
End-to-End Audiovisual Fusion with LSTMs

Stavros Petridis1, Yujiang Wang1, Zuwei Li1, Maja Pantic1,2

1Dept. Computing, Imperial College London
2EEMCS, University of Twente

stavros.petridis04@imperial.ac.uk, m.pantic@imperial.ac.uk

Abstract
Several end-to-end deep learning approaches have been recently
presented which simultaneously extract visual features from the
input images and perform visual speech classification. How-
ever, research on jointly extracting audio and visual features
and performing classification is very limited. In this work, we
present an end-to-end audiovisual model based on Bidirectional
Long Short-Term Memory (BLSTM) networks. To the best of
our knowledge, this is the first audiovisual fusion model which
simultaneously learns to extract features directly from the pixels
and spectrograms and perform classification of speech and non-
linguistic vocalisations. The model consists of multiple iden-
tical streams, one for each modality, which extract features di-
rectly from mouth regions and spectrograms. The temporal dy-
namics in each stream/modality are modeled by a BLSTM and
the fusion of multiple streams/modalities takes place via another
BLSTM. An absolute improvement of 1.9% in the mean F1 of 4
nonlingusitic vocalisations over audio-only classification is re-
ported on the AVIC database. At the same time, the proposed
end-to-end audiovisual fusion system improves the state-of-the-
art performance on the AVIC database leading to a 9.7% abso-
lute increase in the mean F1 measure. We also perform audiovi-
sual speech recognition experiments on the OuluVS2 database
using different views of the mouth, frontal to profile. The pro-
posed audiovisual system significantly outperforms the audio-
only model for all views when the acoustic noise is high.
Index Terms: Audiovisual Fusion, End-to-end Deep Learning,
Audiovisual Speech Recognition

1. Introduction
Audiovisual fusion approaches have been successfully applied
to various problems like speech recognition [1, 2], emotion
recognition [3, 4], laughter recognition [5] and biometric ap-
plications [6]. The addition of the visual modality is particu-
larly useful in noisy environments where the performance of
audio-only classifiers is degraded. As a consequence, the visual
information, which is not affected by acoustic noise, can sig-
nificantly improve the performance of audio-only classifiers in
noisy environments.

Recently, several deep learning approaches for audiovisual
fusion have been presented. The vast majority of them follow a
two step approach where features are first extracted from the au-
dio and visual modalities and then are fed to a classifier. Ngiam
et al. [7] applied principal component analysis (PCA) to the
mouth region of interest (ROI) and spectrograms and trained a
deep autoencoder to extract bottleneck features. The features
from the entire utterance were fed to a support vector machine
(SVM) ignoring the temporal dynamics of the speech. Hu et al.
[8] used a similar approach where PCA was applied to mouth
ROIs and spectrograms and a recurrent temporal multimodal
restricted Boltzmann machine was trained to extract features

which are fed to an SVM. Ninomiya et al. [9] applied PCA to
the mouth ROIs and concatenated Mel-Frequency Cepstral Co-
efficients (MFCCs) and trained a deep autoencoder to extract
bottleneck features which were fed to a Hidden Markov Model
(HMM) in order to take into account the temporal dynamics.
Mroueh et al. [10] used concatenated MFCCs together with
scattering coefficients extracted from the mouth ROI in order to
train a deep network with a bilinear softmax layer. Takashima
et al. [11] used a convolutional neural network to extract bot-
tleneck features from lip images and Mel-maps which were fed
to an HMM. It is clear that none of the above works follows an
end-to-end architecture.

Few works have been presented very recently which follow
an end-to-end approach for visual speech recognition (lipread-
ing). Wand et al. [12] used a fully connected layer followed
by two LSTM layers to perform lipreading directly from raw
mouth ROIs. Petridis et al. [13] used a deep autoencoder to-
gether with an LSTM for end-to-end lipreading from raw pix-
els. Assael et al. [14] used a CNN with gated recurrent units for
end-to-end sentence-level lipreading.

To the best of our knowledge, the only work which per-
forms end-to-end training for audiovisual speech recognition is
[15]. An attention mechanism is applied to both the mouth ROIs
and MFCCs and the model is trained end-to-end. However, the
system does not use the raw audio signal or spectrogram but
relies on MFCC features.

In this paper, we extend our previous work [13] and present
an end-to-end audiovisual fusion model for speech recognition
and nonlinguistic vocalisation classification which jointly learns
to extract audio/visual features directly from raw inputs and per-
form classification (Fig. 1). To the best of our knowledge, this
is the first end-to-end model which performs audiovisual fusion
from raw mouth ROIs and spectrograms. The proposed model
consists of multiple identical streams, one per modality, which
extract features directly from the raw images and spectrograms.
Each stream consists of an encoder which compresses the high
dimensional input to a low dimensional representation. The en-
coding layers in each stream are followed by a BLSTM which
models the temporal dynamics. Finally, the information of the
different streams/modalities is fused via a BLSTM which also
provides a label for each input frame. We perform classifica-
tion of nonlinguistic vocalisations on AVIC database achieving
state-of-the-art performance for audiovisual fusion, with an ab-
solute increase in the mean F1 measure by 9.7%. The proposed
system also results in an absolute increase of 1.9% in the mean
F1 measure compared to the audio-only model. In addition,
we also perform experiments on audiovisual speech recognition
using different lip views, from frontal to profile, on OuluVS2.
The end-to-end audiovisual fusion outperforms the audio-only
model when the noise level is high and results in the same per-
formance when clean audio is used.



Figure 1: Overview of the end-to-end audiovisual system. One
stream per modality is used for feature extraction directly from
the raw images and spectrograms. Each stream consists of an
encoder which compresses the high dimensional input image
to a low dimensional representation. The ∆ and ∆∆ features
are also computed and appended to the bottleneck layer. The
encoding layers in each stream are followed by a BLSTM which
models the temporal dynamics. A BLSTM is used to fuse the
information from all streams and provides a label for each input
frame.

2. Databases
The databases used in this study are the OuluVS2 [16] and
AVIC [17]. The OuluVS2 contains 52 speakers saying 10 utter-
ances, 3 times each, so in total there are 156 examples per utter-
ance. The utterances are the following: “Excuse me”, “Good-
bye”, “Hello”, “How are you”, “Nice to meet you”, “See you”,
“I am sorry”, “Thank you”, “Have a good time”, “You are wel-
come”. The mouth ROIs are provided and they are downscaled
as shown in Table 1 in order to keep the aspect ratio of the orig-
inal videos constant. Video is recorded at 30 frames per second
(fps) and audio at 48 kHz The unique feature of OuluVS2 is that
it provides multiple lip views. To the best of our knowledge it
is the only publicly available database with 5 lip views between
0°and 90°. The LiLir dataset [18] also contains five views but
it is not publicly available at the moment, and the TCD-Timit
database [19] contains only two views, frontal and 30°.

The AVIC corpus is an audiovisual dataset containing
scenario-based dyadic interactions. A subject is interacting with
an experimenter who plays the role of a product presenter and
leads the subject through a commercial presentation. The sub-
jects role is to listen to the presentation and interact with the
experimenter depending on his/her interest on the product.

Annotations for laughter, hesitation, consent and other hu-
man noises, which are grouped into one class called garbage,

Table 1: Size of mouth ROIs in pixels for each view in the
OuluVS2 database.

Views 0° 30° 45° 60° 90°

Height/Width 29/50 29/44 29/43 35/44 44/30

are provided with the database and those are used in this study.
In total 21 subjects were recorded, 11 males and 10 females
with most subjects being non-native speakers. Similarly to pre-
vious works [17, 20, 21] vocalisations that were very short (≤
120 ms) were excluded. In total, 247, 1136, 308 and 582 ex-
amples for the laughter, hesitation, consent and garbage class,
respectively, were used. Examples of laughter and hesitation
are shown in Fig. 2 and 3, respectively.

A video camera was used to record the subject’s reaction,
positioned in front of him/her, at 25 fps. The audio signal was
recorded by a lapel microphone at 44.1 kHz.

AVIC does not provide mouth ROIs so sixty eight points
were tracked on the face using the tracker proposed in [22]. The
faces were first aligned using a neutral reference frame in order
to normalise them for rotation and size differences. This is done
using an affine transform using five stable points, two eyes cor-
ners in each eye and the tip of the nose. Then the center of
the mouth is located based on the tracked points and a bound-
ing box with size 85 by 129 is used to extract the mouth ROI.
Finally, the mouth ROIs are downscaled to 30 by 45.

3. End-to-end Audiovisual Fusion
The proposed deep learning system for audiovisual fusion is
shown in Fig. 1. It consists of two identical streams which ex-
tract features directly from the raw input images and the spec-
trograms1, respectively. Each stream consists of two parts: an
encoder and a BLSTM. The encoder follows a bottleneck ar-
chitecture in order to compress the high dimensional input im-
age to a low dimensional representation at the bottleneck layer.
The same architecture as in [23] is used, with 3 hidden layers of
sizes 2000, 1000 and 500, respectively, followed by a linear bot-
tleneck layer. The rectified linear unit is used as the activation
function for the hidden layers. The ∆ (first derivatives) and ∆∆
(second derivatives) [24] features are also computed, based on
the bottleneck features, and they are appended to the bottleneck
layer. In this way, during training we force the encoding lay-
ers to learn compact representations which are discriminative
for the task at hand but also produce discriminative ∆ and ∆∆
features. This is in contrast to the traditional approaches which
pre-compute the ∆ and ∆∆ features at the input level and as a
consequence there is no control over their discriminative power.

The second part is a BLSTM layer added on top of the en-
coding layers in order to model the temporal dynamics of the
features in each stream. The BLSTM outputs of each stream are
concatenated and fed to another BLSTM in order to fuse the in-
formation from all streams. The output layer is a softmax layer
which provides a label for each input frame. The majority label
over each utterance is used in order to label the entire utterance.
The entire system is trained end-to-end which enables the joint
learning of features and classifier. In other words, the encoding
layers learn to extract features from raw images and spectro-
grams which are useful for classification using BLSTMs.

1Spectrogram frame are computed over a 40 ms windows with 30
ms overlap.



(a) 6532 (b) 6539 (c) 6555 (d) 6569

Figure 2: Example of laughter from the AVIC corpus, Subject VP4,
frames 6532 to 6569.

(a) 15476 (b) 15479 (c) 15489 (d) 15497

Figure 3: Example of hesitation from the AVIC corpus, Subject VP8,
frames 15476 to 15497.

4. EXPERIMENTAL SETUP
4.1. Evaluation Protocol

We first partition the data into training, validation and test sets.
The same protocol as in [21] is used for the AVIC dataset where
the first 7 subjects are used for testing, the next 7 for training
and the last 7 for validation.

The protocol suggested in [25] is used for the OuluVS2
dataset where 40 subjects are used for training and validation
and 12 for testing. We randomly divided the 40 subjects into
35 and 5 subjects for training and validation purposes, respec-
tively. This means that there are 1050 training utterances, 150
validation utterances and 360 test utterances.

4.2. Preprocessing

Since all the experiments are subject independent we first need
to reduce the impact of subject dependent characteristics. This
is done by subtracting the mean image, computed over the entire
utterance, from each frame.

As mentioned in section 2 the audio and visual features are
extracted at different frame rates. Therefore they need to by
synchronised. This is achieved by upsampling the visual fea-
tures, to match the frame rate of the audio features (100fps), by
linear interpolation similarly to [2].

Finally, due to randomness in initialisation, every time a
deep network is trained the results are slightly different. In order
to present a more objective evaluation we run each experiment
10 times and we report the mean and standard deviation of the
performance measures.

4.3. Training

4.3.1. Single Stream Training

Initialisation: First, each stream is trained independently. The
encoding layers are pre-trained in a greedy layer-wise manner
using Restricted Boltzmann Machines (RBMs) [26]. Since the
input (pixels or spectrograms) is real-valued and the hidden lay-
ers are either rectified linear or linear (bottleneck layer) four
Gaussian RBMs [26] are used. Each RBM is trained for 20
epochs with a mini-batch size of 100 and L2 regularisation co-
efficient of 0.0002 using contrastive divergence. The learning
rate is fixed to 0.001 as suggested in [26] when visible/hidden
units are linear.

As recommended in [26] the data should be z-normalised,
i.e., the mean and standard deviation should be equal to 0 and
1, respectively, before training an RBM with linear input units.
Hence, each image is z-normalised before pre-training the en-
coding layers. Similarly, each spectrogram frame is also z-
normalised.

End-to-End Training: Once the encoder has been pre-
trained then the BLSTM is added on top and its weights are
initialised using glorot initialisation [27]. The Adam training

algorithm [28] is used for end-to-end training with a mini-batch
size of 10 utterances. The default learning rate of 0.001 led to
unstable training so it was reduced to 0.0003. Early stopping
with a delay of 5 epochs was also used in order to avoid overfit-
ting and gradient clipping was applied to the LSTM layers.

4.3.2. Audiovisual Training

Initialisation: Once the single streams have been trained then
they are used for initialising the corresponding streams in the
multi-stream architecture. Then another BLSTM is added on
top of all streams in order to fuse the single stream outputs. Its
weights are initialised using glorot initialisation.

End-to-End Training: Finally, the entire network is trained
jointly using Adam with a mini-batch size of 10 utterances.
Since the individual streams are already initialised at good val-
ues a lower learning rate is used, 0.0001, to fine tune the entire
network. Early stopping and gradient clipping were also applied
similarly to single stream training.

5. Experiments

In this section we report the results on OuluVS2 and AVIC
databases. We have experimented with using the end-to-end
audiovisual system shown in Fig. 1 but also with the individual
streams, i.e., audio- and video-only classification. In the latter
case, we just use the corresponding single stream, encoder +
BLSTM.

5.1. Results on AVIC database

Results for the AVIC database are shown in Table 2. Since this
is an imbalanced dataset, see section 2, using just the classifi-
cation rate can be misleading. Hence, we also report the un-
weighted average recall (UAR) rate and the mean F1 measure
over all 4 classes. First of all, we see that the proposed end-to-
end system significantly outperforms the current state-of-the-art
on the AVIC database, which is based on handcrafted features
and prediction-based audiovisual fusion [21]. It results in a sta-
tistically significant absolute mean F1 improvement of 19% and
9.8% for the audio-only and audiovisual classification, respec-
tively.

It is also clear that the audio-only classifier performs much
better than the video-only classifier. This is expected since most
of the information is carried by the audio channel. In addition,
some vocalisations can be accompanied by subtle facial expres-
sions, like hesitation in Fig. 3, or even no facial expression at
all. However, the visual modality is still useful and the audiovi-
sual combination using the end-to-end model results in a statis-
tically significant absolute improvement of 2% of the mean F1
over the audio-only model.



Table 2: Mean (standard deviation) F1, Unweighted Average
Recall (UAR) and Classification Rates (CR) over 10 runs for
the Audio-only classifier (A), Video-only classifier (V) and au-
diovisual classifiers (A + V) on the AVIC database. Subjects 1
to 7 are used as test set. The highest value in each column is
shown in bold.

Stream Mean F1 UAR CR

Current State-of-the-art [21]

A 54.1 (2.2) 58.7 (2.4) 58.8 (2.4)

V 44.0 (2.0) 48.9 (2.5) 48.5 (2.6)

A + V 65.3 (2.9) 64.9 (3.0) 72.6 (3.0)

End-to-End Model

A 73.1 (2.3) 72.6 (3.3) 79.6 (1.7)

V 45.4 (5.2) 48.4 (4.1) 66.9 (1.4)

A + V 75.1 (1.5) 73.8 (1.5) 80.3 (1.5)

Table 3: Mean (standard deviation) classification rate over 10
runs of the different views and their combinations with audio on
the OuluVS2 database.

Stream V A + V

Frontal 91.8 (1.1) 98.6 (0.5)

30° 87.3 (1.6) 98.7 (0.5)

45° 88.8 (1.4) 98.3 (0.4)

60° 86.4 (0.6) 98.6 (0.6)

Profile 91.2 (1.3) 98.9 (0.5)

Clean Audio 98.5 (0.6)

5.2. Results on OuluVS2 database

We consider a single view scenario where we train and test mod-
els on data recorded from a single view. Results are shown in
Table 3. This dataset is balanced so we just report the classi-
fication rate which is the default performance measure for this
database [25]. The best performance in video-only experiments
is achieved by the frontal and profile views followed by the 45°,
30°and 60°views. The audio-only model achieves a very high
classification accuracy, 98.5%. This is due to the audio signal
being clean, without any background noise, and the participants
uttering phrases which are much longer than the vocalisations
on AVIC database. We also notice that audiovisual fusion does
not lead to an improvement over the audio-only model. This is
not surprising, given the very high accuracy already achieved
by the audio classifier in clean conditions.

In order to test the benefits of audiovisual fusion we have
run experiments under varying noise levels. The audio signal is
corrupted by additive babble noise from the NOISEX database
[29] so as the signal-to-noise ratio (SNR) varies from 0dB to
20dB. Results are shown in Table 4. As expected, the audio
model is significantly affected by the addition of noise and its
performance is degraded more and more as the noise level in-
creases leading to a classification rate of 28.4% at 0dB. All au-
diovisual models significantly outperform the audio only model

due to presence of the visual modality which is not affected by
acoustic noise.

It is worth pointing out, that although there are significant
differences in performance between the views in the video-only
case, they all result in almost the same performance in the au-
diovisual case when audio is clean, i.e. no noise added and
15/20dB. However, as the acoustic noise level increases their
differences become more evident. It is interesting that the com-
bination of noisy audio with different views does not follow ex-
actly the same pattern as observed in Table 3. Between 0dB and
10dB, the combinations of audio with the 45°and frontal views
are the best ones. The combination of audio and the 60°view is
the worst one, which is consistent with Table 3 but surprisingly
the combination of audio and profile view also performs poorly
at 0dB. This is an indication that there could be a non-linear
interaction between audio and different views when the noisy
levels increase but this deserves further investigation.

We should also mention, that beyond 10 dB the perfor-
mance of the audiovisual fusion model is worse than the perfor-
mance of the video-only system, which varies between 86.4%
(60°view) and 91.8% (frontal view). This is probably due to
the fact that the audiovisual system is trained with clean audio
data. Given the very high classification accuracy achieved by
the audio-only model under clean conditions, the fusion model
is probably heavily biased towards audio. The fact that audiovi-
sual fusion results in the same performance as audio-only classi-
fication under clean conditions is also an indication towards that
direction. As a consequence, when the levels of acoustic noise
increase the performance becomes worse than the video-only
model, however it is still able to extract some useful informa-
tion from the visual modality and significantly outperform the
audio-only classifier.

Finally, we should also mention that we experimented with
CNNs for the encoding layers but this led to worse performance
than the proposed system. Chung and Zisserman [30] report
that it was not possible to train a CNN on OuluVS2 without the
use of external data. Similarly, Saitoh et al. [25] report that they
were able to train CNNs on OuluVS2 only after data augmen-
tation was used. This is likely due to the rather small training
set. We also experimented with data augmentation which im-
proved the performance but did not exceed the performance of
the proposed system.

6. Conclusions
In this work, we present an end-to-end visual audiovisual fu-
sion system which jointly learns to extract features directly from
the pixels and spectrograms and perform classification using
BLSTM networks. Results on audiovisual classification of non-
linguistic vocalisations demonstrate that the proposed model
achieves state-of-the-art performance on the AVIC database.
In addition, audiovisual speech recognition experiments using
different lip views on OuluVS2 demonstrate that the proposed
end-to-end model outperforms the audio-only classifier for high
level of acoustic noise. The model can be easily extended to
multiple streams so we are planning to perform audiovisual
multi-view speech recognition and investigate the influence of
audio to the different views.
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Table 4: Mean (standard deviation) classification rate over 10 runs on the OuluVS2 database for different noise levels.

20dB 15dB 10dB 5dB 0dB

Audio 96.5 (1.5) 91.1 (3.2) 73.3 (5.5) 48.1 (6.6) 28.4 (4.7)

Audio + 0° 97.8 (0.6) 94.6 (0.9) 85.1 (1.4) 71.0 (1.3) 57.5 (1.2)

Audio + 30° 97.9 (0.4) 94.2 (0.7) 84.2 (1.4) 70.6 (1.1) 56.8 (3.1)

Audio + 45° 97.4 (0.7) 94.5 (1.2) 85.8 (1.9) 72.1 (2.6) 58.1 (3.3)

Audio + 60° 97.6 (0.6) 94.2 (1.2) 84.1 (1.3) 69.3 (1.7) 53.3 (3.6)

Audio + 90° 97.6 (0.8) 95.3 (1.1) 84.8 (1.9) 70.8 (3.2) 53.9 (4.5)
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