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Abstract
Inspired by the recent development of deep network-based methods in semantic image segmentation, we introduce an
end-to-end trainable model for face mask extraction in video sequence. Comparing to landmark-based sparse face shape
representation, our method can produce the segmentation masks of individual facial components, which can better reflect
their detailed shape variations. By integrating convolutional LSTM (ConvLSTM) algorithmwith fully convolutional networks
(FCN), our new ConvLSTM-FCN model works on a per-sequence basis and takes advantage of the temporal correlation in
video clips. In addition, we also propose a novel loss function, called segmentation loss, to directly optimise the intersection
over union (IoU) performances. In practice, to further increase segmentation accuracy, one primary model and two additional
models were trained to focus on the face, eyes, and mouth regions, respectively. Our experiment shows the proposed method
has achieved a 16.99% relative improvement (from 54.50 to 63.76% mean IoU) over the baseline FCN model on the 300
Videos in the Wild (300VW) dataset.

Keywords Face mask extraction · Semantic face segmentation · Fully convolutional networks · Convolutional LSTM ·
Segmentation loss

1 Introduction

The sparse facial shape descriptor extracted with traditional
landmark-based face-tracker usually cannot capture the full
details of the facial components’ shapes, which are essen-
tial to the recognition of higher level features such as facial
expressions, emotions, identity, and so on. To overcome the
limitations of sparse facial descriptors, we introduce the
concept of face mask, a dense facial descriptor with infor-
mation of semantic facial regions at pixel level like eyes and
mouth.Developing fromvarious deep learning-based seman-
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tic image segmentation methods, we then propose a novel
approach for extracting face mask in video sequence. Differ-
ent from semantic face segmentation, face mask extraction
handles occlusion in a similar way to facial landmark track-
ing. Namely, the extract facemask is expected to be complete
regardless of occlusion, while typical segmentation result
would exclude the occluded area. Face mask extraction tech-
niques could havemanypotential and interesting applications
in the field of Human–Computer Interaction, including face
detection & recognition, emotion & expression recognition,
social robots interaction, etc. To the best of our knowledge,
this is the first exploration of face mask extraction in video
sequence with an end-to-end trainable deep-learning model.

Face mask extraction is a challenging task, especially for
video clips taken in the wild, due to the huge amount of
variations such as indoor & outdoor conditions, occlusions,
image qualities, expressions, poses, skin colours, etc. Early
studies of semantic face segmentation (Kae et al. 2013; Smith
et al. 2013; Lee et al. 2008; Warrell and Prince 2009) usu-
ally concentrated on the segmentation of still face images,
and their methods were mostly based on heavily engineered
approaches rather than learning.

In recent years, deep-learning techniques, particularly
Convolutional Neural Networks (CNNs), has developed
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rapidly in the field of semantic image segmentation. Com-
paring to traditional approaches, the main advantage of
deep-learning methods is their ability to learn robust rep-
resentations through an end-to-end trainable model for a
particular task and dataset, and their performances usually
surpass that of hand-crafted features extracted by traditional
computer visionmethod.Among others, FullyConvolutional
Networks (FCN) (Long et al. 2015) is the first seminal work
of applying deep-learning techniques in semantic image
segmentation. FCN substitute the fully connected layers in
the widely-used deep CNN architectures - such as AlexNet
(Krizhevsky et al. 2012), VGG-16 (Simonyan and Zisserman
2014), GoogleLeNet (Szegedy et al. 2015), ResNet (He et al.
2016) into convolutional layers, therefore turns the outputs
from one-dimensional vectors to two-dimensional spatial
heat-maps, which are then upsampled to the original image
size using deconvolutional layers (Zeiler et al. 2011; Zeiler
and Fergus 2014). Developed from the baseline FCN, many
improvements have been proposed in the following years,
achieving increasingly better performance on benchmark
datasets. Some works have changed the decoder structure of
FCN, like SegNet by Badrinarayanan et al. (2017), and some
other models have applied Conditional Random Field (CRF)
as a post-processing step, such as the CRFasRNN work by
Zheng et al. (2015) and the DeepLab models (Chen et al.
2016), and there are also works that utilise dilated convo-
lutions (Zhou et al. 2015a), or atrous convolutions in other
words, to broaden the reception fields of filters without addi-
tional computation cost, e.g. the DeepLab models by Chen
et al. (2016), ENet (Paszke et al. 2016) and the work of Yu
and Koltun (2015).

Comparing to image segmentation, fewer works concern
semantic segmentation in video sequences. Depending on
the training methods, these works can be roughly divided
into 1. fully-supervised methods (Kundu et al. 2016; Liu and
He 2015; Shelhamer et al. 2016; Tran et al. 2016; Tripathi
et al. 2015), where all the annotations are given; 2. semi-
Supervised approaches (Jain and Grauman 2014; Nagaraja
et al. 2015; Tsai et al. 2016; Caelles et al. 2017), which
require certain pixel-level annotations like the ground truth
of the sequence’s first frame; and 3. weakly-supervised ones
(Saleh et al. 2017; Drayer and Brox 2016; Liu et al. 2014;
Wang et al. 2016), in which only the tags for each video
clips are known. Due to the complex variations in real-
life scenarios, we focus on fully-supervised video semantic
segmentation. In addition, most semi-supervised or weakly-
supervised approaches are proposed to solve the task of video
object segmentation, i.e. binary classification between fore-
ground and background, which limits their application in
multi-class tasks such as face mask extraction.

To utilise the temporal information in video sequences,
several fully-supervised video segmentation methods rely
on graphical models such as Kundu et al. (2016), Liu and

He (2015) and Tripathi et al. (2015), while other approaches
are based on CNNmodels, e.g. the Clockworks Convnets by
Shelhamer et al. (2016), in which a fixed or adaptive clock
was used to control the update rates of different layers accord-
ing to their semantic stability. Other works, such as Zhang
et al. (2014a) and Tran et al. (2016), use 3D convolutions
or 3DCNNs to capture the temporal dependencies as well as
the spatial connections. Both approaches have their limita-
tions. Clockworks Convnets do not fully utilise the temporal
information in video sequence since the semantic changes
are only used to adjust clock rates. 3DCNN treats temporal
dimension in the same way as 2D space, thus could limit the
extraction of long-term temporal information.

In this paper, we propose an end-to-end trainable model
which could exploit the temporal information in amore direct
and natural way. The key idea is the application of convolu-
tional long short termmemory (ConvLSTM) layer (Xingjian
et al. 2015) in FCN models, which enable the FCNs to learn
the temporal connections while retaining the ability to learn
spatial correlations.

Recurrent Neural Networks, especially LSTMs, have
already shown their capabilities to capture short and long
term temporal dependencies in various computer vision tasks
such as visual speech recognition (Lee et al. 2016; Zimmer-
mann et al. 2016; Chung and Zisserman 2016; Petridis et al.
2017a, b). However, typical RNN models only accept one-
dimensional arrays, which limits the models’ application in
tasks that require multi-dimensional relationships to be kept.
To overcome this limitation, multiple approaches have been
proposed, such as theworks ofGraves et al. (2007), theReNet
architecture of Visin et al. (2015), and the aforementioned
ConvLSTM by Xingjian et al. (2015).

Among these methods, ConvLSTM directly models the
spatial relationships while keeping LSTM’s ability to capture
temporal dependencies. Another advantage of ConvLSTM is
it can be integrated into existing convolutional networks with
very little effort because a convolutional layer can be easily
replaced by a ConvLSTM layer with identical filter settings.

In this work, we introduce the ConvLSTM-FCN model
that combines FCN and ConvLSTM by converting a certain
convolutional layer in the FCN model into a ConvLSTM
layer, thus adding the ability to model temporal dependen-
cies within the input video sequence. Specifically, for the
baseline model, we adopt the structure of FCN model based
on ResNet-50 (He et al. 2016) and then replace the classi-
fying convolutional layer, which is converted from the fully
connected layer in the original ResNet-50model, with a Con-
vLSTM layer with the same convolutional filter settings. We
also add two reshape layers since ConvLSTM layers require
different input dimensions than the convolutional layers. The
ConvLSTM-FCNmodel accepts video sequence as input and
outputs the predictions of the same size, and the temporal
information is learnt together with the spatial connections.
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To be able to optimise the model toward higher accuracy
in terms of mean intersection over union (mIoU), which is
a typical performance metric for segmentation problems, we
also propose a new loss function, called segmentation loss.
Unlike the IoU loss in Rahman and Wang (2016), segmenta-
tion loss is more flexible and carries more practical meaning
in image space. In comparison to the frequently-used cross-
entropy loss and the IoU loss by Rahman and Wang (2016),
highermIOUcan be achievedwhen segmentation loss is used
as the loss function during training.

A dataset with fully annotated face masks in videos would
be needed to evaluate the proposed method. However, at
this moment, no such dataset could be found in the public
domain. Therefore, in this work, we use the 300 Videos in
theWild (300VW) dataset (Shen et al. 2015), which contains
per-frame annotations of 68 facial landmarks for 114 short
video clips. These landmark annotations are then converted
into 4 semantic facial regions: face skin, eyes, outer mouth
(lips) and inner mouth.

Our experiments are conducted on the aforementioned
300VW dataset with converted pixel-level labels of 5 class
(the 4 facial regions plus background). As the baseline
approaches, we compare performances of (1) The tradi-
tional 68-point facial landmark tracking model (Kazemi and
Josephine 2014); (2) The deeplab-V2 model (Chen et al.
2016); (3) The VGG-16 Version of FCN (Simonyan and Zis-
serman 2014; Long et al. 2015), (4) The ResNet-50 Version
FCN (He et al. 2016; Long et al. 2015), and (5) The ResNet-
50 Version FCN + a simple temporal smoothing strategy.
We then change the ResNet-50 version FCN to ConvLSTM-
FCN, so that the temporal information in video sequence
could be utilised. For better performance, we further extend
our method to include three ConvLSTM-FCN models: a
primary model to find the face region, and two additional
models focusing on the eyes and mouth, respectively. The
predictions of the three models are combined to obtain the
final face mask. Our experimental results show that the util-
isation of temporal information could significantly improve
FCN’s performances for face mask extraction (from 54.50%
to 63.76% mean IoU), and the performance of ConvLSTM-
FCNmodel also surpass that of traditional landmark tracking
models (63.76% vs. 60.09%).

2 RelatedWorks

This section covers the major related works in the field. It is
worth mentioning that, to the best of our knowledge, there is
no similar work in terms of semantic face segmentation or
face mask extraction in video sequence, so we have investi-
gated the studies of video semantic segmentation instead.

2.1 Semantic Image Segmentation

The last few years have witnessed the rapid development
of deep-learning techniques in the field of semantic image
segmentation, and most of the state-of-the-art results are
achieved by such models. The FCN by Long et al. (2015)
is the first milestone for deep learning in this field. FCN cast
the fully convolutional layers in well-known deep architec-
tures, such as AlexNet (Krizhevsky et al. 2012), VGG-16
(Simonyan and Zisserman 2014), GoogleLeNet (Szegedy
et al. 2015), ResNet (He et al. 2016), to convolutional lay-
ers so that the output of such models is spatial heat-maps
instead of traditional one-dimensional class score. The skip-
architecture of FCN enables the information from coarser
layers to be seen by finer layers, therefore the model can be
more aware of the global context, which is rather important
in semantic segmentation. FCNs have limitations in term of
integrating knowledge of the global context to make appro-
priate local predictions since the receptive field of their filters
can only increase linearly when the number of layers grows
(Garcia-Garcia et al. 2017). Therefore, later studies improve
their models’ abilities to utilise the global image context with
different approaches.

The works of the DeepLab models (Chen et al. 2016),
ENet (Paszke et al. 2016) and the work of Yu and Koltun
(2015) has involved the application of dilated convolutions,
or so-called atrous convolutions. They are a kind of gener-
alised Kronecker-factored convolutional filters (Zhou et al.
2015a), and they differ from traditional convolutional filters
in that they have wider receptive fields which can grow expo-
nentially with the dilated rate l (Garcia-Garcia et al. 2017).
The standard convolutional operations can be seen as dilated
convolutions with dilated rate = 1. Dilated convolutional lay-
ers can have more awareness of the global image context
without reducing the resolution of feature maps too much.
Another noticeable improvement is brought by the works
of Yu and Koltun (2015), where their models take inputs
of images at two different scales and then combine the pre-
dictions into one. The ideas of integrating predictions from
multi-scale images can also be seen in the works of Roy and
Todorovic (2016) and Bian et al. (2016).

Conditional Random Field (CRF) is a frequently-used
technique for deep semantic segmentation models, such as
the DeepLab models (Chen et al. 2016) and the CRFasRNN
by Zheng et al. Zheng et al. (2015). The main advantage of
CRF is that it could capture the long-range spatial relation-
ships which are usually difficult for CNNs to retain, and CRF
could also help to smooth the edges of the predictions.

2.2 Semantic Face Segmentation

Most earlier works of semantic face segmentation applied
engineering-based approaches. Kae et al. (2013) employed
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a restricted Boltzmann machine to build the global-local
dependencies such that the global shape can be natural, while
they used CRFs to construct the details of the local shape. As
in the work of Smith et al. (2013), a database of exemplary
face images was first collected and labelled, and face images
were aligned to those exemplary images with a non-rigid
warping. There are also some other earlier works (Warrell
and Prince 2009; Scheffler and Odobez 2011; Yacoob and
Davis 2006; Lee et al. 2008) in this field, however, most such
works utilised engineering-based hand-crafted features, and
it usually takes lots of time to fine-tune those models for
them toworkunder particular scenarios. Therefore, theywere
gradually replaced by deep-learning based approaches.

Compared with the rapid progress of deep learning in
semantic image segmentation, its application in semantic
face segmentation is comparatively rare. Due to the diffi-
culties of pixel-level labelling for huge amounts of data,
currently, there are only a few publicly available datasets for
this task. Twocommonly used datasets are Parts Label dataset
(Learned-Miller et al. 2016; Kae et al. 2013), which contains
2927 images with labels of background, face skin and hair,
and Helen dataset (Le et al. 2012; Smith et al. 2013) includ-
ing 2330 face images with annotations of face skin, left/right
eyebrow, left/right eye, nose, upper lip, inner mouth, lower
lip and hair. The lack of public face datasets with pixel-level
annotations could be an obstacle for the development of deep
models in this field.

For those face segmentation approaches using deep mod-
els, the works of Zhou et al. (2015b) proposed an interlinked
version of the traditional CNN model, where parts of the
face could be detected except the facial skin. Compared with
FCN, the proposed model is less efficient and its structure
is overly redundant, and it cannot detect semantic part at
large scales, like the facial skin. Güçlü et al. (2017) took
advantages of multiple deep-learning techniques, i.e. they
formulated a CRF by one Convolutional Neural Network for
the unary potential and the pairwise kernels, and one Recur-
rent Neural Networks to transform the unary potentials and
the pairwise kernels into segmentation space. The training
process utilised the idea of Generative Adversarial Networks
(GAN), where the CRF and a discriminator network played
a two-player minimised game. The limitation of this work is
that it requires an initial face segmentation generated by a
facial landmark detection model as the input in addition to
the original face image, while the initial face segmentation
is not necessary in our method.

All these semantic face segmentation approaches were
proposed for still face images, while in the context of video
sequences, where the variations are more complex, these
methods may not be applicable. Currently, to the best of our
knowledge, our work is the first one developed for semantic
face segmentation in video sequence, or facemask extraction
as we propose.

2.3 Video Semantic Segmentation

Video semantic segmentation methods can be roughly sep-
arated into three types through their supervision settings,
which are: (1) The works that handle fully-supervised prob-
lems, i.e. the pixel-level annotations of all frames are known,
(2) The semi-supervised video segmentation approaches, in
which partial pixel-level annotations are known, such as only
the ground-truths of the first frame is known for both train-
ing and testing, (3) The weakly-supervised methods focus on
scenarios where only the tags of each video are given for the
learning process. The main-stream interest of video segmen-
tation community is on the semi-supervised problems (Jain
and Grauman 2014; Nagaraja et al. 2015; Tsai et al. 2016;
Caelles et al. 2017) and the weakly-supervised issues (Saleh
et al. 2017; Drayer and Brox 2016; Liu et al. 2014; Wang
et al. 2016), while the tasks of these problems are usually
about segmenting one single object out of the background in
a video sequence. This is somehow different from the sce-
narios of face mask extraction, where multiple semantic face
parts should be extracted. Therefore, we have investigated
the less-focused fully-supervised video segmentation works.

Some of these fully-supervised works replied on graphic
models Kundu et al. (2016), Liu and He (2015) and Tripathi
et al. (2015). As for these approaches using deep models, the
idea Clockworks Convnets by Shelhamer et al. (2016) was
based on the observation that the semantic contents of two
successive frames change relatively slower than pixels. The
proposed Clockworks Convnets used a clock at either fixed
or adaptive schedules to control the update rates of different
layers basing on the semantic content evolution. This work
does not fully utilise the temporal information. The works of
Zhang et al. (2014a) and Tran et al. (2016) have both shown
the idea of applying 3DCNN or 3D convolutions to capture
information at time dimension. Treating temporal dependen-
cies in the same way as spatial connections may hinder the
model to understand some subtle temporal information, and
they may not be able to capture the long-term time depen-
dencies.

In ourmodel, the temporal dependencies are extracted in a
more natural and effective approach, through the application
of convolutional LSTM.

2.4 Convolutional LSTM

Convolutional LSTM (ConvLSTM) is proposed by Xingjian
et al. (2015) to solve the problemof precipitation nowcasting.
Its has a similar structure as the FC-LSTM byGraves (2013),
while all the inputs X1,…, Xt , cell outputsC1,…,Ct , hidden
states H1, …, Ht , input gate it , forget gate ft and output gate
ot in ConvLSTM are 3D tensors, where the first dimension
is the measurements in cell varying over time, and the last
two dimension are spatial ones (rows and columns) (Xingjian
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et al. 2015). The key idea of ConvLSTM can be expressed in
Eq. 1 (Xingjian et al. 2015), where ’∗’ denotes the convolu-
tional operator and ’◦’ means the Hadamard product.

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi )

ft = σ(Wx f ∗ Xt + Whf ∗ Ht−1 + Wcf ◦ Ct−1 + b f )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc)

ot = σ(Wxo ∗ xt + Who ∗ Ht−1 + Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct )

(1)

ConvLSTM could capture the long and short term tem-
poral dependencies while retaining the spatial relationships
in the feature maps, therefore it is an ideal candidate for
face mask extraction in video sequence. Besides, with these
convolutional operations in cells, a standard convolutional
layer could be easily cast into a ConvLSTM layer with iden-
tical convolutional filters. Due to these advantages, we have
utilisedConvLSTM in FCN structures to understand the tem-
poral dependencies in video sequence.

2.5 CascadeModels for Coarse-to-Fine Predictions

The ideas of using cascade deep models to gain coarse-to-
fine predictions have been usedwidely by variousworks (Sun
et al. 2013; Zhang et al. 2014b; Zhou et al. 2013; Zhang et al.
2016) on facial landmark localization and face alignment.
For instance, the work of Sun et al. (2013) adapted a three-
level cascade CNN models to detect facial landmarks. In
this work, a first-level Convolutional Network was trained to
locate global key-points over the whole faces, and the local
areas around these predictions were input into the CNNs of
the next two levels to obtain landmarks with better quali-
ties. Similar ideas was employed in the work of Zhou et al.
(2013)where a four-level regressiveCNNmodelwas demon-
strated for extensive facial landmark localisation. The initial
landmark predictions with less accuracy were made by the
second-level model (first-level was for bounding-box detec-
tion), and the facial components were cropped using those
predictions and were input into later models to refine the
landmark qualities. Zhang et al. (2014b) proposed a cascade
Coarse-to-Fine Auto-Encoder Network for the tasks of face
alignment. The first Auto-Encoder model generated global
landmarks with lower quality, and these key-points are grad-
ually refined by the following Auto-Encoders which zoomed
in the local regions around the last model’s predictions as
their inputs.

To gain better performances, we draw from these works
the ideas of using cascade models for coarse-to-fine predic-
tions and apply it in our tasks. Particularly, we have employed
an engineering trick of utilising a primary model for whole-
face predictions and then training two zoomed-in models to

refine local predictions on eye and mouth regions, respec-
tively.

3 Methodology

The section explains our proposed ConvLSTM-FCN model
and the segmentation loss function. In addition,we also intro-
duce the engineering trick of combining the additional eye
and mouth models with the primary model.

3.1 ConvLSTM-FCNModel

The first FCN model based on VGG-16 (Long et al. 2015)
was proposed in 2015. Many variations of the FCN model
have been developed afterward, usually achieving higher per-
formances and better training efficiency.

In thiswork,webaseourmodel on the structure of theFCN
model released by Keras-Contributors (2018). This model is
a ResNet-50 version FCN. The details about this model’s
structure are summarised in Table 1. Compared with the
standard ResNet-50 architecture (He et al. 2016), dilated
convolutions with dilated rate = 2 are used in the building
blocks of ‘Conv5_x’ layer instead of the ordinary convolu-
tional operations. The ‘Conv6’ layer is the classifying layer
which replaces the original fully-connected layer to produce
feature maps of size 20 × 20 at C channels, where C is the
number of target classes. A bi-linear up-sampling layer of
16s is used instead of a deconvolutional layer.

The conversion of baseline FCN to ConvLSTM-FCN is
performed by replacing the ‘Conv6’ layer with a ConvL-
STM layer of identical convolutional filters. Figure 1 shows
the details of this procedure. The Reshape1 layer is used to
output tensor with one additional time dimension ‘T’, which
is required by the ConvLSTM layer, and the Reshape2 layer
cast the tensor back. ‘T’, the time dimension in the Con-
vLSTM layer, refers to the number of frames in a video
sequence. Therefore, for theConvLSTM-FCNmodel towork
effectively, the image orders within one batch should be
arranged properly so that ConvLSTM layer could accept
video sequences in the correct format.

3.2 Segmentation Loss

This section introduces the new loss function that we propose
to optimise mean intersection over union (mIoU).

MIoU is the most frequently-used performance metric in
the field of semantic segmentation. For one annotation set and
its predictions, IoU is calculated by the intersection divided
by the union. The intersection is actually the true positives
of the confusion matrix, while the union is the sum of true
positives, false positives and false negatives. mIoU is the
average of IoUs over all non-background classes. Assuming
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Table 1 Architectures of the
baseline FCN model

Layer name Building blocks Output size Dilated rate

Conv1 7 × 7, 64, stride 2 160 × 160 1 × 1

Conv2_x 3 × 3 max pooling, stride 2⎡
⎣
1 × 1, 64
3 × 3, 64
1 × 1, 256

⎤
⎦ × 3 79 × 79 1 × 1

Conv3_x

⎡
⎣
1 × 1, 128
3 × 3, 128
1 × 1, 512

⎤
⎦ × 4 40 × 40 1 × 1

Conv4_x

⎡
⎣
1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎤
⎦ × 6 20 × 20 1 × 1

Conv5_x

⎡
⎣
1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎤
⎦ × 3 20 × 20 2 × 2

Conv6 1 × 1, C, stride 1 20 × 20 1 × 1

UpSampling None 320 × 320 None

This model adopts the input size of 320 * 320. Building blocks are illustrated in brackets with the number of
stacked blocks. The structures of building blocks at ‘Conv1’, ‘Conv2_x’, ‘Conv3_x’ and ‘Conv4_x’ layers are
identical to the original ResNet-50 model, while in ‘Conv5_x’ layer, atrous convolutional filters with dilated
rate = 2 are used instead of the standard convolutions. The ‘Conv6’ layer is the classifying layer that outputs
feature maps at C channels, where C is the number of target classes. The ‘UpSampling’ layer bi-linearly
up-samples the feature maps back to the input size at 16s up-sampling rate

Fig. 1 An illustration of casting baseline FCN into ConvLSTM-FCN
model. Only these top layers are shown. ‘BS’ refers to batch size of
images, ‘T’ denotes the time dimension in ConvLSTM layer and ‘C’
is the target classes number. The ConvLSTM layer in ConvLSTM-
FCN has the same convolutional filters with Conv6 layer in Baseline
FCN. Two reshape layers are added to convert tensor dimensions in
ConvLSTM-FCN

there are a total ofCnon-background classes, and the notation
ni j stands for the number of pixels whose annotation is i with
prediction j , then mIoU can be expressed in Eq. 2.

mIoU = 1

C

C∑
i=1

nii∑C

j=1
ni j +

∑C

j=1
n ji − nii

(2)

The main reason for using mIoU as the metric of seg-
mentation accuracy instead of Classification Rate (CR) is to
avoid the bias caused by class imbalances. Class imbalance
is a common and challenging problem in semantic segmenta-
tion. For example, a face image usually contains much fewer
eye pixels than background pixels. If all eye and background
pixels are predicted as background, the resulting CRwill still
be quite high, which is unfair and misleading. In contrast,
mIoU would be 0 in such case as there would be no true-
positive for the eye pixels. Therefore, in the field of semantic
segmentation, mIoU is used as the main evaluation metric,
and its performance is not directly related to CR.

Cross-entropy loss, or softmax loss, is one of the most
widely-used loss function in deep learning. Although cross-
entropy loss is a useful loss with smooth training curves, it
drives the model toward higher average Classification Rate
(CR), which does not necessarily lead to improvement in
mIoU. In other words, using cross-entropy loss in semantic
segmentation could not fully fulfil deep models’ potential
in the task. Therefore, we propose a new loss, which we
name as segmentation loss, to optimise the model’s mIoU
performances directly.

The work of Rahman and Wang (2016) has used a similar
idea of optimising IoU using an IoU Loss instead of cross-
entropy loss. One immediate limitation of the IoULoss is that
it can only be applied to binary segmentation tasks, i.e. the
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background / foreground segmentation problems. Extending
the loss formulation tomultiple-class scenarios is straightfor-
ward. In particular, let PRt

i be the models prediction (output
of Softmax) for the i th sample belong to class t , and denote
GT t

i as the binary class annotation for the i th sample to be
class t (i.e. 1 if the sample actually belongs to class t and
vice versa), and there are a total of C classes and K samples,
the multiple-class IoU Loss could be expressed in Eq. 3.

I oU Lossmutiple

= 1 − 1

C

C∑
t=1

∑K

i=1
(PRt

i ∗ GT t
i )

∑K

i=1
(PRt

i + GT t
i − PRt

i ∗ GT t
i )

(3)

Themultiple-class IoULoss inEq. 3 is essentially a kindof
‘soft’ mean IoUwith computable derivatives, and it is a natu-
ral extension from the binary IoU Loss of Rahman andWang
(2016). This multiple-class IoU Loss is one of the baselines
for comparing the performances of our segmentation loss.

Another drawback of the IoU Loss proposed in Rahman
and Wang (2016) is that it neglects the practical meaning of
the IoU gradient, and, as a result, takes an over-simplified
form. This is shown in the following analysis.

Consider the case of single class segmentation, where
annotations is either 1 (foreground, positive samples) or 0
(background, negative samples). Denote predictions as A,
ground-truths as B and the network parameters as θ . Let
g(θ) = A∩ B and f (θ) = A∪ B, then this single-class IoU
can be expressed as in Eq. 4:

I oU = A ∩ B

A ∪ B
= g(θ)

f (θ)
(4)

If we treat IoU as the direct objective function, we need
to find IoU’s gradient, which is denoted as (I oU )′, in order
to optimise this objective function. The deduction of (I oU )′
is shown in Eq. 5.

(I oU )′ =
(
g(θ)

f (θ)

)′
= f (θ)g′(θ) − g(θ) f ′(θ)

f 2(θ)

= 1

f (θ)
g′(θ) + g(θ)

f 2(θ)
(− f ′(θ))

(5)

The work of Rahman and Wang (2016) set the value of
g′(θ) to 0 for pixels where ground-truths is 0, while f ′(θ)

is set to 0 for positive samples. However, we argue that the
g′(θ) and f ′(θ), which is the gradient for g(θ) and f (θ),
hold their practical meanings in IoU optimisation and should
not be simplified in this approach.

Since g(θ) = A∩B, for the purpose of optimising IoU, an
appropriate gradient g′(θ) should encourage the predictions

of the positive samples to change from 0 to 1. Similarly,
for f (θ) = A ∪ B, the gradient (− f ′(θ)) should drive
the prediction of negative samples’ from 1 to 0. From this
perspective, g′(θ) stands for the optimisation direction of
positive samples, while (− f ′(θ)) reveals how to optimise
negative samples. With these discoveries, we could refor-
mulate the loss function regarding IoU in a meaningful and
natural way. Assuming there are a total of K samples and
xi is the i th sample, if we let Wp = 1

f (θ)
and Wn =

g(θ)

f 2(θ)
, the proposed segmentation loss function can be found

in Eq. 6.

SegLoss =
K∑
i=1

Wp I1(xi )L p(xi ) +
K∑
i=1

Wn I0(xi )Ln(xi )

(6)

In Eq. 6, I1(xi ) and I0(xi ) are the indicator functions for
positive and negative samples respectively, and L p(xi ) and
Ln(xi ) are certain types of loss calculation functions for pos-
itive and negative samples separately.

Extending Eq. 6 to the case of total C classes and perform-
ing the normalisation, we can express the complete form of
segmentation loss in Eq. 7. I t1(x

t
i ) is now the indicator func-

tion for the positive samples of class t , and vice versa for
I t0(x

t
i ).

SegLoss

=
∑C

t=1

∑K

i=1
(Wt

p I
t
1(x

t
i )L p(x

t
i ) + Wt

n I
t
0(x

t
i )Ln(x

t
i ))

K
∑C

t=1
(Wt

p + Wt
n)

(7)

It can be seen fromEq. 7 that, in our segmentation loss, the
loss of positive and negative samples from different classes
is weighted separately by Wt

p and Wt
n , and these weights are

somehow related to the number of samples over different
classes. For example, if there are fewer samples belonging to
class t , its positive samples are more likely to hold a larger
weight Wt

p, since the union of class t can be smaller than
that of other classes. Therefore, our segmentation loss has
properly considered the imbalanced data distributions over
different classes, which are ignored in cross-entropy loss.
Also, the segmentation loss is a more comprehensive loss
definition for IoUoptimisationwhen comparedwith thework
of Rahman and Wang (2016).

The loss calculation function for positive and negative
samples, which is L p(xi ) and Ln(xi ) in Eqs. 6 and 7, could
have a variety of potential definitions. In this paper, we have
provided two different definitions for them. Their first def-
inition, which can be seen as a variant form of categorical
hinge loss, is shown in Eq. 8.
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L p(xi ) = max(max(PRi ◦ (GTi )
−1) − PRi · GTi + g), 0)

Ln(xi ) = max(PRi · oneHot(t) − PRi · GTi + g, 0)

(8)

In Eq. 8, GTi and PRi are both 1 × C vectors, where
PRi is the model’s prediction for the i th sample xi , e.g.
(−1.2, 2.9, 7.1) for a 3-class sample, and GTi is the sam-
ple’s ground truth as a one-hot vector, such as (0,1,0) for
a ground truth of 2 with total 3 classes. (GTi )−1 refers to
the inverse of GTi , for example, if GTi = (0, 1, 0), then
(GTi )−1 = (1, 0, 1). oneHot(t) casts the number t into the
one-hot vector, and max(a, b, c, . . .) returns the maximum
element. g is a positive constant used to increase the dis-
criminativities of loss function. The symbol ‘◦’ represents
vector’s Hadamard (element-wise) product, while ‘·’ means
the dot product.

A second definition of L p(xi ) and Ln(xi ) can be found in
Eq. 9, where the meanings of PRi , GTi , g and oneHot(t)
remain unchanged. The intuitions of this definition are
straight-forward, encouraging the predicted values of ground
truth class to increase and penalising for those false negative
classifications.

L p(xi ) = −(PRi · GTi )

Ln(xi ) =
{
0, if PRi · GTi > PRi · oneHot(t) + g

PRi · oneHot(t) otherwise

(9)

3.3 Primary and Zoomed-in Models

In practice, to further increase segmentation accuracy, we
have trained one primary model for initial face mask extrac-
tion and twoadditionalmodels to focus on the eyes andmouth
region, respectively. Particularly, the primary model takes a
face video sequence and outputs face masks for each frame,
and these face masks are used to localise and crop the eye
and mouth regions out of the video sequence. Two additional
trained models, one for eye and another for mouth region,
are then used to generate the eye and mouth masks, which
are usually more accurate than the corresponding regions in
the primary face mask. The final predictions are obtained
from the outputs of the three models, i.e. the eye and mouth
masks are mapped back to the primary face mask, replacing
these corresponding areas. The pipeline of how primary and
additional models work is shown in Fig. 2.

4 Experiments

4.1 Dataset

All our experiments are implemented on the 300 Videos in
the Wild (300VW) dataset (Shen et al. 2015). The 300VW

Fig. 2 An illustration of how the primary and zoomed-in models work.
The primary face masks are extracted out of the video sequence by the
primary model, and these masks are used to localise the mouth and eye
regions. The cropped mouth and eye sequences are then fed into the
additional mouth and eye models, respectively, to extract mouth and
eye masks at higher accuracies. The primary face mask, eye and mouth
masks are then combined to obtain the final face mask. (Best seen in
colour)

dataset consists of 114 videos taken in unconstrained envi-
ronments and the average duration of each video clip is 64
s with a frame rate of 30 fps. All 218,595 frames in these
videos have been annotated manually with the 68 facial land-
marks as in the works of Sagonase et al. (2013a); Sagonas
et al. (2013b). The scenarios of this dataset can be roughly
divided into three categories with increasing challenges: (1)
Category one where videos are taken under conditions with
good lightings and potential occlusions such as glasses or
beard may occur. (2) Videos of category two can have larger
variations than category one, e.g. in-door environment with-
out enough illumination, overly-exposed cameras, etc. while
the occlusions are similar. (3) Category three is the most
challenging one, with videos of high variations from totally
unconstrained environments.

In order to obtain the facemask ground truths of all frames
in the 300VW dataset, we have converted the 68-landmark
annotations into pixel-level labels of one background class
and four foreground classes: facial skin, eyes, outer mouth
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Fig. 3 Several examples of face images/masks from the 300VWdataset. Each column is a pair of face image/mask. The colours red/green/cyan/blue
in face masks stands for facial skin/eye/outer mouth/inner mouth, respectively (Color figure online)

and inner mouth. This is achieved using cubic spline interpo-
lation (with relaxed continuity constraints on eye corners and
mouth corners) on corresponding landmark points. The gen-
erated face masks do not contain the nose region, since the
the 68-landmark annotations do not cover the full boundary
of noses. Besides, the nose is not an essential facial compo-
nent for the face mask extraction techniques to be applied in
Face Expression Recognition (FER), since it carries far less
emotional information than other facial regions like eyes and
mouths, and the benefits brought by annotating nose masks
are comparatively small. Therefore, considering the costs and
the benefits, no nose regions are included in our generated
face masks.

Some examples of the obtained face masks are shown in
Fig. 3. It can be seen from the figure that some videos in
300VW are quite challenging due to the high variations in
head pose, illumination, occlusion, video resolution, etc.

After all the face masks have been generated, we have
organised the dataset to suit our experiments. In particular,
we have divided each video into short face sequences of 1
s (30 frames), and then for each video, we have randomly
picked up 10% of its 1-s sequences for our experiments.
Since the information of adjacent 1-s sequences may heav-
ily overlap with each other, which may cause over-fitting
problems, and also consider the training efficiency, we only
use 10% 1-s sequences instead of all these short clips.
For training/validation/testing, we have randomly selected
619/58/80 1-s sequences, which contains 18570/1740/2400
face images in total, from 93/9/12 videos, and the train-
ing/validation/testing sets are subject-independent with each
other to guarantee a fair evaluation. This dataset is called
‘300VW-Mask’ dataset, and it is the dataset which we used
to train the primary model and to evaluate the performance
of final predictions.

For the training of these two additional models focusing
on eye andmouth regions,we have further generated two sub-
datasets from the afore-mentioned 300VW-Mask dataset.
Specifically, we have cropped eye and mouth regions out of
the 300VW-Mask dataset to form these sub-datasets. For the
purpose of robustness, random noises are added during the
cropping process, and we have fixed the locations of crop-

Fig. 4 Several examples for the eye and mouth sub-datasets. The first
two columns are pairs of eyes/masks, while the last two columns are the
mouths/masks pairs. The colours green/cyan/blue in masks represents
the eyes/outer mouth/inner mouth, respectively (Color figure online)

ping box for every 5 consecutive frames so that the temporal
information within these frames could be better extracted
by the ConvLSTM-FCN models. Figure 4 has plotted some
examples of these two sub-datasets.

4.2 Experimental Framework

EvaluationMetric Asmentioned in Sect. 3.2, mean intersec-
tion over union (mIoU) is used as the evaluation metric in the
field of semantic segmentation, since mIoU is less sensitive
to imbalanced data. Note that we ignored the IoU of back-
ground pixels in our mIoU calculation to focus the metric on
the face mask pixels.

Baseline Approaches For the baseline approaches, we have
compared the performances of the following methods on
the 300VW-Mask dataset: (1) The traditional 68-point facial
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landmark tracking model (Kazemi and Josephine 2014). (2)
The deeplab-V2 model (Chen et al. 2016), (3) The VGG-16
Version of FCN (Simonyan and Zisserman 2014; Long et al.
2015), (4) The ResNet-50Version FCN (He et al. 2016; Long
et al. 2015), and (5) The ResNet-50 Version FCN + a simple
temporal smoothing strategy.

For the facial landmark tracking model, we have used the
68-landmark model released by DLib library (King 2009).
This model has adopted the face alignment algorithm in the
work of Kazemi and Josephine (2014), and have been trained
on the iBUG 300-W face landmark dataset (Sagonas et al.
2016).Wehave implemented a 68-landmark face trackerwith
this alignmentmodel using themethods described inAsthana
et al. (2014). This face tracker is run on all the testing set
sequences, and the 68 output landmark points are then con-
verted into face masks to calculate the mIoU performance,
using the same conversion method as we used to generate
face mask labels for the 300VW dataset.

Deeplab-V2model is one of themost popular deepmodels
in still image segmentation, and we have also evaluated the
performance this model as one of the baseline methods. We
have adopted the source code implementation released by
Deeplab, and we have selected the model based on VGG-16
architecture.

The performances of FCNmodels aremore relevant as our
ConvLSTM-FCN model is based on the FCN architectures.
Therefore, we have evaluated two different FCN models:
(1) the VGG-16 version FCN, This model is cast from the
VGG-16 architecture. (2) the ResNet-50 version FCN. This
is the baseline FCN model that we adopted to convert into
ConvLSTM-FCN. Section 3.1 described details about this
FCNmodel and its conversion into ConvLSTM-FCNmodel.

Besides, we have also applied a simple temporal smooth-
ing strategy to the predictions (after Softmax) of the baseline
ResNet-50 FCN in order to compare with the tempo-
ral smoothing effects introduced by our ConvLSTM-FCN
model. This temporal smoothing technique has a time win-
dow of five frames, which is the same size with the time
window of our ConvLSTM-FCN model, and the weights for
each frame in the time window are subject to a Gaussian dis-
tribution centred around the current frame with a standard
deviation (σ ) of 0.6.

Training ConvLSTM-FCN Models Our ConvLSTM-FCN
model, as mentioned in Sect. 3.1, is converted from the base-
line FCN model by replacing the classification layer with
ConvLSTM layers. Therefore, to simplify the training pro-
cess, we first trained a baseline FCN model with all the
training images without considering the temporal informa-
tion. And then we converted this learned FCN model into
ConvLSTM-FCN, keeping all the weights except the newly-
added ConvLSTM layer, and then retrained it with data

of video sequences, where the temporal correlations were
learned and extracted.

In particular, the 300VW-Mask dataset was used to train
the primary model. A baseline FCN was first trained on this
dataset using cross-entropy loss, and this learned model was
used as a reasonable starting point for the training of the pri-
mary ConvLSTM-FCN model. For the primary model, we
have explored how the applications of ConvLSTM layer and
segmentation loss could enhance the model’s performances
by freezing all other layers except the ConvLSTM layer.
After this exploration, we used segmentation loss to train the
primary model by applying different learning rates on the
ConvLSTM layer and other layers. Therefore, the training
of the ConvLSTM-FCN model was performed as a two-
step procedure: first, a baseline FCN model was trained with
cross-entropy loss, then this learned model was converted to
a ConvLSTM-FCN model to be trained with segmentation
loss.

We have utilised similar training strategies for the addi-
tional eye and mouth models. Namely, we also first trained
a baseline-FCN model focusing on the still eye and mouth
images, and then aConvLSTM-FCNwithpre-trainedweights
was trained to capture the temporal dependencies.

Implementations We built and trained our model under the
deep-learning frameworks of Keras (Chollet et al. 2015) and
TensorFlow (Abadi et al. 2015). The models are trained on
a desktop with a 1080Ti graphics card and also on a cluster
with 10 TITAN X graphics cards. It took around 3 days to
obtain the final primary and additional models.

For the model training, we have adopted the Adam opti-
miser (Kingma and Ba 2014), and model’s weights were
saved and evaluated on the validation set after each epoch.
The model with highest validation mIoU was then consid-
ered as the best one and was further evaluated on the testing
set. All images were resized to 320 by 320 before they were
fed into themodel. For evaluations on the testing set, model’s
output heat-map, whose size is also 320 by 320 pixels, was
first resized back to the image’s original resolution, so that
the IoU was calculated at this original scale.

The baseline model FCN was trained for a total of 80
epochs with batch size 16, learning rate 0.001 with linear
decays and cross-entropy loss. The weights of the trained
FCN model were then used as the starting point for the
ConvLSTM-FCN model, which were trained for another
60 epochs using segmentation loss. The learning rate for
ConvLSTM-FCN model was layer-based, which was 0.001
for the ConvLSTM layers and 0.001γ for other layers, where
γ is a decaying factor for learning rate. The intuition is to
train the newly-added ConvLSTM layer at larger steps while
fine-tuning these learned layers with comparatively smaller
learning rate.
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Table 2 The IoU performances
of baseline approaches

Methods mIoU FS Eyes OMT IMT BG

Face tracker 60.09 88.77 50.01 61.04 40.56 97.71

Deeplab-V2 58.66 90.55 50.19 58.58 35.31 94.38

FCN-VGG16 55.71 91.12 44.18 58.60 28.95 94.87

FCN-ResNet50 (baseline-FCN) 54.50 91.13 45.54 57.14 24.20 94.98

FCN-ResNet50 + temporal smoothing 54.21 91.17 44.84 57.10 23.74 95.00

Mean IoU does not take the IoU of background class into consideration. ‘FS’,‘OMT’,‘IMT’ and ‘BG’ in the
first row is short for facial skin, outer mouth, inner mouth and background. The temporal smoothing approach
takes a five-frame time window, and the weights are subject to a Gaussian distribution centred around the
current frame (σ = 0.6)

For the ConvLSTM layer, the time dimension T was set to
be 5, i.e. the ConvLSTM layer deals with short sequences of
5 frames. Therefore, input data of one batch should contain
N × 5 images, where N is an integer. In our experiments, we
have set N = 2, i.e. we have two 5-frame sequences in each
batch.

In the step of integrating the predictions from primary
and additional models, we first used the face masks from the
primary model to approximately localise the eye and mouth
regions for all frames, and then we fixed the cropping box of
such regions for each 5-frame sequence so that the additional
model could work smoothly to extract temporal information
from these short sequences.

For each experiment, to verify its improvements on the
baseline method, we also calculated whether it is statistically
significant with the baseline FCN model. Particularly, we
split the testing set, which contains 80 1-s sequences, into 10
groups, and calculated the P value of these 10 groups between
the current experiment and the baseline model. If the P value
is smaller than 0.05, thenwe consider this experimental result
to be statistically significant from that of baseline approach.

4.3 Results

Baseline Approaches Table 2 shows the performances of the
five baseline approaches described in Sect. 4.2. The mIoU
listed in the table is the average IoU of all classes except the
background. It could be seen that although the face tracker
approach has achieved the highest mIoU, its prediction for
facial skin is worst than other deep methods. The perfor-
mances of Deeplab-V2 model generally surpasses that of
two FCNmodels, mainly on the eye and inner mouth predic-
tions. These twoFCNmodels achieved similar performances,
giving the best facial skin predictions. All these deep models
were trainedwith cross-entropy loss, and the trainedmodel of
FCN-ResNet50, which obtains 54.50%mIoU, would be con-
verted into ConvLSTM-FCNmodel for further explorations.
This trained model of FCN-ResNet50 will be simply called
‘baseline-FCN’ for convenience. As for the application of
temporal smoothing technique, it does not actually improve

Table 3 The IoU performances of Adam andRMSprop optimiser when
all layers are frozen except the ConvLSTM layer

Optimiser mIoU FS Eyes OMT IMT BG

Adam 55.53a 91.07 45.70 57.58 27.78 94.85

RMSprop 54.93 91.31 46.52 58.70 23.20 94.98

Mean IoU does not include the IoU of background class
aDenotes that the difference with the baseline-FCN is statistically sig-
nificant

Table 4 The mean improvement over baseline-FCN in time dimension

Optimiser T1 T2 T3 T4 T5

Adam 0.113 0.964 0.995 0.950 0.981

RMSprop 0.019 0.174 0.275 0.598 0.657

Larger value indicates greater improvements over the baseline-FCN.
‘T1’ to ‘T5’ represents the first frame to the last (fifth) frame for video
sequences of five frames

the performance of the baseline-FCN, and this indicates that
the simple temporal smoothing could not properly capture
the temporal structure within the consecutive frames.

Exploring ConvLSTM layer As mentioned in Sect. 4.2, we
have made some explorations in order to see if the ConvL-
STM layer could actually improve the performance by using
temporal information. For simplicity, after the baseline-FCN
model was converted into ConvLSTM-FCN, we have frozen
all other layers and only trained the newly-addedConvLSTM
layer with cross-entropy loss. We have also tried two opti-
misers: Adam (Kingma and Ba 2014) and RMSprop (Hinton
et al. 2012). The results are shown in Table 3. It could be seen
that the Adam and RMSprop optimisers both improve the
mIoU slightly. For further validation, we have also computed
their improvement over the baseline-FCN on the time dimen-
sion T, which is 5 in our ConvLSTM-FCNmodel. It could be
seen in Table 4 that, for all 5-frame sequences, the improve-
ments on the last four frames is generally higher than that
of the first frame, which indicates the ConvLSTM layer can
actually extract temporal information from video sequences
to improve segmentation accuracy. Besides, it is also inter-
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Table 5 The performances of
cross-entropy loss, IoU Loss and
the proposed segmentation loss
(SegLoss)

Loss definitions mIoU FS Eyes OMT IMT BG

Cross-entropy loss 55.53a 91.07 45.70 57.58 27.78 94.85

IoU loss (Eq. 3) 57.22a 91.06 49.02 57.86 30.95 94.88

Seg loss (Eq. 8, g = 1) 58.10a 90.90 51.96 59.32 30.20 94.82

Seg loss (Eq. 9, g = 0.1) 58.39a 90.56 51.45 57.43 34.11 94.76

Seg loss (Eq. 9, g = 0) 59.04a 90.80 51.61 57.27 36.46 94.91

The IoU Loss (defined in Eq. 3) is the multiple-class version extended from the binary work by Rahman and
Wang (2016). For segmentation loss, we have tested different forms of loss calculation function, i.e. L p(xi )
and Ln(xi ) in Eq. 7. All layers except the newly-added ConvLSTM layer is frozen.Mean IoU does not include
the IoU of background class
aDenotes that the difference with the baseline-FCN is statistically significant

esting to observe that the temporal smoothing effects are
more obvious in the RMSprop experiment, with incremental
improvements as time dimension increases.

Therefore, by these exploration experiments, we have
verified that ConvLSTM could actually produce tempo-
ral smoothing effects for face mask extraction in video
sequences. We have also selected Adam as the optimiser for
following experiments.

Segmentation Loss We have also conducted experiments to
explore to what extend the proposed segmentation loss can
lead to better a performance for the ConvLSTM-FCNmodel.
As explained in Sect. 3.2, the loss calculation function for
positive and negative samples, which is L p(xi ) and Ln(xi )
in Eq. 7, could have various potential definitions, andwe have
provided two formsof them inEqs. 8 and 9. For the simplicity
of the experiments, we have employed the same strategy as in
the experiments of exploringConvLSTMlayer, i.e. after cast-
ing the baseline-FCN into ConvLSTM-FCNmodel, all other
layers are frozen and the only trainable layer is the newly-
added ConvLSTM layer. Then we used segmentation loss
to train this partially-frozen ConvLSTM-FCN model. For
comparison, we have also evaluated the performances of the
cross-entropy loss and the multiple-class IoU loss defined in
Eq. 3. Table 5 summarises the results, and it could be seen that
both IoU Loss and segmentation loss achieve higher mIoUs
than the cross-entropy loss, however, our Segmentation Loss
shows the best performances in all the three losses, no matter
which kind of loss calculation function is used. This demon-
strates the effectiveness of the proposed segmentation loss
in terms of optimising the ConvLSTM-FCN model. In addi-
tion, the loss function L p(xi ) and Ln(xi ) defined Eq. 9 have
shown the best mIoU performance when g is 0, therefore,
we have selected the form in Eq. 9 (g = 0) for segmentation
loss in the following experiments.

Training Primary and Zoomed-in Models As mentioned in
Sect. 4.2, We have applied similar strategies to train the pri-
mary and additional models. For the primary model, after the

Table 6 The IoU performances of the primary model with different γ

values

γ mIoU FS Eyes OMT IMT BG

0.01 60.35a 89.83 56.50 59.61 35.45 93.79

0.02 60.96a 89.85 57.75 60.02 36.23 93.72

0.05 60.04a 90.46 54.89 58.98 35.86 94.36

0.1 60.07a 90.51 54.73 59.74 35.29 94.42

The ConvLSTM layer is trained with learning rate 0.001, while the
learning rate of other layers are set to be 0.001γ . Mean IoU does not
include the IoU of background class
aDenotes that the difference with the baseline-FCN is statistically sig-
nificant

baseline-FCN was transformed into ConvLSTM-FCN, we
have set different learning rates for different layers, which is
0.001 forConvLSTM layer and 0.001γ (γ ∈ (0, 1)) for other
layers, since we would like the newly-added ConvLSTM
layer to learn faster than other already-trained layers. The
segmentation loss with L p(xi ) and Ln(xi ) defined in Eq. 9
(g = 0) is used to train the primary ConvLSTM-FCN model.
Table 6 has demonstrated the performances of the primary
model with different γ values. It could be seen that different
γ values could slightly affect the performances, while train-
ing ConvLSTM-FCN model with different internal learning
rates could generally achieve better mIoUs than just freezing
all layers except ConvLSTM layer.

Similarly, for the additional models on eye and mouth
regions, we first used cross-entropy loss to train two baseline-
FCN models on the eye and mouth sub-datasets, respec-
tively, and these baseline-models are then converted into
ConvLSTM-FCNmodels, which are also trained with differ-
ent internal learning rates, as in the primary model’s training.
Table 7 and Table 8 show the performances of baseline-FCN
and ConvLSTM-FCN with different γ values. It can be seen
from the results that ConvLSTM-FCN model with segmen-
tation loss could generally improve the performance of the
baseline-FCN model, and the additional model focusing on
certain face region could achieve better segmentation accu-
racy on that region than that of the primary model.

123



International Journal of Computer Vision (2019) 127:625–641 637

Table 7 The IoU performances of the additional eye model on the sub-
dataset of eyes

Model Eyes BG

Baseline-FCN 54.29 98.23

ConvLSTM-FCN (γ = 0.01) 56.58 98.25

ConvLSTM-FCN (γ = 0.02) 59.01a 98.14

ConvLSTM-FCN (γ = 0.05) 57.51a 98.24

ConvLSTM-FCN (γ = 0.1) 51.82a 97.88

The ConvLSTM layer is trained with learning rate 0.001, while the
learning rate of other layers are set to be 0.001γ
aDenotes that the difference with the baseline-FCN is statistically sig-
nificant

Table 8 The IoU performances of the additional mouth model on the
mouth sub-dataset

Model mIoU OMT IMT BG

Baseline-FCN 49.77 60.30 39.24 97.23

ConvLSTM-FCN (γ = 0.01) 52.08a 62.06 42.10 97.21

ConvLSTM-FCN (γ = 0.02) 52.17a 62.80 41.54 97.31

ConvLSTM-FCN (γ = 0.05) 51.24a 61.01 41.48 97.15

ConvLSTM-FCN (γ = 0.1) 52.36a 61.20 43.52 96.86

The ConvLSTM layer is trained with learning rate 0.001, while the
learning rate of other layers are set to be 0.001γ . Mean IoU does not
include the IoU of background class
aDenotes that the difference with the baseline-FCN is statistically sig-
nificant

Integrating Predictions As described in Sects. 3.3 and 4.2,
the final predictions are obtained by integrating the face
masks of the primary model, which provides localisations
of eye and mouth regions, with the corresponding outputs of
two additional models on the eye and mouth regions. These
additional models focus on particular facial parts, such as
eyes, outer and inner mouths, therefore they could produce
more accurate segmentation results for these regions.

For the final predictions, we have used the primary model
which are trainedwith γ = 0.05, and theConvLSTMmodels
trained with γ = 0.02 for eye and mouth additional models
(the performances of these models could be found in Table 6,
Table 7 and Table 8).

The integration results could be found in Table 9, and this
table also summarises the key improvements on the baseline-
FCN model with different techniques. It can be seen from
the table that the application of a simple temporal smoothing
technique could not actually improve the performances of
the baseline-FCN model, as it cannot appropriately capture
the inherent temporal structure within video sequence. Our
ConvLSTM-FCN model, however, shows an 1.03% aboso-
lute improvement over the baseline-FCN model, even when
all other layers except the ConvLSTM layer are froze and
are trained with cross-entropy loss, which validates the intro-
duced temporal smoothing effective from ConvLSTM-FCN
model. Besides, combining primary model and additional
models leads to a mIoU performance of 63.76%, which
shows a 16.99% relative improvement on the baseline-FCN
approach. When compared with these baseline approaches
in Table 2, our proposed method still shows higher segmen-
tation accuracies, even with the face tracker, which is the
best-performing baseline approach.

4.4 Discussion

In the task of face mask extraction, the temporal dimen-
sion carries important information which could be utilised to
improve segmentation accuracies, especially when the infor-
mation provided by current frame is not sufficient to allow
reliable face mask extraction. This temporal-smoothing
effect is what we would like to achieve with our ConvLSTM-
FCN model.

In the case when normal FCN models encounter chal-
lenging segmentation tasks, the introducedConvLSTM-FCN

Table 9 The IoU performances of different key techniques on improving the baseline-FCN models. Mean IoU does not include the IoU of
background class

Techqniques mIoU FS Eyes OMT IMT BG

FCN-ResNet50 + cross-entropy 54.50 91.13 45.54 57.14 24.20 94.98

FCN-ResNet50 + cross-entropy + temporal smoothing 54.21 91.17 44.84 57.10 23.74 95.00

ConvLSTM-FCN (freezing other layers) + cross-entropy 55.53a 91.07 45.70 57.58 27.78 94.85

ConvLSTM-FCN (freezing other layers) + IoU loss 57.22a 91.06 49.02 57.86 30.95 94.88

ConvLSTM-FCN (freezing other layers) + segmentation loss 59.04a 90.80 51.61 57.27 36.46 94.91

Primary model + segmentation loss 60.04a 90.46 54.89 58.98 35.86 94.36

Primary model + two additional models + segmentation loss 63.76a 90.58 57.89 62.78 43.79 94.36

aDenotes that the difference with the baseline-FCN is statistically significant. The temporal smoothing approach takes a five-frame timewindow, and
the weights are subject to a Gaussian distribution centred around the current frame (σ = 0.6). The IoU Loss (defined in Eq. 3) is the multiple-class
version extended from the binary work by Rahman andWang (2016). The primary model is the ConvLSTM-FCNmodel trained with 300VW-Mask
dataset (γ = 0.05), and the two additional models are the ConvLSTM-FCN model trained on two sub-datasets on eye and mouths (γ = 0.02)
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Fig. 5 Several face masks extracted with baseline-FCN, the primary model and the integration of primary and additional models. The colours
red/green/cyan/blue in face masks stands for facial skin/eye/outer mouth/inner mouth, respectively (Color figure online)

Fig. 6 Mean IoU and standard deviation over all frames of each subject. Mean IoU does not include the IoU of background class. Blue stands for
the performances of baseline-FCN, red for the primary model and gray for the integration of primary and additional models (Color figure online)

should be able to achieve better performances by exploit-
ing information from both temporal and spatial domains.
Figure 5 plots some typical examples of such situations.
As shown in the figure, the baseline-FCN model, which
only learns the spatial relationships, have difficulties in seg-
menting face images with low qualities, occlusions, poor
illuminations, etc. As a result, baseline-FCN could not effec-
tively segment those smaller facial regions such as eyes and
inner mouth under challenging scenarios. However, with the
help of ConvLSTM-FCN model, the extracted face masks

are more robust and realistic, especially for the smaller facial
regions like eyes and inner mouth. The introduction of the
zoomed-in model has further improved the segmentation
results, which again verify the temporal-smoothing effects
introduced by ConvLSTM-FCN.

Figure 6 shows the mean IoU performances and standard
deviation over all frames of each subject for the baseline-
FCN, primary model and the integration of primary &
additional models. The test set contains 80 1-s sequences
coming from 12 videos, while these 12 videos are subject-
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independent with each other. It could be observed that the
primary model or primary + additional have led to better per-
formances than baseline-FCNon all the subjects. Besides,we
could also see that the performances over different test sub-
jects are generally similar, despite some fluctuations brought
by the video variations.

5 Conclusion

In this paper, we have presented a novel ConvLSTM-
FCN model for the task of face mask extraction in video
sequences. We have illustrated how to convert a baseline-
FCN model into ConvLSTM-FCN model, which can learn
from both temporal and spatial domains. A new loss func-
tion named ‘segmentation loss’ has also been proposed
for training the ConvLSTM-FCN model. Last but not
least, we also introduced the engineering trick of supple-
menting the primary model with two zoomed-in models
focusing on eyes and moth. With all these are com-
bined, we have successfully improved the performances
of baseline-FCN on 300VW-Mask dataset from 54.50 to
63.76%, making a 16.99% relative improvement. The anal-
ysis of the experimental results has verified the temporal-
smoothing effects brought by the ConvLSTM-FCN
model.
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