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Abstract— We introduce a fast and robust subspace-based
approach to appearance-based object tracking. The core of
our approach is based on Fast Robust Correlation (FRC),
a recently proposed technique for the robust estimation of
large translational displacements. We show how the basic
principles of FRC can be naturally extended to formulate a
robust version of Principal Component Analysis (PCA) which
can be efficiently implemented incrementally and therefore
is particularly suitable for robust real-time appearance-based
object tracking. Our experimental results demonstrate that the
proposed approach outperforms other state-of-the-art holistic
appearance-based trackers on several popular video sequences.

I. INTRODUCTION

Visual tracking in unconstrained environments is an un-

solved problem. For example, in real-world face analysis

applications, tracking algorithms have to deal with significant

appearance changes induced by sudden head motions, non-

rigid facial deformations as well as illumination changes, cast

shadows and occlusions. Such phenomena typically make

most existing tracking algorithms fail.

The appearance-based approach to tracking has been one

of the de facto choices for tracking faces in image sequences.

Prominent examples of such an approach include subspace-

based techniques [1], mixture models [2], [3], discriminative

models for regression/classification [4], gradient descent [5]

and very often combinations of the above [1], [6]–[10]. In

this paper, we propose a subspace-based tracking algorithm

which, to some extend, is able to provide a remedy to

typical problems encountered in face analysis applications by

featuring many favorable properties. Our algorithm is closely

related to the incremental visual tracker (IVT) of Ross et

al. [9] and its incremental kernel PCA (IKPCA) extension

proposed by Chin and Suter [10], and as such can deal with

drastic appearance changes, does not require offline training,

continually updates a compact object representation and uses

the Condensation algorithm [11] to robustly estimate the

object’s location.

Similarly to IVT and IKPCA, our method is essentially an

eigentracker [1] where the eigenspace is adaptively learned

and updated online. The key element which makes our

approach equally fast but significantly more robust, is how

the eigenspace is generated. Ross et al. use standard ℓ2 norm

PCA. Unfortunately, the ℓ2 norm enjoys optimality properties

only when image noise is independent and identically dis-

tributed (i.i.d.) Gaussian; however, for data corrupted by out-
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liers, the estimated subspace can be arbitrarily skewed [12].

A somewhat more robust approach is the method proposed

by Chin and Suter which incrementally learns a non-linear

subspace via KPCA [10]. The tracking process requires the

computation of the pre-images which imposes a trade-off

between efficiency and robustness while experimental results

show that the gain in robustness appears to be not very

significant.

On the contrary, the proposed tracker is based on a

robust reformulation of PCA which requires straightforward

optimizations and is as computationally efficient as ℓ2 norm

PCA. More specifically, our approach is based on a dis-

similarity measure originally introduced by Fitch et al. in

the context of robust correlation-based estimation of large

translational displacements [13]. The basic idea is to suppress

gross errors by encoding pixel intensities as angles and

measure dissimilarity using the cosine of angle differences.

We show how the framework for robust correlation can be

naturally extended to form a robust version of PCA which

replaces the ℓ2 norm with the dissimilarity measure of Fitch

et al.. Finally, we use our direct robust PCA within the

framework of IVT for efficient and robust appearance-based

tracking.

II. FAST, DIRECT AND ROBUST PCA

A. Principal Component Analysis with ℓ2 Norm

Let xi be the d-dimensional vector obtained by writing

image Ii in lexicographic ordering. We assume that we are

given a population of n samples X = [x1 · · · xn] ∈ R
d×n.

Let us also denote by x = 1
n

∑n

i=1 xi and X the sample

mean and the centralized sample matrix of X. ℓ2 norm PCA

finds a set of p < d (usually, p ≪ d) orthonormal basis

functions B = [b1 · · · bp] ∈ R
d×p by minimizing the error

function

e(B) = ||X−BBTX||2F (1)

where ||.||F denotes the Frobenius norm. The above opti-

mization problem is equivalent to:

f(B) = tr
[

BTXX
T
B
]

subject to BTB = I
(2)

where tr[.] is the trace of a matrix. The solution is given by

the eigenvectors corresponding to the p largest eigenvalues

obtained from the eigendecomposition of the covariance

matrix S = XX
T

(or the Singular Value Decomposition

(SVD) of X). Finally, the reconstruction of X from the

subspace spanned by the columns of B is given by X̃ =
BC + M, where C = BTX is the matrix with the set of



projection coefficients and M is a matrix with n columns

each of which is the mean vector x.

B. Cosine-based Error Function

The error function in (1) is based on the ℓ2 norm and

therefore is extremely sensitive to gross errors caused by

outliers [12]. Motivated by the recent work of Fitch et al.

on robust correlation-based translation estimation [13], we

replace the ℓ2 norm with the following dissimilarity measure

d(xi,xj) =

d
∑

k=1

{1− cos(απ[xi(k)− xj(k)])} (3)

where the pixel values of the corresponding images Ii, Ij
are represented in the range [0, 1] and α ∈ R

+.

As noted by Fitch et al., for pixel intensities in the range

[0, 1], (3) is equivalent to Andrews’ M-Estimate [13]. In

particular, Andrews’ influence function, i.e. the derivative of

a kernel, is given by

ψ(r) =

{

sin(πr) if − 1 ≤ r ≤ 1
0 otherwise.

(4)

The Fast Robust Correlation (FRC) scheme proposed by

Fitch et al. [13] utilizes (3) and, unlike ℓ2-based correlation,

is able to estimate large translational displacements in real

images while achieving the same computational complexity.

In the following, we show how to exploit the cosine kernel

to formulate a direct robust version of PCA.

C. Fast, Direct and Robust PCA

To show how (3) can be used as a basis for direct and

robust PCA, for notational convenience, let us first define

θi , απxi, cosθi , [cosθi(1) · · · cosθi(d)]
T

and sinθi ,

[sinθi(1) · · · sinθi(d)]
T

. We also assume that xi(k) is in

the range [0, 1]. We have

d(xi,xj) =

d
∑

k=1

{1− cos(θi(k)− θj(k))}

= d−
d

∑

k=1

{cosθi(k) cosθj(k)

+ sinθi(k) sinθj(k)}

= d−
[

cosθi

sinθi

]T [

cosθj

sinθj

]

= d−
[

cos(απxi)
sin(απxi)

]T [

cos(απxj)
sin(απxj)

]

= ||zi − zj ||2. (5)

The last equality makes the basic computational module

of the proposed scheme apparent. That is, we define the

mapping from [0, 1] to the (2d)-dimensional sphere with

radius
√
d

zi =
1√
2

[

cos(απxi)
sin(απxi)

]

(6)

and apply linear PCA to the transformed data. Notice that

when α < 2, this mapping is one-to-one and, therefore,

Algorithm 1 ESTIMATING THE PRINCIPAL SUBSPACE

Input: A set of n images Ii, i = 1, . . . , n, of d pixels, the

number p of principal components and parameter α.

Output: The principal subspace B, eigenvalues Σ and mean

vector z of the transformed data.

Step 1. Represent Ii in [0, 1] and obtain xi by writing Ii in

lexicographic ordering.

Step 2. Compute zi using (6), form the matrix of the

transformed data Z = [z1 · · · zn] ∈ R
2d×n and compute

z and the centralized sample matrix Z.

Step 3. Compute the matrix W = Z
T
Z ∈ R

n×n and find

the eigendecomposition of W = UΛUT .

Step 4. Find the p-reduced set, Up ∈ R
2d×p and Λp ∈ R

p×p.

Step 5. Compute B = ZUpΛ
− 1

2

p ∈ R
2d×p and Σ = Λ

1

2 .

Step 6. Reconstruct using Z̃ = BBTZ + M, where M

contains the mean vector z as columns.

Step 7. Go back to the pixel domain using trigonometry.

Algorithm 2 EMBEDDING OF NEW SAMPLES

Input: An image J of d pixels and the principal subspace

B of Algorithm 1.

Step 1. Represent J in [0, 1] and obtain y by writing J in

lexicographic ordering.

Step 2. Find z using (6) and obtain embedding as BT z.

reconstruction of the original input space is feasible by

applying simple trigonometry.

For high-dimensional data such as images, the proposed

framework enables a fast implementation by making use of

the following theorem [14].

Theorem I: Define matrices A and B such that A = ΦΦT

and B = ΦTΦ. Let UA and UB be the eigenvectors

corresponding to the non-zero eigenvalues ΛA and ΛB of A

and B, respectively. Then, ΛA = ΛB and UA = ΦUBΛ
− 1

2

A .

Algorithm 1 summarizes the steps of our direct robust

PCA. Our framework also enables the direct embedding of

new samples. Algorithm 2 summarizes this procedure.

D. A Kernel PCA Perspective

The proposed PCA with the cosine-based dissimilarity

measure can be interpreted as a kernel PCA (KPCA). Let k :
R

d×R
d → R be a positive definite function that satisfies the

Mercer’s conditions. Then, k defines an arbitrary dimensional

Hilbert space H (the so-called feature space in the rest of the

paper) through an implicit mapping φ : Rd → H such that

k(xi,xj) = 〈φ(xi), φ(xj)〉. KPCA [15] is defined exactly as

PCA in feature space and aims at finding a set of projection

bases by minimizing the least-squares reconstruction error in

the feature space.

Let us define the kernel:

k(xi,xj) =
1

2

d
∑

k=1

cos(απ[xi(k)− xj(k)]) (7)

Theorem II: The kernel defined in (7) is positive semi-

definite.



Algorithm 3 INCREMENTAL PRINCIPAL SUBSPACE ESTI-

MATION

Input: A mean vector zn, the principal subspace Bn ∈
R

2d×p, the root of the corresponding eigenvalues Σn ∈
R

p×p, a set of new images {In+1, . . . , In+m}, the number

p of principal components and parameter α.

Output: The new subspace Bn+m, eigenvalues Σm+n and

new mean zn+m.

Step 1. From set {In+1, . . . , In+m} compute the matrix of

the transformed data Zm = [zn+1 · · · zn+m] and the mean

vector zm.

Step 2. Compute the new mean vector zn+m = n
n+m

zn +
m

n+m
zm and form matrix

F =
[

(zn+1 − zm) · · · (zm+n − zm)
√

nm
n+m

(zm − zn)
]

.

Step 3. Compute F̃ = orth(F−BnBn
TF) and

R =

[

Σn Bn
TF

0 F̃(F−BnBn
TF)

]

(where orth(.) performs

orthogonalization).

Step 4. Compute R
svd
= B̃Σ̃ṼT and obtain the p-reduced

set B̃p and Σ̃p.

Step 5. Compute Bn+m = [Bn F̃]B̃p and set Σn+m = Σ̃p.

Proof: Using the analysis in (5), we can write the kernel

k(xi,xj) as a dot product:

k(xi,xj) =
1√
2

[

cos(απxi)
sin(απxi)

]T
1√
2

[

cos(απxi)
sin(απxi)

]

(8)

which proves Theorem II.

Using (7), we can write the proposed dissimilarity measure

(3) as

d(φ(xi), φ(xj)) = ||φ(xi)− φ(xj)||2
= k(xi,xi)− 2k(xi,xj) + k(xj ,xj)

= d−∑d

k=1 cos(απ[xi(k)− xj(k)])
(9)

Moreover, from (8) we can easily verify that φ(xi) has

a closed form, i.e. φ(xi) = zi = 1√
2

[

cos(απxi)
sin(απxi)

]

. This

is in contrast to other popular kernels in machine learning,

such as Gaussian RBFs [10], [15], for which φ is defined

only implicitly. Such kernels allow only for inexact fast

incremental versions of KPCA [10]. On the other hand, since

in our case, the mapping is explicit, our incremental robust

PCA is both fast and exact. Algorithm 3 summarizes the

main steps.

III. FAST AND ROBUST TRACKING

Similarly to Ross et al. [9], we model the tracking process

using a Markov model with hidden states as affine transform

At. That is, the location of the object at time t is defined

by the affine transform parameters At. Given a set of

observations Zt = {z1, . . . , zt}, At can be computed by

maximizing p(At|Zt)

p(At|Zt) ∝ p(zt|At)

∫

p(At|At−1)p(At−1|Zt−1)dAt−1

(10)

Algorithm 4 TRACKING ALGORITHM FOR TIME t

Input: Mean vector zt−1, subspace Bt−1, location At−1 of

time t− 1 and current image frame It.

Step 1. Draw a number of particles Ap (in our case 600)

from p(At|At−1).
Step 2. Take all image patches from It which corresponds

to particles Ap and order them lexicographically to form

vectors yp and compute zp using (6).

Step 3. Choose {At, zt} = argmaxAp,zp p(z
p|Ap).

Step 4. Using zt update mean and subspace by applying

Algorithm 3.

To obtain an approximation for the above, we used a variant

of the well-known Condensation algorithm [9], [11] using

• A dynamical model between states p(At|At−1)
• A observation model p(zt|At)

A. Modeling p(At|At−1)

We used a typical Brownian motion model for modeling

the dynamics between At and At−1. That is, the elements

of At are modeled independently by a Gaussian distribution

around the previous state At−1:

p(At|At−1) = N (At;At−1,Ξ) (11)

where Ξ is a diagonal covariance matrix whose elements

are the corresponding variances of the affine parameters.

In a particle filtering fashion, we sample p(At|At−1) by

drawing a number of particles from (11). It is well-known

that there is a tradeoff between the number of particles, and

how well the sampling approximates the distribution (11). In

our experiments, we used 600 particles as in Ross et al. [9].

B. Modeling p(zt|At)

Similarly to probabilistic PCA [16], we model the proba-

bility p(zt|At) as

p(zt|At) = pw(zt|At)pd(zt|At) (12)

where:

• pw(zt|At) is the likelihood of the projected sample

onto the principal subspace spanned by the columns

of B, modelled by the exponential of the Mahalanobis

distance from the mean

pw(zt|At) = N (zt; z,BΣ−2BT ). (13)

where z is the mean vector and Σ is the eigenvalues

that correspond to the principal subspace B.

• pd(zt|At) is the probability of a sample generated from

the principal subspace spanned by the columns of B.

If we assume that the observation process is governed

by an additive Gaussian model with a variance term ǫI

then

pd(zt|At) = N (zt; z,BBT + ǫI)

limǫ→0 pd(zt|At) ∝ e−||(zt−z)−BB
T (zt−z)||2

(14)

Having defined models for p(At|At−1) and p(zt|At)
the sequential inference model can be summarized in

Algorithm 4.



IV. RESULTS

The proposed tracker (which we coin FDR-PCA for the

rest of the paper) is tested on several publicly available

challenging video sequences which contain intrinsic and

extrinsic changes to the tracked faces. The state-of-the-

art IVT of Ross et al. [9] and its extension for IKPCA

by Chin and Suter [10] act as comparison as they both

form an appearance-based holistic tracker which classifies

the foreground without additional background models. The

initial position of the objects, the number of particles and

the size of the eigenspaces are equivalent in all methods

for each video sequence. Additionally, the results of another

holistic tracker proposed by Zhou et al. [3] are included in

the experiments.

For the proposed algorithm the parameter α, used by the

kernel function (3) of the proposed FDR-PCA, should be a

set a-priori. Different values were tested on a validation set

of video sequences (different to the set of video sequences

used for the experiments presented in this section) and for

this validation set α = 0.7 performed best, and therefore

the parameter was fixed to this value. The variance of the

Gaussian RBF kernel, used with the IKPCA algorithm, was

selected in a similar manner.

A. Quantitative Evaluation

The Dudek video sequence1 forms the data for the quan-

titative evaluation (fig. 3). In this sequence, each frame

contains seven annotated positions of points which describe

the true location and formation of the face. The points’ initial

position in the first frame are given and used to describe

the initial transformation of the unit square for the holistic

trackers. The trackers then estimate the transformation for

subsequent frames, with which the new position of the points

are calculated. The accuracy of the tracking in subsequence

frames is then defined as the root mean square (RMS) error

between the ground truth and the recognized points. Fig. 4

plots the RMS error for the whole Dudek video sequence for

both the proposed and IVT methods.

The method of Zhou et al. [3] loses track after the

occlusion between frame 100 and frame 120. IKPCA unsuc-

cessfully estimates the motion in frame 288, after the filmed

person rises from the chair in a quick movement. Only two

methods, IVT and FDR-PCA, manage to follow the object

for the whole length of the video. The mean RMS error of

both methods are compared in table I. The proposed method

performs most accurately.

TABLE I

MEAN RMS ERROR ON DUDEK VIDEO SEQUENCE

Method Mean RMS Error

IVT 7.45

FDR-PCA 6.79

1The Dudek video sequence with annotations is available from:
http://www.cs.toronto.edu/˜dross/ivt/
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Fig. 1. RMS error of the different trackers before, during and after the
occlusion between frame 100 and frame 120. (There is no value during the
complete occlusion as ground-truth points are hidden.)
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Fig. 2. RMS error of the proposed tracker (FDR-PCA) and IVT during
pose variation (frame 450 to frame 470), and during motion blur (frame
480 to frame 500).

The RMS errors during the occlusion between frame 100

and frame 120 are compared (fig. 1). IKPCA performs com-

petitively until the occlusion, however, RMS errors are higher

thereafter for this method. IVT generally performs less

accurately than IKPCA and FDR-PCA before the occlusion.

The occlusion itself has little impact on this method, thus

the algorithm continues on similar accuracy afterwards. The

tracker proposed in this paper recovers most quickly from the

occlusion: the effects of the occlusion are counteracted by

the robustness of the scheme, and the overall displacement

of the unit square is kept to a minimum. The accuracy of

FDR-PCA during motion blur around frame 288 and frame

486 is slightly lower than IVT, but pose variation in frame

470 is better supported (fig. 2).

Finally, fig. 6 plots the the RMS error versus α. As can be

seen, for a wide range of α values the algorithm performs

rather well.



Fig. 3. Tracking results of the different schemes for the Dudek video sequence. The third and fourth column (first two rows) show Zhou et al. [3] and
IKPCA – both trackers lose the object. IVT and the proposed tracker is shown in the first and second column (first two rows) respectively. The last row
show two examples of some late frames for the proposed and the IVT tracker (the other tested trackes have already lost the face). The ground truth is
indicated by cyan-colored points.
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Fig. 4. RMS error of the proposed tracker and IVT for the whole sequence of Dudek.

B. Qualitative Evaluation

Three challenging video sequences2 with challenging il-

luminations, occlussions and pose variations were used for

the qualitative evaluation. Fig. 5 shows the results of the

different trackers when the target object undergoes several

pose changes and illumination alterations. IKPCA is the

first method which loses the object in this sequence due

to variations in the lighting condition. While the scheme

of Zhou et al. copes with the change in frame 77, it fails

after the extreme illumination changes in frame 172, just

2The video sequences are available from: http://www.cs.toronto.edu/
˜dross/ivt/ and http://vision.ucsd.edu/˜bbabenko/project miltrack.shtml

after the object moves from a bright into a dark area. IVT

and the proposed tracker prove robust towards these type of

changes, as both methods successfully track the objects until

frame 329. The frames around frame 329 contain difficult

prolonged pose changes, and therefore cause IVT to lose

track in frame 329. The proposed FDR-PCA tracker suc-

cessfully follows the face through all the frames of the video

sequence until it eventually misclassifies the object’s position

in frame 330. Thus, for this video sequence, the proposed

tracker outperforms other state-of-the-art trackers as it is

more robust to illumination changes and pose variation.

Fig. 7.a shows the proposed tracker under variations in

both, illumination and pose, and occlusion. In this sequence,



Fig. 5. Results of the different tracking schemes under extreme illumination changes and pose variation.
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Fig. 6. Results of different α values for (3) when used for tracking the
Dudek video sequence (section IV) with the proposed tracker.

the tracker successfully tracks the face throughout the com-

plete sequence of frames. Even after the side-view of the

face in frame 162, FDR-PCA recovers considerably better

than IVT, and therefore the target is recognized correctly

between frame 179 and frame 198. The occlusion in frame

331 and frame 387 is handled by both approaches.

The effect of occlusions on the proposed tracking scheme

is presented by the video shown in fig. 7.b. The tracker

quickly and successfully recovers from prolonged occlusions

as in frame 497 and 722. In comparison to IVT, its perfor-

mance is more robust for this sequence.

V. CONCLUSIONS AND FUTURE WORK

We introduced a fast, direct and robust approach to in-

cremental PCA for appearance-based visual tracking. Our

results show that the proposed tracker is robust to illumi-

nation changes, some pose variations, intrinsic alterations

and most prolonged occlusions. Our tracker outperforms

existing holistic visual trackers in quantitative and qualitative

evaluations. In contrast to IKPCA [10], the proposed scheme

avoids the optimization required for finding the mean of

the feature space with the implicit kernel function via pre-

images, yet utilizes robust kernel PCA. Our tracker directly

utilizes the incremental learning framework of IVT [9], and

therefore not only is more robust but also equally fast. In

future work, tracking may be improved by employing mul-

tiple adaptive expert appearance models for different views

of the object. Within this framework, extreme changes in the

object will initiate the generation of a new appearance model

for this pose. Additionally, a more sophisticated particle

generator for the particle filter which describes more than

a simple condensation may be added. This may improve the

efficiency as well as the accuracy of the proposed algorithm

as fewer particles’ likelihoods need to be calculated for better

performance.



(a) (b)

Fig. 7. The results of the proposed tracker (in solid red) compared to the IVT of Ross et al. [9] (in dotted cyan) on different video sequences.
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