondingly.

Reward definition We use mean Intersection-over-

Union (mIoU) as the metric to evaluate the segmentation

masks. We denote the mIoU of yi from a non-key action a0
as U i

a0
, the mIoU from key action a1 as U i

a1
, and the reward

ri at frame Ii is defined in Eq. 1. Such definition encourages

the scheduler to choose key action on the frames that would

result in larger improvement over non-key action, and it also

reduces the variances of mIoUs across the video.

ri =

{

0, aj = a0.

U i
a1

− U i
a0
, aj = a1.

(1)

If no groundtruth is available (such that mIoU could not

be calculated), we use the segmentation mask from key ac-

tion as the pseudo groundtruth mask. In this case, the reward

formulation is changed to Eq. 2, in which yia0
and yia1

denote

the segmentation mask on ith frame from non-key action a0
and key action a1 respectively, and Acc(yia0

, yia1
) stands for

the accuracy score with yia0
as the prediction and yia1

as the

label.

ri =

{

0, aj = a0.

1−Acc(yia0
, yia1

), aj = a1.
(2)

Constraining key selection frequency The constraints

on key selection frequency are necessary in our task. Since
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Figure 2: An overview of our system. Ik is the last key frame (key decision process not shown) with feature fk extracted by

Nfeat. For an incoming frame Ii, its input state si includes two components: the deviation information Di→k between Ii
and Ik, and the expert information Ei about decision history. Di→k is fed into Conv0 layer of policy network πθ, while Ei is

concatenated to the output of FC2 layer. Basing on si, πθ gives probabilities output πθ(aj |si) regarding taking key or non-key

actions. For a non-key action, the optical flow between Ii and Ik will be used to warp fk to fi, while for a key action, Ii will

go through Nfeat to obtain a new key feature fi.

a key action will generally lead to a better reward than a

non-key one, the policy network inclines to make all-key

decisions if no constraint is imposed on the frequency of key

selection. In this paper, we propose a stop immediately ex-

ceeding the limitation approach. Particularly, for one episode

consisting of M + 1 frames {It, It+1, ..., It+M}, the agent

starts from It and explores continuously towards It+M . At

each time step, if the KAR in decision history has already

surpassed a limit η, the agent will stop immediately and thus

this episode ends, otherwise, it will continue until reaching

the last frame It+M . By using this strategy, a policy network

should limit the use of key decision to avoid an over-early

stopping, and also learn to allocate the limited key budgets

on the frames with higher rewards. By varying the KAR limit

η, we could train πθ with different key decision frequencies.

Episode settings Real-time videos usually contains

enormous number of high-dimensional frames, thus it is

impractical to include all of them in one episode, due to

the high computational complexity and possible huge vari-

ations across frames. For simplicity, we limit the length of

one episode {It, It+1, ..., It+M} to 270 frames (9 seconds)

for 300VW and 30 frames (snippet length) for Cityscapes

respectively. We vary the starting frame It during train-

ing to learn the global policies across videos. For each

episode, we let the agent run K times (with the aforemen-

tioned key constraint strategy) to obtain K trials to reduce

variances. The return of each episode can be expressed

as J(θ) = 1

K

∑K

v=1

∑t+pv

u=t γu−trvu, where t is the starting

frame index of the episode, and pv denotes the total step num-

ber at the vth trail (since agent may stop before M steps),

and rvu refers to the reward of frame u in vth trail. J(θ) is

the main objective function to optimise.

Auxiliary loss In addition to optimise the cumulative

reward J(θ), we employ the entropy loss H(πθ(a|s)) as

in [27, 33] to promote the policy that retains high-entropy

action posteriors so as to avoid over-confident actions. Eq. 3

shows the final objective function L to optimise using policy

gradient with reinforcement method [51].

L = J(θ) + λ1H(πθ(a|s)) (3)

Epsilon-greedy strategy During training, agent may

still fall into over-deterministic dilemmas with action poste-

riors approaching nearly 1, even though the auxiliary entropy

loss have been added. To recover from such dilemma, we

implement a simple strategy similar to epsilon-greedy al-

gorithm for action sampling, i.e., in the cases that action

probabilities πθ(aj |s) exceed a threshold ǫ (such as 0.98),

instead of taking action aj with probability πθ(aj |s), we use

ǫ to stochastically pick action aj (and 1.0 − ǫ for picking

action a1−j).

4. Experiments

4.1. Datasets

We conducted experiments on two datasets: the 300

Videos on the Wild (300VW) dataset [41] and the Cityscapes

dataset [10]. 300VW is used for evaluating the proposed

real-time face segmentation system with the RL key selector.

To the best of our knowledge, 300VW is the only publicly
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available face video dataset that provides per-frame segmen-

tation labels. Therefore, to demonstrate the generality of our

method, we also evaluate our method on Cityscapes [10],

which is a widely used dataset for scene parsing, and thus

we show how our RL key scheduler can generalise to other

datasets and scenarios.

The 300VW dataset contains 114 face videos (captured

at 30 FPS) with an average length of 64 seconds, all of

which are taken in unconstrained environment. Following

[49], we have cropped faces out of the video frames and

generated the segmentation labels with facial skin, eyes,

outer mouth and inner mouth for all the 218,595 frames.

For experiment purpose, we divided the videos into three

subject-independent parts, namely A/B/C sets containing

51 / 51 / 12 videos. In detail, for training N , we randomly

picked 9,990 / 1,0320 / 2,400 frames from sets A/B/C
for training/validation/testing. To train F , we randomly

generate 32,410 / 4,836 / 6,671 key-current image pairs with

a varying gap between 1 to 30 frames from sets A/B/C
for training/validation/testing. We intentionally excluded

set A for policy network learning, since this set has already

been used to train N and F , instead, we used the full B set

(51 videos with 98,947 frames) for training and validating

the RL key scheduler, and evaluated it on the full C set (12

videos with 22,580 frames).

The Cityscapes dataset contains 2,975 / 500 / 1,525 anno-

tated urban scene images as training/validation/testing set,

while each annotated image is the 20th frame of a 30-frame

(1.8 seconds) video snippet. To ensure a fair comparison on

this dataset, we have adopted the same preliminary models

(N and F) and the model weights provided by the authors

of DVSNet [54], such that we only re-trained the proposed

RL key schedulers using the Cityscapes training snippets.

Following DVSNet [54], our method and the baselines are

evaluated on the validation snippets, where the initial frame

is set as key and performances are measured on the 20th

annotated frame.

4.2. Experimental Setup

Evaluation metric We employed the commonly used

mean Intersection-over-Union (mIoU) as the evaluation met-

ric. For the performance evaluation of different key sched-

ulers, we measure: 1. the relationship between Average Key

Intervals (AKI) and mIoU, as to demonstrate the effective-

ness of key selections under different speed requirements,

and 2. the relationship between the actual FPS and mIoU.

Training preliminary networks On 300VW, we

utilised the state-of-the-art Deeplab-V3+ architecture [8]

for image segmentation model N , and we adopted the

FlowNet2-s architecture [15] as the implementation of flow

estimation function F . For training N , we initialised the

weights using the pre-trained model provided in [8] and then

fine-tuned it. We set the output stride and decoder output

stride to 16 and 4, respectively. We divided N into Nfeat

and Ntask, where the output of Nfeat is the posterior for

each image pixel, we then fine-tuned the FlowNet2-s model

F as suggested in [64] by freezing Nfeat and Ntask. Also,

we used the pre-trained weights provided in [15] as the start-

ing point of training F . The input sizes for N and F are

both set to 513*513.

On Cityscapes, we have adopted identical N and F ar-

chitectures as DVSNet [54] and directly use the weights

provided by the authors, such that we only re-trained the pro-

posed policy key scheduler. Besides, we have also adopted

the frame division strategy from DVSNet and have divided

the frame into four individual regions. We refer interested

readers to [54] for more details.

Reinforcement learning settings For state si =
{Di→k, Ei}, following DVSNet [54], we leveraged the fea-

tures from the Conv6 layer of the FlowNet2-s model as the

deviation information Di→k, and we obtained the expert in-

formation Ei = {KAR,LKD} from the last 90 decisions.

During the training of policy network, Nfeat, Ntask and F
were frozen to avoid unnecessary computations. We chose

RMSProp [46] as the optimiser and set the initial learning

rate to 0.001. The parameters λ1 in Eq. 3 were set to 0.14.

We empirically decided the discount factor γ to be 1.0, as

the per frame performance was equally important in our task.

The value of epsilon ǫ in epsilon-greedy strategy was set to

0.98. During training, we set the threshold value τ for deter-

mining the key action to 0.5. We used the reward formulation

as defined in Eq. 1 for 300VW. For Cityscapes, the modified

reward as defined in Eq. 2 was used because most frames

in the Cityscapes dataset are not annotated. The maximum

length of each episode was set to 270 frames (9 seconds)

for 300VW and 30 frames (snippet length) for Cityscapes

respectively, and we repeated a relatively large number of 32

trials for each episode with a mini-batch size of 8 episodes

for back-propagation in πθ. We trained each model for 2,400

episodes and validated the performances of checkpoints on

the same set. We also varied the KAR limit η to obtain policy

networks with different key decision tendencies.

Baseline comparison We compared our method with

three baseline approaches on both datasets: (1) The adap-

tive key decision model DVSNet [54]; (2) The adaptive key

scheduler using flow magnitude difference in [54]; (3) Deep

Feature Flow (DFF) with a fixed key scheduler as in [64].

We utilised the same implementations and settings for the

baselines as described in DVSNet paper, and we refer the

readers to [54] for details. Note that for the implementa-

tion of DVSNet on Cityscapes, we directly used the model

weights provided by the authors, but we have re-trained the

DVSNet model on 300VW. For our method, to obtain key de-

cisions with different Average Key Intervals, we have trained

multiple models with various KAR limit η, and also varied

the key threshold values τ of those models.
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Table 1: The performances of various image segmentation

models and the flow estimation model FlowNet2-s. For train-

ing FlowNet2-s, Deeplab-V3+ with ResNet-50 backbone is

used as the key feature extractor Nfeat. FPS is evaluated on

a Nvidia 1080Ti GPU. ‘N/A’ refers to “Not Applicable”.

Model
Eval

Scales
mIoU(%) FPS

FCN (VGG16) N/A 63.54 45.5

Deeplab-V2

(VGG16)
N/A 65.80 3.44

Deeplab-V3+

(Xception-65)
1.0 68.25 24.4

1.25, 1.75 68.98 6.4

Deeplab-V3+

(MobileNet-V2)
1.0 67.07 58.8

1.25, 1.75 68.20 21.7

Deeplab-V3+

(ResNet-50)
1.0 67.50 33.3

1.25, 1.75 69.61 10.1

FlowNet2-s N/A 64.13 153.8

Implementation We implemented our method in Ten-

sorflow [1] framework. Experiments were run on a cluster

with eight NVidia 1080 Ti GPUs, and it took approximately

2.5 days to train a RL model per GPU.

4.3. Results

Preliminary networks on 300VW We evaluated five

image segmentation models on 300VW dataset: FCN

[25] with VGG16 [44] architecture, Deeplab-V2 [5] of

VGG16 version, the Deeplab-V3+ [8] with Xception-65

[9] / MobileNet-V2 [38] / RestNet-50 [14] backbones. We

have also tested two different eval scales (refer [8] for de-

tails) for Deeplab-V3+ model. As can be seen from Table 1,

Deeplab-V3+ with ResNet-50 backbone and multiple eval

scales (1.25 and 1.75) has achieved the best mIoU with an

acceptable FPS, therefore we selected it for our segmentation

model N . Its feature extraction part Nfeat was used to ex-

tract key frame feature in key-current images pairs during the

training of FlowNet2-s [15] model F , whose performance

was evaluated by the interpolation results on current frames.

From Table 1 we can discover that the interpolation speed

with F is generally much faster than those segmentation

models at the cost of a slight drop in mIoU (from 69.61%

to 64.13%). Under live video scenario, the loss of accuracy

can be effectively remedied by a good key scheduler.

RL training visualisation on 300VW In the upper row

of Fig. 3, we demonstrate the average return during RL train-

ing with different KAR limits η (0.04, 0.06, 0.14) on 300VW

dataset. It can be seen that even though we select the starting

frames of each episode randomly, those return curves still

exhibit a generally increasing trend despite several fluctua-

tions. This validates the effectiveness of our solutions for

reducing variances and stabilising gradients, and it also veri-

fies that the policy πθ is improving towards more rewarding

key actions. Besides, as the value of η increases and allows

for more key actions, the maximum return that each curve

achieves also becomes intuitively higher.

We also visualised the influences of two expert informa-

tion KAR and LDK by plotting their weights in πθ during

RL training on 300VW. In the bottom row of Fig. 3, we have

plotted the weights of the two channels in πθ that received

KAR and LDK as input and contributed to the key posteriors

πθ(a1|s), and we can observe that the weights of the LDK

channel show a globally rising trend, while that of the KAR

channel decrease continuously. Such trends indicate that the

KAR/LDK channels become increasingly important in key

decisions as training proceeds, since a large LDK value (or a

small KAR) will encourage πθ to take key action. This obser-

vation is consistent with the proposed key constraint strategy.

Furthermore, we can also imply that the key scheduler relies

more on the LDK channel than the KAR with a lower η
like 0.04, conversely, KAR becomes more significant with a

higher η like 0.14.

Performances evaluations The upper plot of Fig. 4

shows the Average Key Intervals (AKI) versus mIoU of vari-

ous key selectors on the 300VW dataset and the bottom plot

depicts the corresponding FPS versus mIoU curves. Note

that in the AKI vs. mIoU graph, we include two versions

of DFF: the one with fixed key intervals and the variant

with randomly selected keys. We can easily see that our key

scheduler have shown superior performance than others in

terms of both effective key selections and the actual running

speed. Although the performance of all methods are similar

for AKI less than 20, this is to be expected as the perfor-

mance degradation on non-key frames can be compensated

by dense key selections. Our method starts to show supe-

rior performance when the key interval increases beyond 25,

where our mIoUs are consistently higher than that of other

methods and decreases slower as the key interval increases.

The evaluation results on Cityscapes can be found in Fig.

5, which demonstrates a similar trend with those results on

300VW and therefore validates the generality of our RL key

scheduler to other datasets and tasks. However, it should be

noted that, in the case of face videos, selecting key frames

by a small interval (≪ 20) does not significantly affect the

performance, which is not the same as in the autonomous

driving scenarios of Cityscapes. This could be attributed to

the fact that variations between consecutive frames in face

videos are generally less than those in autonomous driving

scenes. As a result, we can gain more efficiency benefit when

using key scheduling policy with relatively large interval for

dynamic segmentation of face video.

4.4. Visualising Key Selections

To better understand why our RL-based key selection

method outperforms the baselines, we visualise the distribu-
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Figure 3: The upper row plots the average return curves during RL training on 300VW with η value set to 0.04, 0.06 and 0.14.

The bottom row illustrates the variations of the weights of KAR and LDK channels contributing to the key posteriors πθ(a1|s)
on the same dataset. The plots in the same column are from the same training session.

Figure 4: Comparison between baselines and our approach

on 300VW. Up: AKI versus mIoU, bottom: FPS versus

mIoU. FPS is evaluated on a Nvidia 2080Ti GPU.

tion of intervals between consecutive keys (CKI) based on

the key selections made by all evaluated methods. Without

loss of generality, Fig. 6 shows the density curves plotted

from the experiment on 300VW dataset at AKI=121. As

DFF uses a fixed key interval, its CKI distribution takes

the shape of a single spike in the figure. In contrast, the

CKI distribution given by our method has the flattest shape,

meaning that the key frames selected by our method are

more unevenly situated in the test videos. Noticeably, there

Figure 5: Comparison between baselines and our approach

on Cityscapes. Up: AKI versus mIoU, bottom: FPS versus

mIoU. FPS is evaluated on a Nvidia 1080Ti GPU.

are more cases of large gaps (>200) between neighbouring

keys selected by our method than by others. This indicates

our method could better capture the dynamics of the video

and only select keys that have larger global impact to the

segmentation accuracy.

In addition, we also visualise the key frames selected by

our method, DFF and DVSNet on a 30-second test video

in Fig. 7 to provide insight on how the key selections can

affect the mIoU. We can observe from this figure that the
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Figure 6: The histogram plot for Consecutive Key Intervals

of different methods on 300VW (AKI=121).

Figure 7: A comparison of key selections on a 30-second

face video between DVSNet, DFF and ours (AKI=121).

key frames selected by our method can better compensate

for the loss of accuracy and retain higher mIoU over longer

span of frames (such as frame 37 and 459), while those

selected by DFF (fixed scheduler) are less flexible and the

compensation to mIoU loss is generally worse than ours.

Comparing DVSNet with ours, we can see that 1) our method

can give key decisions with more stable non-key mIoUs

(frames 37, 459 and 713), and 2) on hard frames such as

frames 600 to 750, our reinforcement key scheduler has also

made better compensations to performance loss with less key

frames. These observations demonstrate the benefits brought

by reinforcement learning, which is to learn key-decision

policies from the global video context.

Last but not least, in Fig. 8, we plot the segmentation

masks generated by different methods on several non-key

frames during the experiment on 300VW dataset (AKI=121).

It can be seen that DFF with fixed key schedulers usually

leads to low-quality masks with missing facial components,

while the DVSNet and the Flow Magnitude methods have

Figure 8: The segmentation masks generated by different

methods for the non-key frames on 300VW (AKI=121).

shown better but still not satisfying results. In contrast, our

method has produced non-key masks with the best visual

qualities, which further validate the effectiveness of the pro-

posed key schedulers.

5. Conclusions

In this paper, we proposed to learn an efficient and effec-

tive key scheduler via reinforcement learning for dynamic

face video segmentation. By utilising expert information and

appropriately designed training strategies, our key scheduler

achieves more effective key decisions than baseline methods

at smaller computational cost. We also show the method is

not limited to face video but could also generalise to other

scenarios. By visualising the key selections made by our

method, we try to explain why our key scheduler can make

better selections than others. This is the first work to apply

dynamic segmentation techniques with RL on real-time face

videos, and it can be inspiring to future works on real-time

face segmentation and on dynamic video segmentation.
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