
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Joint Facial Action Unit Detection and Feature
Fusion: A Multi-conditional Learning Approach

Stefanos Eleftheriadis, Student Member, IEEE, Ognjen Rudovic, Member, IEEE, and Maja Pantic, Fellow, IEEE

Abstract—Automated analysis of facial expressions can benefit
many domains, from marketing to clinical diagnosis of neurode-
velopmental disorders. Facial expressions are typically encoded
as a combination of facial muscle activations, i.e., action units.
Depending on context, these action units co-occur in specific
patterns, and rarely in isolation. Yet, most existing methods
for automatic action unit detection fail to exploit dependencies
among them, and the corresponding facial features. To address
this, we propose a novel multi-conditional latent variable model
for simultaneous fusion of facial features and joint action unit de-
tection. Specifically, the proposed model performs feature fusion
in a generative fashion via a low-dimensional shared subspace,
while simultaneously performing action unit detection using a
discriminative classification approach. We show that by combin-
ing the merits of both approaches, the proposed methodology
outperforms existing purely discriminative/generative methods
for the target task. To reduce the number of parameters, and
avoid overfitting, a novel Bayesian learning approach based
on Monte Carlo sampling is proposed, to integrate out the
shared subspace. We validate the proposed method on posed and
spontaneous data from three publicly available datasets (CK+,
DISFA and Shoulder-pain), and show that both feature fusion
and joint learning of action units leads to improved performance
compared to the state-of-the-art methods for the task.

Index Terms—multiple action unit detection, multi-conditional
learning, multi-label, Gaussian processes.

I. INTRODUCTION

Facial expression is one of the most powerful channels of
non-verbal communication [1]. It conveys emotions, provides
clues about people’s personality and intentions, reveals the
state of pain, weakness or hesitation, among others. Automatic
analysis of facial expressions has attracted significant
research attention over the past decade, due to its wide
importance in various domains such as medicine, security and
psychology [2]. The facial action coding system (FACS) [3]
is the most comprehensive anatomically-based system for
describing facial expressions in terms of non-overlapping,
visually detectable facial muscle activations, named action
units (AUs). FACS defines 32 unique AUs, several categories
of head/eye positions and other movements, which can be
used to describe every possible facial expression. Automatic
detection of AUs is a challenging task mainly due to the
complexity and subtlety of human facial behavior, but also due
to individual differences variations in head-pose, illumination,
occlusions, etc. [2]. In computer vision, these sources of
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variation in facial expression data are typically accounted for
at (i) the feature level, by deriving facial features that are
robust to the aforementioned variations, and/or (ii) the model
level, by capturing temporal dynamics of AUs (e.g., changes
in AU intensity over time) and semantics of AUs, i.e., their co-
occurrences, as commonly encountered in spontaneous data.

At the feature level, detection of AUs can be performed
using either geometric or appearance features, or both [2]. The
geometric features capture changes in the location of specific
salient facial points caused by activity of facial muscles (e.g.,
the displacement of the facial points between expressive and
expressionless faces [4]). On the other hand, the appearance-
based features capture transient differences in the facial
appearance such as wrinkles, bulges and furrows. While the
former are more robust to illumination and pose changes,
not all AUs can be detected solely from the geometric
features [5]. For example, the activation of AU6 wrinkles
the skin around the outer corners of the eyes and raises the
cheeks, which makes it difficult, if not impossible, to detect
this AU from facial landmarks only. On the other hand,
appearance-based features are typically high-dimensional
and contain subject-specific information, both of which can
adversely affect the classification/detection performance.
Therefore, using both geometric and appearance features
might be the best choice, letting the model to choose the most
relevant features for detection of target AUs. Thus, our goal
is to achieve an effective fusion of these two types of features
while still keeping the model computationally tractable.

AUs rarely appear in isolation (more than 7,000 AU
combinations have been observed in everyday life [6]).
For this reason, the AU detection can be improved at the
model level by exploiting the ‘semantics’ of AUs, in terms
of their co-occurrences. These co-occurrences are usually
driven by the context in which the target facial behavior
occurs (e.g., pain or joy). Encoding this type of information
during the joint AU prediction helps to reduce the space of
possible AU combinations in target data, resulting in simpler
and more effective models for the joint prediction. Also,
the co-occurring AUs can be non-additive, in the case of
which one AU masks another, or a new and distinct set of
appearances is created [3]. For instance, AU4 (brow lowerer)
appears differently depending on whether it occurs alone
or in combination with AU1 (inner brow raise). When AU4
occurs alone, the brows are drawn together and lowered. In
AU1+4, the brows are drawn together but are raised due
to the action of AU1. This, in turn, significantly affects the
appearance features of the target AUs. Moreover, some AUs
are often activated together due to the latent variables such
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Fig. 1. The proposed MC-LVM. The geometrical and appearance input features, y(1) and y(2), are first projected onto the shared manifold X . The fusion
is attained via GP conditionals, p(y(1)|x) and p(y(2)|x), that generate the inputs. Classification is performed on the manifold via simultaneously learned
logistic functions p(z(c)|x) for multiple AU detection. The subspace is regularized using constraints imposed on both latent positions and output classifiers,
encoding local and global dependencies among the AUs.

as emotions (e.g., AU12 and AU6 in the case of joy).
Despite all this, most of the existing approaches to AU

detection model each AU independently, using either a single
type of facial features [7], [8], or combining multiple features
by means of naive approach (i.e., simple feature concatena-
tion) [4], [9] or multiple-kernel learning (MKL) [10]. Fur-
thermore, some methods treat different combinations of AUs
as new independent classes [11]; however, this is impractical
given the number of possible AU combinations. On the other
hand, methods that do attempt to model the AU co-occurrences
(e.g., [12], [13], [14]) fail to exploit different types of facial
features in their models. To our knowledge, the only methods
that attempt both are [15], [16], [17]. However, these methods
either suffer from the curse of dimensionality as they perform
feature fusion by concatenation of geometric- and appearance-
based features using parametric models [15], [16], or cannot
model more than a few AUs jointly due to the computational
burden of their (non-parametric) inference methods [17].

To this end, we propose a Multi-conditional Latent Variable
Model (MC-LVM) that performs simultaneously the fusion of
different facial features and joint detection of AUs. Instead of
performing the AU detection in the original feature space, as
done in existing works [15], [17], [16], the MC-LVM attains
the feature fusion via a low-dimensional subspace shared
across feature sets. This subspace is learned by employing the
framework of shared Gaussian processes (GPs) [18]. Here,
the learning is constrained by two types of newly introduced
constraints. Topological constraints encode local dependencies
(from image pairs) among multiple AUs by means of string
kernels [19]. Relational constraints, enforce the co-occurrences
of the model predictions to match those of the target labels.
The learning of the subspace is performed jointly with the
AU detectors. The latter are modeled via multiple logistic
regressors which operate on the shared subspace of the
fused features. Note that, in contrast to existing multi-output
subspace learning methods (e.g., [20], [21]), the MC-LVM
learns a subspace for multiple AU detection that combines both
the generative and discriminative properties of probabilistic
models, while simultaneously modeling the AU correlations
at both feature level (via the proposed fusion approach) and
model level (via the introduced regularizers). Due to its multi-
conditional likelihood function, the proposed model is less
susceptible to overfitting compared to purely discriminative

models. Its generative part acts as an efficient regularizer
during parameter learning. The proposed multi-conditional
learning is motivated by the fact that discriminative learning
usually yields better results when provided with sufficient
training data, as it does not expend its modeling power on the
marginal distribution of the features, as done in its generative
counterparts. On the other hand, generative models, if specified
well, can generalize better with fewer training data [22].
Thus, leveraging the advantages of the two approaches during
the model learning process is expected to lead to better
generalization performance. To further improve the robustness
and efficiency of the parameter estimation, a Bayesian
learning of the data subspace is facilitated through Monte
Carlo sampling, and an Expectation-Maximization (EM)-
like learning approach. During inference, the simultaneous
detection of multiple AUs is performed by applying the
learned back-mappings from inputs to the shared subspace,
where the detection of target AUs is performed consequently.
The outline of the proposed approach is illustrated in Fig. 1.

To summarize, the contributions of the proposed work are:
• To the best of our knowledge, this is the first approach

for multiple AU recognition that jointly performs facial
feature fusion and AU detection simultaneously, via
manifold learning. The proposed MC-LVM is derived
in a fully Bayesian multi-conditional formulation,
and combines the properties of both generative and
discriminative model by merging the framework of
shared GPs with logistic classifiers.

• We introduce novel topological and relational constraints
that successfully encode the AU dependencies at both
feature and model level into the proposed manifold
learning for joint AU detection. We show that such
constraints play an important role in increasing the
discriminative power of the learned manifold, resulting
in improved (average) detection performance.

• We demonstrate on three publicly-available datasets that
the proposed approach outperforms the state-of-the-art
methods for joint AU detection, and several recently
proposed methods for feature fusion and multi-label
classification.

Note that a preliminary version of this work appeared
in [23]. Herein, we extensively evaluate the model’s perfor-
mance under various settings, in order to extend and conclude
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the analysis performed in [23]. Specifically, in our experiments
are now included: 1) A thorough assessment of the contri-
bution of the weighted multi-conditional formulation to the
detection of each AU. 2) An evaluation of the generalization
ability of the proposed model on two cross-dataset scenarios.
3) Additional experimental results based on extra evaluation
metrics for our comparisons to existing state-of-the-art.

The remainder of the paper is organized as follows. Sec. II
gives an overview of existing work on AU detection and
related models for the target task. In Sec. III, we introduce
the proposed MC-LVM. Sec. IV shows the results of the
experimental evaluation, and Sec. V concludes the paper.

II. RELATED WORK

A. Multiple Facial AU Detection

The majority of the existing works attempt to recognize
AUs or certain AU combinations independently [4], [9], [7],
[8], [11], [5], [24], [25]. A common limitation of these
methods is that they construct independent AU classifiers that
ignore the relations among the AUs. Based on how the AU-
specific classifiers are designed, they can be divided into two
main categories: (a) static modeling approaches, where each
frame is evaluated independently [4], [9], [7], [8], [11], and
(b) temporal modeling approaches, where temporal dynamics
are explored within a video sequence [5], [24], [26]. Rep-
resentatives of the first group commonly apply independent
classifiers, e.g., support vector machine (SVM) [4], [9], and
Adaboost [7] on the collected features, or use the notion of
domain adaptation to develop personalized AU-classifiers [8].
Alternatively, in [11] sparse representations are employed to
create a dictionary of facial images with certain AU combina-
tions. In the second group, the majority of the works are based
on variants of dynamic Bayesian networks (DBN). [5] com-
bines SVM and hidden Markov models (HMM) to encode the
AUs and their temporal activations, while the authors in [24]
use a combination of GentleBoost and HMM for the target
task. More recently, the authors in [26] account for the ordinal
information in the framework of conditional random field
(CRF), to model the relations between the temporal segments
of each AU. Regardless of the modeling technique, none of the
above methods takes into account the relations among the AUs.

To the best of our knowledge, there are only few works
that perform joint detection of AUs [12], [27], [16], [15], [17],
[13]. [12] proposed a generative framework based on DBNs to
model the semantics of different AUs. Due to the Markov as-
sumptions while learning the network of the co-occurred AUs,
this model can handle only local dependencies between pairs
of AUs. The authors in [27] propose a generative latent tree al-
gorithm for AU intensity estimation. The dependencies among
observed features and multiple AUs are modeled via latent
variables. Nevertheless, [12], [27] lack the classification power
of the discriminative models. On the other hand, the models
in [16], [15], [17], [13] are defined in a fully discriminative
framework. Specifically, [16] first learns the logistic classifiers
for multiple AUs using the notion of multi-task feature learn-
ing, and then uses a pre-trained BN to refine the predictions.
Note that this model fails to account for AU dependencies at

the feature level, which can result in loss of information, e.g.,
in case of non-additive AUs. [14] tries to learn independent
logistic classifiers by first selecting a sparse subset of facial
patches which are more relevant to each AU. Yet, the fusion
task is not addressed, while the AU-dependencies are regarded
only between predefined pairs. [15] employed the restricted
Boltzmann machine (RBM) to overcome the pair-wise AU
modeling limitation of the DBN [12]. The authors proposed a
parametric model, in which discrete latent variables account
for correlations among discrete outputs that are directly con-
nected to the image features. Since the latent variables are not
connected to the feature space, they cannot model correlations
between the inputs, hence, concatenation of the input features
is used for the fusion task. [17] combines multi-task learning
with MKL to jointly learn different AU classifiers. The authors
introduce lp-norm regularization to the MKL, in order to fuse
multiple types of features with different kernels, and account
for dependencies among different tasks (i.e., AUs). However,
this non-parametric method can deal only with small subsets
of AUs (typically less than 4) in its output. [13] proposed
a probabilistic framework, based on Bayesian compressed
sensing (BCS), to encode the co-occurrence structure and the
(group) sparsity patterns of the AUs to the compressed signal
(latent variables). The relations between the original data and
the latent variables are modeled via linear regression, where
the inputs are the appearance based features. Hence, this work
cannot deal with fusion of different input features.

The proposed approach advances the existing work in
many aspects. The fusion of the facial features is performed
in a continuous (low-dimensional) subspace, allowing the
model to capture dependencies among multiple AUs at both
feature and model level during learning. Contrary to the
methods mentioned above, which are purely generative or
discriminative, the proposed MC-LVM takes the best of both
approaches and successfully combines them in its multi-
conditional likelihood function. Note that the the proposed
MC-LVM is closely related to the MKL model in [17], which
performs the feature fusion implicitly via the kernel-induced
space, while MC-LVM does it explicitly via the fixed point
estimate of the shared low-dimensional latent projections. Yet,
the complexity of the model in [17] increases quadratically
with the number of AUs in the output, while it increases only
linearly in case of MC-LVM. Consequently, MC-LVM can
efficiently model relations among a relatively large number
of outputs, without the requirement to a priori define groups
of AUs as done in [17], [14].

B. Multi-modal Fusion

The analysis of multi-modal streams of data has attracted
significant research attention in the fields of computer vision
and especially the facial behavior analysis. [28] provides
an extensive overview on how vocal, gestural and facial
features extracted from both audio and visual modalities can
be used to identify particular human behaviors. As we have
already seen, the most evident way towards feature fusion is
to concatenate the individual modalities and apply a single
classifier for the target task [4], [9]. An orthogonal approach

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIP.2016.2615288

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

is to first train individual classifiers per modality and then
fuse the predictions, e.g., by feeding their outputs in another
classifier as in [29]. Alternatively, fusion can be performed via
employing the framework of MKL, which aims to integrate
the information from different features by learning a weighted
combination of respective kernels. A detailed survey of the
MKL-related methods can be found in [30]. Another possible
direction toward feature fusion is to exploit the notion of joint
sparse representations or learn multi-modal dictionaries based
on joint sparsity constraints. Based on these techniques, the
authors in [31], [32] managed to fuse the information from
various biometrics in order to perform more accurate face
verification. A similar approach is to perform joint dimension-
ality reduction and project the multiple features on a common
subspace. For instance, in [33], [34] facial images from various
channels (e.g., infrared images and forensic sketches) are
commonly projected to the space obtained by PCA, before
applying a classifier for face recognition. Likewise, the authors
in [35] employed the canonical correlation analysis (CCA) in
order to fuse the information from fMRI, sMRI and EEG data,
for detecting patients diagnosed with schizophrenia.

In the current work we follow the approach of joint dimen-
sionality reduction in order to fuse the information from the
geometric and appearance features. In contrast to the methods
described above, MC-LVM employs the framework of shared
GP latent variable models (S-GPLVM) [18] to unravel a shared
non-linear manifold that generates the input features. This
results in a more natural fusion, since the latent representations
are learned in a way to to generate the multiple modalities.
The generative process of MC-LVM is utilized via a non-
parametric probabilistic mapping from the latent space to
the observed features. This property constitutes the proposed
approach less prone to overfitting. Finally, MC-LVM, as an
inherent kernel method, can effectively deal with input features
of higher dimensionality and more complex structure.

C. Multi-label Classification

The proposed MC-LVM is related to existing works
on multi-label classification that attempt to learn robust
classifiers by exploiting efficiently the label dependencies.
For an extensive overview, the reader is referred to [36], [37].
For instance, [38] extended the k-nearest neighbor (kNN) to
the multi-label scenario by using the number of neighboring
instances belonging to each possible class, as prior information
to determine the label set for an unseen instance. [39] derived
the back-propagation algorithm of the neural networks for
the multi-label classification. [40] proposed an approximate
learning approach in order to extended the work of structured
SVM [41] to multi-label classification. The latter is also highly
related to multi-task learning techniques. The latter rely on the
introduction of an inductive bias on the joint space of all tasks
(e.g., AUs) that reflects our prior beliefs regarding the related
structure. A popular approach is to jointly learn the tasks under
a regularization framework [42]. The regularization operates
on the parameter space and penalizes distances between the
different tasks, which results in uncovering a common set
of parameters across the tasks. Hence, it allows to capture

the similarities among the outputs through parameter sharing.
Based on this idea, [21] introduced a manifold regularization
approach to the multi-task learning. The key assumption is
that the task parameters lie on a low dimensional manifold,
and thus, they cannot vary arbitrarily. Instead of explicitly
learning the manifold, the authors model the projection
functions in a parametric formulation, and alternate between
solving for the task parameters and minimizing their distances
in the projected manifold. Similarly, [20] defines a latent
variable model, which generates the task specific parameters
in a probabilistic fashion. Due to its probabilistic formulation,
several priors can be imposed on the latent variables to induce
a desired structure to the task specific manifold.

The above methods rely on implicit assumptions that all
tasks are related to each other. Contrary to this belief, [43] aims
to uncover a structured pattern among the tasks, and combine
them into different groups. Each task parameters are assumed
to be a sparse, linear combination of underlying latent basic
tasks. The overlap in the sparsity patterns of any two tasks
controls the amount of sharing between them. In a similar fash-
ion, [44] introduced the use of multi-output GP, for modeling
task dependent regressors (latent functions) via GP priors. The
output of each task is a weighted combination of a number of
shared latent functions, which enables the collaboration among
the tasks, plus an individual task-specific latent function. In
order to deal efficiently with the problem of large number of
output tasks and input data points, the authors derived a for-
mulation based on variational inference. Following a different
approach, [45] used the notion of spectral graph regularization
to jointly learn clusters of closely related tasks. Relationships
between the tasks are defined in terms of the graph Laplacian,
which favors similar tasks to be close in the parameter space.
The authors proposed an alternating optimization algorithm
based on proximity operators, in order to jointly learn the tasks
and the graph. While applicable to the task of multiple AU
detection, these methods do not perform simultaneous feature
fusion and multi-label classification. By contrast, the proposed
MC-LVM can be seen as a multi-task learning approach, where
the relations of different tasks (i.e., AUs) are learned directly
in the shared subspace, by implicitly relating them through
their feature and label dependencies. The latter are encoded
by the local and global priors proposed in our model.

More recent works in the GP and multi-label classification
context [46], [47] try to combine multi-task learning and
feature fusion via subspace learning. [46] jointly optimizes
latent variables in order to reconstruct the input data, and
account for multiple tasks in the output. A downside of this
method is that latent space learning is done by the maximum
likelihood (ML) strategy, i.e., the latent space is directly
optimized during learning. In the case of large amount of
data, this can easily lead to overfitting [48]. To ameliorate
this, [47] proposed a fully Bayesian framework, based on
variational inference, to integrate out the latent space.

In contrast to these methods, MC-LVM employs multi-
conditional learning strategies to re-weight the generative and
discriminative conditionals, in order to unravel a suitable sub-
space for joint feature fusion and multi-label classification. In
our Bayesian approach, the latent space is approximated via an
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Fig. 2. Graphical representation of the proposed MC-LVM. The definition of
the conditionals is given in Sec. III-C.

efficient Monte Carlo sampling, where the conditional models
determine the importance of each sample. Moreover, the in-
ference step is efficiently performed via the learned projection
mappings to the manifold. This overcomes the requirement
of [47] to learn another approximation to the posterior of the
test inputs. Finally, note that none of these approaches have
been evaluated in the task of multiple AU detection.

III. MULTI-CONDITIONAL LATENT VARIABLE MODEL

A. Notation and Preliminaries

Let us denote the training set as D = {Y ,Z}, which is
comprised of V observed input channels Y = {Y (v)}Vv=1,
and the associated output labels Z. Each observed channel is
comprised of N i.i.d. multivariate samples Y (v) = {y(v)

i }Ni=1,
where y

(v)
i ∈ RDv denote corresponding facial features.

Furthermore, Z = {zi}Ni=1 denote multiple binary labels, with
zi ∈ {−1,+1}C encoding C (co-occurring) outputs. Let us
further assume the existence of a latent space X = {xi}Ni=1,
where xi ∈ Rq , q � Dv , which is a low-dimensional
representation of the original observations Y . This implies
that there exists a set of latent functions f (v), that can generate
y
(v)
i from xi, i.e., y(v)

i = f (v)(xi)+ ε, where ε ∼ N (0, σ2
vI)

is additive Gaussian noise. In the proposed approach we
model these functions using the framework of GPs [19]. For
notation simplicity, we set the number of input spaces to
V = 2, as generalization to more than two input spaces is
straightforward. The model outline is depicted in Fig. 2.

B. Model Definition

Our goal is to learn a model that simultaneously combines
different inputs and detects activations of multiple outputs. To
this end, we are interested in finding the latent representations
x, that jointly generate y and z. In a Bayesian approach, this
requires the computation of the joint marginal likelihood:

p(y, z) =

∫
p(y(1)|x)p(y(2)|x)p(z|x)p(x)dx, (1)

where we exploited the property of conditional independence,
i.e., {y(1),y(2), z} are independent given the latent variable
x. Note that in order to compute the above integral, we need
to marginalize out x. However, for the non-linear conditional
models, which we detail in Section III-C, the integral in Eq. (1)

is intractable. To overcome this, we numerically approximate
the marginal likelihood using Monte Carlo sampling [49]

p(y, z) ≈ 1

S

S∑
s=1

p(y(1)|xs)p(y(2)|xs)p(z|xs). (2)

The samples xs, s = 1, . . . , S are drawn from p(x), which
is defined in Sec. III-C. Using the Bayes’ rule, we can derive
the posterior over the latent variable

p(x|y(1),y(2), z) =
p(z|x)p(y(1),y(2)|x)p(x)

1
S

∑S
s=1 p(y

(1),y(2)|xs)p(z|xs)
. (3)

We then calculate the above probability for all pairs of
training data i and Monte Carlo latent samples s, to obtain
the membership probabilities p(s, i) = p(xs|y(1)

i ,y
(2)
i , zi).

Hence, p(s, i) denotes the posterior probability of acquiring
the sample xs, having observed the inputs y(1)

i ,y
(2)
i and

outputs zi. This gives rise to the expectation of the latent
points under the sampling distribution:

xi = E{x|y(1)
i ,y

(2)
i , zi} =

S∑
s=1

p(s, i)xs, (4)

which allows us to obtain the point estimates of the shared
latent positions without explicitly optimizing them for
each training pair. In this way, not only we end up with
a probabilistic estimation of the latent space, but we also
considerably reduce the number of model parameters.

C. Conditional Models

From Eq. (1), we see that the marginal likelihood of the
desired model is composed of the conditional probabilities
p(y(v)|x) and p(z|x), while it also depends on the sampling
distribution p(x). Hence, the correct choice of these
distributions affects critically the representational capacity
of the shared subspace, and thus, the model’s performance.
Effectively, this requires the learning of the conditional
models that provide: (i) generative mappings from the latent
space to the inputs (x → y(v), v = 1, 2); (ii) projection
mappings from the inputs to latent space (y(v) → x); (iii)
discriminative mappings from latent space to multiple binary
outputs (x→ z), as depicted in Fig. 2.
Generative mappings. Different probabilistic models such
as Gaussian models [50] or naive Bayes models [51]
can be employed to recover the generative mappings.
Yet, parametric models are limited in their ability to
recover non-linear mappings from the latent space
to high-dimensional input features. To this end, we
place GP priors on the functions that generate the
observed features. This gives rise to the likelihood:

p(Y (v)|X,θ(v)) =

1√
(2π)NDv |K(v)

Y + σ2
vI|Dv

exp

[
−1

2
tr
(
(K

(v)
Y + σ2

vI)
−1Y (v)Y (v)T

)]
,

(5)

where K(v)
Y is a N ×N kernel matrix, obtained by applying

the covariance function k(x,x′) to the elements of X , and
it is shared across the dimensions of Y (v). The covariance
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function is usually chosen as the sum of the radial basis
function (RBF) kernel, bias and noise terms

k(v)(x,x′) = θ
(v)
1 exp(−θ

(v)
2

2
‖x−x′‖2)+ θ

(v)
3 +

δx,x′

θ
(v)
4

, (6)

where δx,x′ is the Kronecker delta function, and θ(v) =

{θ(v)1 , θ
(v)
2 , θ

(v)
3 , θ

(v)
4 } are the kernel hyperparameters. The

parameter learning in GPs is performed by gradient-based
minimization of −logp(Y (v)|X,θ(v)) w.r.t. θ(v) [19]. Then,
the predictive probability of the GP for a new x∗ is given by

p(y
(v)
∗ |x∗,X,Y (v)) = N (µ

y
(v)
∗
, σ2

y
(v)
∗

), (7)

with µ
y
(v)
∗

and σ2

y
(v)
∗

as:

µ
y
(v)
∗

= k(v)∗
T
(K

(v)
Y + σ2

vI)
−1Y (v) (8)

σ2

y
(v)
∗

= k
(v)
∗∗ − k(v)∗

T
(K

(v)
Y + σ2

vI)
−1k(v)∗ + σ2

v . (9)

The kernel values k(v)∗ and k
(v)
∗∗ are computed by applying

Eq. (6) to the pairs (X,x∗) and (x∗,x∗), respectively, and
σ2
v is the noise of the process. Hence, the conditional model
p(y(v)|x), v = 1, 2, in Eq. (3) is now fully defined by the
Gaussian distribution in Eq. (7), where the latent sample xs
acts as the new latent position x∗.
Projection mappings and sampling. To model the sampling
distribution p(x), the simplest choice is to assume a spherical
Gaussian prior over the latent points x. However, such an
uninformative prior would give rise to latent representations
that cannot effectively exploit the structure of input data. To
this end, we define a sampling distribution that constraints
the samples xs by conditioning them on the inputs, i.e.,
p̃(x) = p(x|y(1),y(2)). This is motivated by the notion of
back-constraints in GP latent variable model (GPLVM) [52],
where this type of conditional distribution is used to learn
the mappings from the input to the latent space. We learn
the conditional model for p̃(x) using GPs, as done for
the generative mappings. The use of GPs in the projection
mappings, apart from modeling the sampling distribution, also
allows us to easily combine multiple features within its kernel
matrix as KX = K

(1)
X +K

(2)
X , corresponding to the sum of

the kernel functions defined on y(1) and y(2), respectively.
Hence, the resulting kernel is responsible for effectively
performing the non-linear fusion of the input features into
a single latent point. It can be regarded as an automatic
MKL approach with non-parametric GP regression functions.
Finally, the resulting conditional model p(x∗|y(1)

∗ ,y
(2)
∗ ) has

the form of Eq. (7) (with the relations between y(v) and x
being reverted), and since it is a low-dimensional Gaussian
distribution, sampling from it can be performed efficiently.
Discriminative mappings. Since we are interested in bi-
nary detection of activations of multiple AUs, we use the
conditional models based on the logistic regression [19] to
model p(z|x). By assuming conditional independence given
the latent positions x, we can factorize this conditional as:

p(z|x,W ) = p(z(1)|x,w1) . . . p(z
(C)|x,wC), (10)

p(z(c)|x,wc) = (1 + e−x
Twcz

(c)

)−1, c = 1, . . . , C, (11)

where W = [w1, . . . ,wC ] ∈ Rq×C contains the weight
vectors of the individual functions. During inference, if
p(z

(c)
∗ |x∗) > 0.5, the c-th output is active, i.e., z(c)∗ = 1.

D. Output Constraints

Due to the potentially large number of outputs, the topology
of the latent space needs to be constrained to avoid the model
focusing on unimportant variation in the data (e.g., modeling
relations between rarely co-occurring outputs). Furthermore,
we need to encourage the model to produce similar predictions
for outputs that are more likely to co-occur (e.g., AU6+12),
and competing predictions for those that rarely co-occur (e.g.,
AU12 and AU17). We describe below how we construct
target constraints based on the output relations, and how
these are incorporated into the MC-LVM framework.1

Topological constraints. Herein, we define the constraints that
encode co-occurrences of the output labels using the notion of
graph regularization [53]. We construct an undirected graph
G = (V, E) where V = {V1, V2, . . . , VN} is the node set,
with node Vi corresponding to latent positions xi, and E =
{(Vi, Vj)i,j=1...N |i 6= j,xi and xj have co-activated outputs}
is the edge set. By pairing each node with the latent variables,
we obtain a Gaussian Markov random field [54] w.r.t. graph
G. Next, we need to associate each edge in the graph with a
weight. For this purpose we encode the relations between the
data into an N ×N weight matrix S. The latter is defined in
a supervised fashion by measuring the similarity between the
output label vectors using the notion of string kernels [19] as:

S(x,x′) =
∑
l∈A

zTl,xzl,x′ , (12)

where A is the set of all possible 2C combination of the output
labels and l is the set of possible sub-labels of tuples, triples,
etc. zl,x denotes the specific sub-label of x and holds the
currently active ‘sub-string’ l of the actual labels. Hence, Sij
contains the number of co-activated outputs in all sub-labels
between two instances. Note that contrary to [14], we measure
the similarity of the outputs based on all possible groups of
co-occurring AUs, and not only on pairs of AUs. The graph
Laplacian matrix is then defined as L =D − S, where D is
a diagonal matrix with Dii =

∑
j Sij . Finally, using Eq. (4),

we arrive at the Laplacian regularization term

C = tr(XTLX) =
N∑
i,j

S∑
s=1

S∑
t=1

Lijp(s, i)p(t, j)x
T
s xt. (13)

Eq. (13) incurs higher penalty if latent projections of co-
occurring AUs are distant in the manifold. Thus, projections
with strongly related AUs are placed close to each other.
Global relational constraints. In order for the MC-LVM
to fully benefit from the above topological constraint, it is
important to ensure that the model produces similar predictions
for frequently co-occurring AUs. Therefore, we introduce the
global relational constraints as:

R = ‖P T
zP z −ZTZ‖2F , (14)

1For the mathematical analysis of this subsection, the negative class in the
output labels z will be denoted with 0 instead of the used −1.
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where P z = [p(z1|x1), . . . , p(zN |xN )]T are the predictions
from Eq. (11) for each xi, and Z is the true label set. Thus,
Eq. (14), incurs a high penalty if correlated outputs have
dissimilar predictions. In this way, the co-occurrence matrix
of the predictions is forced to be similar to that of the true
labels, and hence, the discriminative power of the output
detectors is increased.

E. Learning and Inference
The objective function of our model is the sum of the com-

plete data log-likelihood of the (weighted) joint distribution in
Eq. (2) penalized by the constraints in Eq. (13,14)

L(Θ) =

N∑
i=1

log

S∑
s=1

p(y(1),y(2)|xs)︸ ︷︷ ︸
pg,i

1−α
p(z|xs)︸ ︷︷ ︸
p
d,i

α − λCC − λRR,

(15)
w̃here Θ = {θ(v),W }. Note that in contrast to the standard
ML optimization, we set the parameter α ∈ [0, 1] to
find an optimal balance between the generative (pg,i) and
discriminative (pd,i) components of our MC-LVM. The
generative component has the key role in unraveling the
latent space of the fused features, while the discriminative
component regularizes the manifold by using the labels’
structure information. Large α values give rise to models that
depend more on the labels to define the decision boundaries
for the detection, while for small α the model expends more
effort on capturing the variations in the features (e.g., due to
various sources of noise in data such as head-pose variation in
spontaneous data). By finding optimal α via a cross-validation
procedure, as explained in Sec. IV-C, we allow the model to
find a trade-off between the discriminative and generative part..

Another key difference to the ML approach, is that the
Bayesian optimization requires the computation of the poste-
rior of the latent space. The latter depends on the parameters
Θ, and thus, direct optimizing of the objective in Eq. (15)
w.r.t. Θ is not possible. Hence, we propose an EM-based
approach for parameter learning. In the E-step, we find the
expectation of the complete-data log-likelihood in Eq. (15)
under the posterior in Eq. (3), which is given by

Q(Θ,Θ(old)) =
N∑
i=1

S∑
s=1

p(s, i) log
(
p1−αg,i p

α
d,i

)
, (16)

where the membership probabilities, p(s, i), are computed
with Θ(old). In the M-step, we find Θ(new) by optimizing

Θ(new) = argmax
Θ

Q(Θ,Θ(old))− λCC − λRR, (17)

w.r.t. Θ using the conjugate gradient method [19].
The full training of the model is split into two stages,

where in each stage we compute p(x|y(1),y(2)) and
p(y(1),y(2), z|x) in an alternating fashion. Specifically, we
first initialize the latent coordinates X , using a dimensionality
reduction method, e.g., PCA [49], on the concatenation of
the two feature sets. Then, we learn the sampling distribution
p(x|y(1),y(2)) by training a GP on the projection mappings,
as explained in Sec.III-C, and collect S samples from
corresponding GP posterior. During the second stage, we
employ the EM algorithm described above to learn the

parameters Θ. Note that the constraints C and R implicitly
depend on the posterior, which is a function of the current
estimate of Θ, hence, we need to compute their derivatives
w.r.t to Θ. The penalized log-likelihood can be optimized
jointly [50] or separately [55] without violating the EM-
optimization scheme, since the updates from the penalty
terms do not affect the computation of the expectation. After
the M-step we refine our original estimate of the latent space
X , using Eq. (4). We iterate between stage 1 and 2 until
convergence of the objective function in Eq. (17).

Algorithm 1 MC-LVM: Learning and Inference

Learning
Inputs: D = (Y (v),Z), v = 1, . . . , V
Initialize X using PCA on the concatenated Y (v).
repeat

Stage 1
Learn p̃(x) = p(x|y(1),y(2)) by training the specified GP.
Draw S samples xs from the Gaussian distribution p̃(x).

Stage 2
E-step: Use the current estimate of the parameters Θ(old)

to compute the membership probabilities in Eq. (3).
M-step: Update Θ by maximizing Eq. (17).

Stage 3
Update the latent space using Eq. (4).

until convergence of Eq. (17).
Outputs: X , Θ

Inference
Inputs: y(1)

∗ ,y(2)
∗

Step 1: Find the projection x∗ to the latent space using Eq. (8).
Step 2: Apply the logistic classifiers from Eq. (11) to the obtained
embedding to compute the outputs z∗.
Output: z∗

Inference: Inference in the proposed MC-LVM is
straightforward. The test data y(1)

∗ ,y
(2)
∗ , are first projected

onto the manifold using Eq. (7). In the second step, the
activation of each output is detected by applying the classifiers
from Eq. (11) to the obtained latent position. The learning and
inference procedure described above is summarized in Alg. 1.
Theoretical Analysis: The optimization scheme described
earlier in this section does not have theoretical guarantees that
it increases the penalized complete log-likelihood after each
EM cycle. The reasons behind this are twofold: (i) Eq. (17)
cannot be solved analytically, and thus, we need to resort
to an iterative procedure based on the conjugate gradient
method. Therefore, in each M-step we can only guarantee
that a local optimum of the posterior will be recovered. (ii)
The expectation of the complete log-likelihood in Eq. (16)
is numerically approximated via Monte Carlo sampling, and
thus, as in every stochastic optimization problem there is no
guarantee that the objective function will strictly increase after
each iteration. Hence, it is required to take cautious steps in
order not to derive diverge solutions. By carefully initializing
both the latent coordinates and the kernel hyper-parameters,
and appropriate selection of the number of samples, S, we
can effectively learn a latent space with correctly recovered
data structure. This is illustrated in Fig. 3, where we can see
how the topological constraint imposes the structure of AU12
on the manifold, through the evolution of the iterative EM

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIP.2016.2615288

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Original label structure Learned data structure

 

 

 

 

 

 

 

 

 

 

Structure from Eq. (12) PCA initialization iteration #5 iteration #10 iteration #15

Fig. 3. Evolution of the learned data structure in KY (1) , through the EM-iterations during the optimization on CK+ dataset. The kernels are sorted in order
to depict the structure of AU12 (bottom right square) compared to other AU activations (upper right square).

algorithm. In the initialization step the latent space can roughly
model the structure of the positive class (AU12). As the EM
iterations progress we see that MC-LVM not only uncovers
the structure of AU12 (iteration #5), but it also differentiates
it from the structure of the remaining AUs (iteration #15).
Additional experimental evaluations regarding the convergence
of MC-LVM are given in Sec. IV-C.
Complexity: Since MC-LVM is based on the framework of
GPs, each iteration during training (within an EM cycle)
requires O(N3) computations. On the other hand, inference
for a new test sample is far more efficient and can be
achieved in real-time, since the evaluation of the predictive
mean requires O(N) (predictive variance is not required for
classifying a new test point).

F. Relation to Multi-conditional models and GPLVM

In the proposed MC-LVM, we employ the GP framework
to derive a latent variable model with a joint distribution given
by Eq. (1). We then introduce a set of conditional distributions
(observed variables given latent positions p(y, z|x), and latent
positions given the observed data p(x|y)) to form the multi-
conditional objective function. The idea of multi-conditional
learning has originally been explored in [51], [50]. However,
these approaches are based on simple parametric conditional
models and can deal with single-input single-output sce-
narios only. The proposed MC-LVM is a generalization of
these approaches to multi-input multi-output settings and non-
parametric conditionals modeled via GPs.

Modeling of the aforementioned conditionals in MC-LVM
resembles that in the GPLVMs [56]. Namely, manifold rele-
vance determination (MRD) [47], multi-task latent GP (MT-
LGP) [46] and discriminative shared GP latent variable model
(DS-GPLVM) [57], as purely generative methods, try to model
the joint likelihood

p(Y ,X) = p(Y |X)p(X). (18)

The learning in these methods consists of maximizing the
(marginal) log-likelihood of the joint given above. [46], [57]
directly optimize the latent variables in a maximum a posterior
(MAP) estimation. [47] maximizes a lower bound of the log-
marginal likelihood, which is obtained through a variational
distribution that approximates the latent space . By contrast, in
MC-LVM we model the distribution of both observed inputs
and latent variables by employing the predictive posterior
of the GP. This results in learning a more robust mapping

x→ y, and also allows us to efficiently estimate an instance
of the latent space using the Monte Carlo sampling.

Finally, our proposed sampling distribution is closely re-
lated to the notion of ‘back-constraints’ in the GP literature.
Back-constraints were introduced in [52] as a deterministic,
parametric mapping that pairs the latent variables of the
GPLVM with the observations. This mapping facilitates a fast
inference mechanism and enforces structure preservation in the
manifold. The same mechanism has been used in [46], [57].
On the contrary, MC-LVM learns probabilistic mappings via
the non-parametric GPs, which can result in latent projections,
that are less prone to overfitting.

IV. EXPERIMENTS

A. Datasets
We evaluate the proposed model on three publicly

available datasets: Extended Cohn-Kanade (CK+) [4],
UNBC-McMaster Shoulder Pain Expression Archive
(Shoulder-pain) [58], and Denver Intensity of Spontaneous
Facial Actions (DISFA) [59]. These are benchmark datasets
of posed (CK+), and spontaneous (Shoulder-pain, DISFA)
data, containing a large number of FACS coded AUs.
CK+ dataset [4] contains 593 video recordings of 123 subjects
displaying posed facial expressions in near frontal views. The
image sequences begin from neutral and proceed to the target
expression. The last frame (peak frame) is annotated in terms
of AU activations (presence/absence). For our experiments,
we used the peak frames of all available subjects.
The Shoulder-pain dataset [58] contains video recordings
of 25 patients suffering from chronic shoulder pain while
performing a range of arm motion tests. Each frame is coded
in terms of AU intensity on a six-point ordinal scale.
DISFA dataset [59] contains video recordings of 27 subjects
while watching YouTube videos. Again, each frame is coded
in terms of the AU intensity on a six-point ordinal scale.

For both DISFA and Shoulder-pain datasets, we treated each
AU with intensity larger than zero as active. Sample images
from the three datasets, along with examples of AUs present,
are shown in Fig. 4. Fig. 5 depicts the AU relations, and the
distribution of the AU activations for the data used from each
dataset. Note that the co-occurrence patterns and the relations
among the AUs differ significantly across all three datasets.

B. Experimental Settings
Features. In each frame of an input sequence 49 fiducial
facial points were extracted using the 2D Active Appearance
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Fig. 4. Example images with activated AUs from CK+ (top), DISFA (middle)
and Shoulder-pain (bottom) datasets.

Model [60]. Based on these points, we registered the images
to a reference face (average face for each dataset) using an
affine transformation. As input to our model, we used both
geometric features, i.e., the registered facial points (feature
set I), and appearance features, i.e., local binary patterns
(LBP) histograms [61] (feature set II) extracted around each
facial point from a region of 32×32 pixels. We chose these
features as they showed good performance in variety of AU
recognition tasks [10]. To reduce the dimensionality of the
extracted features we applied PCA, retaining 95% of the
energy. This resulted in approximately 20D (geometric) and
40D (appearance) feature vectors, for each dataset.
Evaluation procedure. Some AUs occur rarely (e.g.,
AU9,11,26 in CK+). Others do not exhibit strong co-
occurrence patterns (e.g., AU5 in DISFA). Hence, we selected
the following subsets of highly correlated AUs: AUs (1, 2, 4, 6,
7, 12, 15, 17) for CK+, AUs (1, 2, 4, 6, 12, 15, 17) for DISFA
and AUs (4, 6, 7, 9, 10, 43) for Shoulder-pain. The selected
AUs occur jointly in the context of recorded expressions (e.g.,
pain expression, see [58]). In order to prove the model’s
ability to deal with large number of outputs, we also show the
performance when all AUs (from CK+) are used. A detailed
description of the AUs used for the model evaluation is shown
in Table I. We report the F1 score and the area under the ROC
curve (AUC) as the performance measures. Both metrics are
widely used in the literature as they quantify different char-
acteristics of the classifier’s performance. Specifically, F1, de-
fined as F1 = 2·Precision·Recall

Precision+Recall
, is the harmonic mean between

the precision and recall. It puts emphasis on the classification
task, while being largely robust to imbalanced data (such as ex-
amples of different AUs). AUC quantifies the relation between
true and false positives, showing the robustness of a classifier
to the choice of its decision threshold. In all our experiments,
we performed a 5 fold subject independent cross-validation.
Models compared. We compare the proposed MC-LVM to
GP methods with different learning strategy. Specifically,
we compare to the manifold relevance determination
(MRD) [47], which uses the variational approximation, to
the discriminative shared Gaussian process latent variable
model (DS-GPVLM) [57] and to the multi-task latent GP
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Fig. 5. The global AU relations (in terms of correlation coefficients) (upper
row), and the distribution of AU activations within the datasets (lower row).

TABLE I
DEFINITIONS OF THE USED AUS FROM CK+, DISFA, AND

SHOULDER-PAIN DATASETS.

AU Definition
1 Inner brow raiser 7 Lid tightener 15 Lip corner depress.
2 Outer brow raiser 9 Nose wrinkler 17 Chin raiser
4 Brow lowerer 10 Upper lip raiser 43 Eyes closed
6 Cheek raiser 12 Lip corner puller

(MT-LGP) [46], which perform exact ML learning. We also
compare to the multi-label backpropagation and kNN (k=1),
i.e., the BPMLL [39] and ML-KNN [38], respectively. Lastly,
we compare to the state-of-the-art methods for multiple
AU detection: the parametric methods Bayesian group-
sparse compressed sensing (BGCS) [13], hierarchical RBM
(HRBM) [15], joint patch multi-label learning (JPML) [14],
and the kernel method lp-regularized multi-task MKL (lp-
MTMKL) [17]. All the compared methods are evaluated
using the same previously described input features. Note that
implementation of JPML [14] was not available, and thus, in
our comparison we report the results from the corresponding
paper ([14] employed the SIFT appearance descriptor). For the
single input methods (i.e., BGCS, HRBM, BPMLL and ML-
KNN), we concatenated the two feature sets. For the kernel-
based methods, we used the RBF kernel. For lp-MTMKL we
also used the polynomial kernel, as suggested in [17]. Due
to the high learning complexity of lp-MTMKL (O(N2T 2)),
where T is the number of target AUs), we followed the training
scheme in [17] where multiple AUs were split into groups:
{{AU1, AU2, AU4}, {AU6, AU7, AU12}, {AU15, AU17}} for
CK+, the same groups (without AU7) for DISFA, and
{{AU4, AU43, AU7}, {AU6, AU9, AU10}} for Shoulder-pain.
The parameters of each method were tuned as described in
the corresponding papers. For the MC-LVM, optimal values
for the weighting parameters α, the regularization parameters
λC , λR, as well as the size of the latent space were found via
a validation procedure on the training set.

C. MC-LVM: Theoretical Evaluation

This section analyzes MC-LVM performance in terms of
different parameter choices and settings. Fig. 6 (left) shows the
convergence of the learning criterion in MC-LVM as a function
of the used Monte Carlo samples during training on the CK+
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average F1 score for multiple AU detection as a function of the dimensionality of the latent space (middle), and the regularization parameter α (right).
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Fig. 7. Joint AU detection with MC-LVM on CK+ (left), DISFA (middle) and Shoulder-pain (right) for different value of α. The comparisons are between
the discriminative-only conditional (α = 1) and the optimal weighted conditionals (α = 0.4 for CK+ and α = 0.8 for DISFA and Shoulder-pain).

dataset. We see that for small number of samples, the model
does not converge to a (local) minimum. This is expected,
since with 100−500 samples the posterior in Eq. (3) cannot be
approximated well. The model converges when 1000 samples
are used, and its convergence does not change considerably
after that. Thus, we fixed the number of samples to 1000. From
Fig. 6 (middle), we see how the size of the latent space affects
the performance of the learned model. It is clear that for both
posed and spontaneous data, an 8-dimensional latent space
is sufficient for the task of joint feature fusion and multiple
AU detection, and results in the best average F1-score. Lower
dimensional manifolds fail to explain the correlations between
the input features and to capture the dependencies among
multiple AUs, while manifolds with more than 8D do not
include any additional discriminative information. Hence, in
what follows, we fixed the size of the latent space to 8D. Fig. 6
(right) shows the effect of changing α on the discriminative
power of the model. We observe that the model prefers a
weighted conditional distribution over a fully generative or
discriminative component. The optimal value of α is around
0.4 for posed, and 0.8 for spontaneous data. This difference
is due to the fact that in case of spontaneous data (DISFA,
Shoulder-pain), the model puts less focus on explaining un-
necessary variations for the AU detection task, e.g., due to the
subject-specific features and errors due to the pose registration.
Therefore, the influence of the generative component is lower
(higher α) than in the case of posed facial expressions from
CK+. Moreover, the CK+ dataset contains significantly less
data (around 600 annotated frames) than DISFA and Shoulder-
pain. Hence, MC-LVM prioritizes the generative component,
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Fig. 8. Average F1 score on all three datasets. The effect of the relational
constraints (left), and the feature fusion (right) on the joint AU detection task.

to avoid overfitting the training data. On the other hand, when
we have sufficient training examples (DISFA, Shoulder-pain),
MC-LVM prefers to give less emphasis to the conditional
distribution of the features (generative component). Such be-
havior of multi-conditional models has been also observed in
other domains (e.g., in [22] for pixel classification).

To provide a better insight regarding the advantages of
selecting a weighted conditional distribution, in Fig. 7 we
compare the performance of the MC-LVM when the likelihood
term consists of only the discriminative conditional (α = 1),
and the optimal weighted conditional (α = 0.4 for CK+ and
α = 0.8 for DISFA and Shoulder-pain). We can see that the
weighted conditional improves the performance on most of
AUs, with significant enhancement in the performance on
certain AUs (3% on AU7,15 on CK+, 6% on AU1 and 3% on
AU6,15 on DISFA, and 10% on AU7,9,10 on Shoulder-pain).

In Fig. 8 (left) we see the effect of the introduced relational
constraints on the model’s performance. At first we observe
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TABLE II
F1 SCORE AND AUC FOR JOINT AU DETECTION ON CK+ DATASET. COMPARISONS TO STATE-OF-THE-ART.

Methods (I+II) F1 score AUC
AU1 AU2 AU4 AU6 AU7 AU12 AU15 AU17 Avg. AU1 AU2 AU4 AU6 AU7 AU12 AU15 AU17 Avg.

MC-LVM 84.39 86.55 81.60 68.42 61.67 88.48 82.54 87.40 80.14 95.66 96.80 93.97 92.07 87.84 97.78 94.60 96.10 94.35
MC-LVM (SO) 86.06 88.37 82.93 70.80 57.27 87.16 73.26 85.57 78.93 98.22 97.25 93.95 92.20 85.71 97.41 94.05 95.80 94.33
MRD [47] 80.72 79.18 69.93 69.81 53.24 77.83 65.70 85.20 72.70 95.58 92.53 91.85 92.73 82.69 94.50 91.32 94.78 92.00
MT-LGP [46] 89.12 83.70 79.79 67.16 60.89 80.53 64.63 85.97 76.47 96.70 97.33 90.90 91.45 86.37 96.92 94.25 94.80 93.59
DS-GPLVM [57] 87.41 81.78 79.70 68.48 63.29 81.04 60.33 84.29 76.17 96.10 96.69 89.56 89.83 85.91 95.69 92.56 94.03 92.55
BGCS [13] 84.57 86.19 81.17 69.82 59.48 87.77 74.77 84.84 78.58 97.76 96.63 93.21 91.59 85.06 97.69 94.04 95.43 93.85
HRBM [15] 87.62 84.00 74.10 62.90 50.74 82.38 66.06 84.56 74.04 95.99 95.13 88.00 88.37 78.09 93.73 93.49 95.60 91.05
lp-MTMKL [17] 87.50 85.50 51.43 72.65 58.82 85.95 74.21 75.44 73.93 93.19 94.99 90.95 90.01 84.41 95.67 91.06 92.97 91.65
BPMLL [39] 75.41 84.31 64.85 69.14 64.34 83.98 69.50 76.25 73.47 89.06 95.21 76.88 90.53 85.51 95.48 90.20 88.19 88.88
ML-KNN [38] 76.83 84.34 63.28 67.23 53.19 82.88 65.88 78.71 71.54 89.07 95.54 76.46 90.58 90.71 94.31 92.65 89.13 89.81
JPML∗ [14] 91.2 96.5 - 75.6 50.9 80.4 76.8 80.1 78.8 - - - - - - - - -

TABLE III
F1 SCORE FOR JOINT AU DETECTION (ALL 17) ON CK+ DATASET. COMPARISON TO STATE-OF-THE-ART.

Methods (I+II) AU1 AU2 AU4 AU5 AU6 AU7 AU9 AU11 AU12 AU15 AU17 AU20 AU23 AU24 AU25 AU26 AU27 Avg.
MC-LVM 82.49 86.96 79.16 73.47 72.80 57.52 87.94 31.11 87.60 76.40 86.76 70.27 67.27 51.02 91.81 21.05 91.14 71.45
BGCS [13] 83.04 85.10 77.45 72.21 69.26 55.94 89.03 29.41 86.79 74.92 83.33 71.10 68.01 48.14 76.60 34.21 88.55 70.12
HRBM [15] 86.86 85.47 72.58 72.04 61.74 54.47 85.91 26.51 72.65 72.53 81.66 47.46 56.64 35.29 92.57 37.61 87.65 66.45

that when no regularization is used (λC , λR = 0), MC-
LVM achieves the lowest performance for both posed and
spontaneous data. By including only the topological constraint
(λC 6= 0, λR = 0), MC-LVM attains a better representation
of the data in the manifold, which results in higher F1 scores.
Finally, with the addition of the global relational constraint
(λC , λR 6= 0) MC-LVM achieves the highest scores. Note
that the difference is more pronounced in data from DISFA
and Shoulder-pain. This evidences the importance of modeling
the global relations for the detection of spontaneous (more
subtle) AUs. This is because the features of these AUs are
corrupted by higher noise levels and thus, their joint prediction
can help to reduce uncertainty of the classifiers, as has been
reported in [62]. Fig. 8 (right) shows the average performance
of the model for different feature combinations. In the single
input case, we observe that, on average, geometric features
(I) outperform the appearance features (II) (apart from DISFA
where features (I) suffer from residual errors from the pose
registration due to large variations in the head pose). This is
because, by concatenating the LBP histograms obtained from
each patch, the local information of the data is lost, and thus,
the model obtains lower scores. However, when both inputs are
used, MC-LVM can unravel a very informative shared latent
space. This results in the highest F1 score, with significant
improvement on the spontaneous data of DISFA and Shoulder-
pain. In general, from Fig. 8 we see that the effect of the
introduced regularization and the feature fusion is far more
pronounced in the spontaneous expressions, where a limited
and imbalanced number of examples is available for each AU.

D. Model Comparisons on Posed Data

We next compare the proposed MC-LVM to several
state-of-the-art methods on the posed data from CK+. We
first inspect the performance of MC-LVM and the GP-related
methods. From Table II, we can see that the MAP-based

methods, i.e., the MT-LGP [46] and DS-GPLVM [57],
achieve similar performance on average since they are based
on the same learning scheme. On the other hand, MRD [47],
uses a variational distribution to approximate a manifold
shared across multiple inputs and outputs, without any
additional constraints over the latent variables. This results in
a poor accuracy. Also, MRD learns an approximation to the
posterior, in order to predict the variational latent positions
that best generate the inputs, while MT-LGP and DS-GPLVM
learn accurate back mappings from the input spaces to the
manifold. By contrast, the combination of the approximate
learning with the relational constraints used in the proposed
MC-LVM results in a significant increase in performance over
the GP-based methods. We partly attribute this to the explicit
modeling of AU co-occurrences through the introduced
constraints, as well as to the multi-conditional learning based
on the proposed sampling scheme. The importance of the latter
is further evidenced in the performance of the single output
instance of MC-LVM, which for the case of the posed data
achieves comparable scores to the multi-output. We see that
joint learning does not improve detection of all AUs. It even
shows reduced performance for certain AUs. For example,
from Fig. 5, we see that AU1,2 are strongly correlated, yet
single output achieves higher F1 on both AUs compared
to the multi-output setting. This shows that for given data,
these two AUs can be predicted well without relying on each
other. On the other hand, the performance of AU15, which
is strongly correlated with AU17, and has significantly less
examples than other AUs, is considerably improved (F1 9%
higher). The similar performance between the two settings
is also explained from the nature of the posed data of CK+.
Joint AU learning is expected to be advantageous, in cases
where the input data suffer from high-dimensional noise [62].
Hence the superior performance of the multi-output setting
will be evidenced in the evaluations on the spontaneous data
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from DISFA and Shoulder-pain in Sec. IV-E.
Table II, also summarizes the performance of the state-of-

the-art models for joint AU detection: BGCS, HRBM and lp-
MTMKL. These models, manage to improve the detection of
AU1 and AU6, by successfully modeling their co-occurrences
between the related AUs (AU2 and AU12 respectively) in the
expressions of Surprise and Happiness. However, their perfor-
mance on more subtle AUs, e.g., AU7,15,17 is significantly
lower than that of the proposed MC-LVM. This is due to the
fact that the parametric models BGCS and HRBM cannot han-
dle simultaneously the fusion of the concatenated features and
the modeling of the AU dependencies using compressed/binary
latent variables. On the other hand, lp-MTMKL can perform
the fusion through the MKL framework. However, due to its
modeling complexity, it is trained on subsets of AUs, which
affects its ability to capture all AU relations. More importantly,
in contrast to MC-LVM, these models lack the generative
component, which, evidently, acts as a powerful regularizer.
The results of JPML were obtained from [14], thus, they are
not directly comparable to the other models. Yet, we report this
performance as a reference to the state-of-the-art. Finally, the
baseline multi-label methods, BPMLL and ML-KNN attempt
to model the AU dependencies directly in the classifier level,
as in lp-MTMKL, but they cannot perform the fusion of the
input features. Hence, they achieve the lowest average scores.

To demonstrate the model’s scalability when dealing with
large number of outputs, we compare the proposed approach
to the state-of-the-art HRBM and BGCS for joint AU detection
on all 17 AUs from CK+ (lp-MTMKL cannot be evaluated
on this experiment due to its learning complexity). As we can
see from Table III, modeling the remaining (less frequent)
AUs affects the overall performance of all three models, i.e.,
MC-LVM, BGCS and HRBM, which suffer a drop of 8.6%,
8.4% and 7.6%, respectively. However, MC-LVM outperforms
HRBM on 14 out of 17 AUs and BGCS on 12 out of 17 AUs,
which demonstrates the ability of the former to better model
the relations among AUs, even in case of many AU classes.

E. Model Comparisons on Spontaneous Data

We further investigate the models’ performance on sponta-
neous data from DISFA and Shoulder-pain datasets. We focus
here on the best performing methods from Table II. From
Tables IV–V, we can observe a significant drop in the per-
formance of all methods on both datasets. This evidences the
difficulty of the task of AU detection in realistic environments,
where spontaneous expressions are present. Also, typical for
naturalistic data, the distribution of the activated AUs is more
imbalanced than in the case of the posed dataset. This poses an
additional modeling challenge since training data for certain
AUs (e.g., AU2,15 for DISFA, and AU9,10 for Shoulder-pain)
are limited. Consequently, the models need to put more empha-
sis on the AU co-occurrences for detection of these AUs. As
evidenced by the results in Tables IV–V, this adversely affects
the single output MC-LVM. Contrary to the high achieved
performance on the posed data, the single output instance
reports here significantly lower scores for the aforementioned
AUs in both datasets. Furthermore, the small amount of

training data for some AUs, imposes an additional difficulty
when modeling the global AU relations. Consequently, the
parametric discriminative models, BGCS and HRBM, overfit
the data and report low performance. This exemplifies the
importance of modeling the relations among the features via
the generative component, in the proposed approach. Note that
for some AUs with sufficient training data, e.g., AU4,6 in
DISFA, BGCS and HRBM achieve similar or better scores
than the MC-LVM. This is in part due to modeling the multiple
AU detectors under a joint cost function – each method selects
to put more emphasis on modeling different AUs than the
others. However, the MC-LVM outperforms these models on
average. lp-MTMKL obtains very low scores (especially in the
Shoulder-pain), which is a result of not modeling global rela-
tions, due to its training scheme. MT-LGP also fails to model
explicitly the relations between AUs, achieving low scores as
well. The proposed MC-LVM is more robust to the data imbal-
ance, and can better discover the AU relations, which in turn
gives not only the best average F1 scores, but also achieves
more robust performance as evidenced by the higher AUC.

F. Cross Dataset Experiments on CK+ and DISFA

Herein, we evaluate the robustness of the models in a cross
dataset experiment. Specifically, we perform two different
cross-dataset experiments, CK+→DISFA and DISFA→CK+.2

We evaluate the models’ performance on 7 AUs (i.e.,
1, 2, 4, 6, 12, 15, 17) that are present in both datasets. This is
a rather challenging task due to the different characteristics
of the data. First of all, as shown in Fig. 4, the facial
images differ in terms of illumination, pose and size, which
imposes a further difficulty on the alignment of the input
facial features. Another key challenge is the difference in the
context of the two datasets. The data from CK+ contain posed
expressions, which vary considerably in subtlety compared to
the spontaneous data of DISFA. The latter also affects the co-
occurrence patterns among the AUs, as can be seen from Fig. 5

From Table VI, we see that the performance of the models
is lower for most of AUs compared to that attained on the
original dataset (see Tables II-V). This is expected for the
reasons mentioned above. Interestingly, BGCS achieves higher
performance on the cross dataset experiment CK+→DISFA,
than when both training and testing is performed on DISFA
dataset. This confirms our claims in Section IV-E that this
method cannot fully unravel the dependencies among the AUs
when dealing with imbalanced data in the training phase.
The parametric model, i.e., BGCS, can better model the AU
relations with small (but well distributed) amount of training
data, as in CK+. Hence, it achieves higher performance
compared to MC-LVM. However, on the DISFA→CK+
experiment, we see that the proposed MC-LVM, benefits from
the use of the non-parametric feature fusion, and manages
to successfully unravel the structure and the co-occurrence
patterns in the data, regardless of the imbalances in the amount
of training examples and the subtlety of the spontaneous facial
expressions. Thus, it attains superior performance compared
to the BGCS, especially for AU1,2,4, where the two models

2‘A→B’ denotes the training on dataset A and testing on dataset B.
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TABLE IV
F1 SCORE AND AUC FOR JOINT AU DETECTION ON DISFA DATASET. COMPARISONS TO THE STATE-OF-THE-ART.

Methods (I+II) F1 score AUC
AU1 AU2 AU4 AU6 AU12 AU15 AU17 Avg. AU1 AU2 AU4 AU6 AU12 AU15 AU17 Avg.

MC-LVM 58.55 62.99 72.85 52.32 84.74 49.44 48.63 61.36 79.58 84.01 84.87 62.75 92.43 78.97 73.87 79.50
MC-LVM (SO) 35.50 52.68 70.99 54.67 82.58 37.11 47.76 54.47 64.71 85.21 82.52 68.15 92.20 79.22 72.39 77.77
MT-LGP [46] 41.44 36.84 61.19 45.98 49.78 40.12 43.01 45.48 69.28 79.31 74.23 62.08 70.22 58.61 67.69 68.27
BGCS [13] 50.13 36.49 72.05 59.64 78.47 39.93 40.29 53.86 69.54 49.72 78.93 66.76 86.55 73.67 63.36 69.79
HRBM [15] 39.67 55.92 61.56 54.01 79.16 38.72 38.82 52.55 61.55 85.88 67.10 58.08 81.74 64.93 64.41 69.10
lp-MTMKL [17] 42.21 45.81 47.18 62.79 76.33 34.47 41.40 50.03 71.77 73.42 62.49 66.27 78.83 59.16 63.98 67.98

TABLE V
F1 SCORE AND AUC FOR JOINT AU DETECTION ON SHOULDER-PAIN DATASET. COMPARISONS TO THE STATE-OF-THE-ART.

Methods (I+II) F1 score AUC
AU4 AU6 AU7 AU9 AU10 AU43 Avg. AU4 AU6 AU7 AU9 AU10 AU43 Avg.

MC-LVM 47.20 97.75 67.88 37.13 58.23 72.51 63.45 53.58 82.27 57.80 54.65 87.80 66.13 67.04
MC-LVM (SO) 57.76 95.57 63.59 34.54 49.93 64.49 60.98 66.36 50.47 60.04 53.23 64.20 65.81 60.02
MT-LGP [46] 50.42 50.48 63.52 33.38 61.62 61.00 53.40 61.35 44.40 60.96 52.47 90.39 60.90 61.75
BGCS [13] 61.42 71.52 60.40 37.86 54.50 63.49 58.20 63.28 59.29 59.93 59.23 69.96 67.10 63.13
HRBM [15] 47.20 93.93 63.67 29.80 52.39 69.54 59.42 57.33 77.41 62.56 53.21 71.36 73.19 65.85
lp-MTMKL [17] 37.69 97.75 70.08 33.28 41.79 44.03 54.10 54.95 71.86 64.15 53.84 68.62 64.69 63.01
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Fig. 9. The learned global AU relations (in terms of correlation coefficients) for within datasets (a),(b) and cross-datasets (c),(d) experiments.

TABLE VI
CROSS-DATASET EVALUATIONS OF THE STATE-OF-THE-ART MODELS ON 7 AUS PRESENT IN BOTH CK+ AND DISFA DATASETS. THE MODELS ARE

TRAINED ON DATA FROM CK+ DATASET AND TESTED ON DATA FROM DISFA DATASET (C→D), AND THE OTHER WAY AROUND (D→C).

Train→Test Methods (I+II) F1 score AUC
AU1 AU2 AU4 AU6 AU12 AU15 AU17 Avg. AU1 AU2 AU4 AU6 AU12 AU15 AU17 Avg.

C→D

MC-LVM 53.92 54.69 68.37 51.99 70.77 37.14 42.81 54.24 76.78 86.80 79.74 73.21 86.73 62.28 67.83 76.20
BGCS [13] 59.01 49.37 68.34 57.75 80.26 36.59 43.54 56.41 86.75 91.75 78.97 69.97 87.83 64.83 69.67 78.54
HRBM [15] 43.20 36.83 52.10 36.15 40.70 35.61 51.13 42.25 67.41 71.84 65.62 59.32 62.62 60.77 74.05 65.95
lp-MTMKL [17] 39.13 41.24 44.77 49.42 69.67 31.55 39.12 44.98 71.77 73.42 72.70 68.38 67.46 69.31 65.85 65.56

D→C

MC-LVM 72.22 85.85 75.05 59.94 63.45 54.81 73.35 69.24 92.51 96.60 90.51 84.24 95.02 87.21 90.82 90.99
BGCS [13] 61.11 71.90 67.84 65.05 80.46 54.23 69.98 67.22 84.44 91.21 88.21 84.91 94.54 84.12 84.97 87.49
HRBM [15] 66.81 64.52 60.12 54.11 65.60 60.47 66.67 62.61 88.88 92.26 81.47 88.23 94.19 87.91 91.61 89.22
lp-MTMKL [17] 68.10 61.94 56.06 57.86 66.26 43.30 63.66 59.60 80.21 82.41 69.45 79.59 86.28 74.64 78.88 78.78

achieve similar predictions for training and testing on CK+
(see Table II). Finally, the proposed MC-LVM consistently
outperforms HRBM and lp-MTMKL on both cross-dataset
experiments, as evidenced from both F1 and AUC results.

Finally, in Fig. 9 we see the recovered AU dependencies
from the MC-LVM, on the test data in both within and cross-
dataset experiments. As we observe from Fig. 9(a)&(c), the
recovered AU dependencies for CK+ are similar to the original
co-occurrence patterns from Fig. 5. Hence, the proposed
MC-LVM attains competitive results for CK+ and the
DISFA→CK+ experiments. On the other hand, by comparing
Fig. 9(d)&(b) and Fig. 5, we observe that MC-LVM has falsely

recovered strong correlations between AU1,2 and AU15,17,
which results in the low performance in the CK+→DISFA
experiment. We attribute this to the fact that AU1,4,17 are the
dominant AUs in CK+, which is not the case for DISFA. Thus
the model trained on CK+ seems to have a bias on predicting
AU1,4,17. Due to their strong relations with AU2,15
MC-LVM recovers the false dependencies on DISFA dataset.

V. CONCLUSIONS

To conclude, we proposed the multi-conditional latent vari-
able model that brings together GPs and multi-conditional
learning to achieve a feature fusion for multi-label classi-
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fication of facial AUs. The majority of existing approaches
perform feature fusion via simple vector concatenation. How-
ever, this leads to the false assumption that the multiple fea-
ture sets are identically distributed. By assuming conditional
independence given the subspace of AUs, MC-LVM learns
different distributions for each feature set via separate GPs,
resulting in more accurate fusion in the manifold, and hence,
more discriminative features for the detection task. More
importantly, the newly introduced multi-conditional objective
allows the generative and discriminative costs to act in concert
during the model learning – the generative component has the
key role in unraveling the latent space for the feature fusion,
while the discriminative component endows the space with
the relational/class information of the outputs. The retrieved
manifold leads to superior performance compared to other
solely discriminative or generative approaches. We further
proved that the novel topological and relational constraints can
increase the discriminative power of the model, by successfully
encoding the AU dependencies into the learned manifold. We
demonstrated the effectiveness of these properties on three
publicly available datasets, and showed that the proposed
model outperforms the existing works for multiple AU de-
tection, and several methods for feature fusion and multi-label
learning. We also showed that the proposed model is able to
generalize across different datasets.

One main limitation of the proposed approach is its inef-
ficiency to deal with large data during training. As purely
based on the framework of GPs, MC-LVM’s training scales
in O(N3), which typically imposes a restriction on using
datasets of size O(104). However, this can be addressed by
sparse [63] or distributed [64] computations, which scale GPs
to O(107). An extra burden during the training of MC-LVM is
the requirement for manual selection of the weighting between
the generative and discriminative components. Ideally, within
our probabilistic formulation, the balancing of the condi-
tional distributions should be handled automatically. Finally,
as evidenced by our experiments, the proposed joint inference
improves detection of most AUs and the overall performance.
Yet, sometimes this results in decreased detection performance
on other AUs, when compared to single output AU detectors. It
would be interesting to investigate how the subsets of strongly
correlated AUs could efficiently be detangled by learning
subset-specific subspaces within the proposed framework. All
these are possible directions of future work.
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