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Figure 1: Face frontalization and UV texture completion by our approach. The first row is the input, the second row is the

frontalization result, and the third row is the completed UV texture. The proposed method can produce photo-realistic and

identity-preserved full UV textures even under extreme poses.

Abstract

The last few years have witnessed the great success of

non-linear generative models in synthesizing high-quality

photorealistic face images. Many recent 3D facial texture

reconstruction and pose manipulation from a single im-

age approaches still rely on large and clean face datasets

to train image-to-image Generative Adversarial Networks

(GANs). Yet the collection of such a large scale high-

resolution 3D texture dataset is still very costly and difficult

to maintain age/ethnicity balance. Moreover, regression-

based approaches suffer from generalization to the in-the-

wild conditions and are unable to fine-tune to a target-

image. In this work, we propose an unsupervised approach

for one-shot 3D facial texture completion that does not re-

quire large-scale texture datasets, but rather harnesses the

knowledge stored in 2D face generators. The proposed ap-

proach rotates an input image in 3D and fill-in the unseen

regions by reconstructing the rotated image in a 2D face

generator, based on the visible parts. Finally, we stitch the

most visible textures at different angles in the UV image-

plane. Further, we frontalize the target image by project-

ing the completed texture into the generator. The qual-

itative and quantitative experiments demonstrate that the

completed UV textures and frontalized images are of high

quality, resembles the original identity, can be used to train

a texture GAN model for 3DMM fitting and improve pose-

invariant face recognition.1

1. Introduction

The problem of 3D face texture completion (as shown in

Fig. 2) refers generally to the problem of recovering near

ear-to-ear visible and non-visible colour from a single im-

age [11] in a “canonical”, deformation-free parameteriza-

tion of the face surface (usually referred as UV-space). A

very similar problem is that of producing arbitrary face ro-

tations from a single image [51, 5]. Both of the above

problems have important applications in many different do-

mains of face analysis such as pose-invariant face recogni-

tion [11, 5], as well developing of 3D Morphable Model

(3DMM) algorithms [6, 19] and creating complete head

1Project Page: https://github.com/barisgecer/OSTeC
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avatars from single images [32]. That is why 3D face tex-

ture completion, as well as, producing face rotations has

been very popular in the intersection of machine learning

and computer vision, offering an important application do-

main to the advancements of machine learning in each era

(from robust component analysis [38] to modern deep learn-

ing [11, 51]).

The problem of predicting the missing colour in the

texture coordinated of the UV space or predicting a new

view from a single image has been the application domain

of many machine learning algorithms starting from sim-

ple nearest-neighbour interpolation, (i.e. Fig. 2c), regres-

sion techniques using linear-statistical priors (e.g., Robust

Principal Component Analysis [7]) to modern deep learn-

ing regression techniques such as image-to-image transla-

tion models using conditional Generative Adversarial Net-

works (GANs) [27]. The problem has been modeled as

fully supervised, i.e. the regression model was trained with

pairs of missing and complete 3D facial texture [11], or re-

cently using self-supervised methods and image rendering

[51]. Nevertheless, fully-supervised or self-supervised, to

the best of our knowledge, all current methods belong in

the family of regression techniques.

Contrary to the above, we take a radically different line

of work in this paper: We propose to re-think the 3D fa-

cial texture prediction and rotation generation as an op-

timisation problem and design our method as a one-shot

texture completion approach. One of the key problems of

regression-based approaches such as [51] is that they may

lose the identity because the function they learn is quite

generic. Contrary, our approach optimises, along-side many

other functions, identity-related features. Our method pro-

duces visually stunning results in both 3D texture comple-

tion as well as frontalization (for some results please inspect

Fig. 1). Another by-product of our method is a 3D texture

model learned from in-the-wild images that, as we show,

can be used for training state-of-the-art 3D face reconstruc-

tion algorithms such as GANFit [19] (which was trained

with around 10K 3D faces captured in well-controlled con-

ditions which are not released to the public).

In short, the contributions of our paper are as follows:

• We re-design the problem of 3D facial texture com-

pletion as a one-shot optimisation-based approach.

We propose a well-engineered novel methodology and

cost function suitable for the task.

• We capitalize on the power of 2D face generators to

recover unseen part of 2D face by rotating it in 3D. So

that, there would no need for 3D data collection.

• We show the effectiveness of the proposed approach in

qualitative and quantitative experiments. Additionally,

we apply the method to many in-the-wild images in or-

der to train a large-scale prior of the 3D facial texture

which we use to train state-of-the-art 3D face recon-

struction algorithms.

2. Related Work

Face Generation, Manipulation & Rotation : In just a

few years, the quality of face generations by GANs have

improved incredibly [28, 29, 30]. The recently proposed

StyleGANv2 [30] has shown high-quality 2D face gen-

erations up to 1024 × 1024 by eliminating artefacts that

appear in the previous results. Many follow up works

[41, 43, 3, 2, 22, 36] could successfully project real images

over its latent space and perform semantic manipulation.

This indicates that one can utilize StyleGAN generator as

a 2D facial texture prior. In this study, we exploit this find-

ing for image inpainting to recover the unseen part of a 2D

face.

One of the commonly manipulated facial attributes is the

pose, especially to a frontal view for its applications in face

recognition and normalization. Unfortunately, above men-

tioned latent space manipulation methods are either strug-

gling to disentangle other attributes from the latent param-

eters or having difficulty to project an in-the-wild image

to this space. Even if it is possible to achieve excellent

reconstruction by projecting to the extended latent space

(R18×512) of StyleGAN [3, 2], this enforcement exhaust

its semantic meaning, therefore, become non-functional for

frontalization. In fact, one can project a cat image to a Style-

GAN trained on human faces by these approaches.

A large body of work addresses this problem by image-

to-image translation GANs [45, 49, 26, 25, 46, 37]. Many of

these approaches utilize paired datasets in a supervised set-

ting which does not generalize well to in-the-wild settings.

A recent work [51] proposed a self-supervised training ap-

proach which perturbs images by 3D rotation to generate

training pairs automatically. Nevertheless, these regression-

based methods suffer from generalization and fall behind

the optimization-based approaches which can fine-tune for

any target image.

3D Texture Completion : Modelling and synthe-

sis of faces have been extensively studied in 3D as

well [4, 15, 17, 16, 18, 40, 19]. Nevertheless, generations

from these models have been far from being photorealistic.

Therefore, there have been some works that proposed to

complete a partially visible appearance of 2D images to a

3D appearance maps [34, 11]. The most recent one [11]

trains an image-to-image translation network supervised

by a set of controlled datasets, failing to generate high-

quality images for in-the-wild settings. Although the

proposed approach tackles the problem of texture com-

pletion, it brings a new perspective which is formulating

texture completion as an optimization-based inpainting

problem fortified by 2D StyleGAN and 3D geometry priors.
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(a) Input image

(I0)

(b) 3D recons-

truction(S′)

(c) Interpolated

UV map(T0)

(d) A different

view (Ii)

Figure 2: 3DMM Fitting and texture completion by nearest-

neighbour interpolation. As can be seen in (d), interpolation

method produces artefacts for different camera views.

Unsupervised 3D Face Model : There have been some

studies to build 3d face model directly from 2D images such

as [44] which learns a non-linear model from in-the-wild

images and [42] learns a complete model from videos. As a

side-product of this approach, we attempt to build a texture

model from a set of complete texture UV-maps of 2D im-

ages and compare it to GANFit [19] model which is trained

by ∼ 10,000 high-quality 3D textures.

3. Unsupervised UV Completion

The key insight of our work is to utilize 2D face genera-

tor networks and 3D geometry in a progressive one-shot op-

timization procedure for texture completion and frontaliza-

tion. Basically, our approach rotates an input image in 3D

and fill-in the unseen regions by reconstructing the rotated

image in a 2D face generator, based on the visible parts.

This 2D reconstruction is performed by an optimization in

the latent space of the generator. Finally, textures acquired

from these generations are collected progressively to build

a coherent texture UV-map. In this section, we explain the

details of our method.

3.1. 3DMM Fitting & Input Texture Acquisition

For a given 2D face image I0, our approach relies on a

rough estimation of its dense landmarks by a 3D reconstruc-

tion method. Therefore, we begin by fitting an off-the-shelf

3DMM algorithm to estimate its geometry2
S ∈ R

n×3 and

camera parameters c = [f, rx, ry, rz, tx, ty, tz]. Let us de-

fine a 2D projection operation by a pinhole camera model

with the function P(S, c) : R
n×3,R7 → R

n×2, the ge-

ometry is then projected onto 2D image plane, i.e. dense

landmarks, by S
′ = P(S, c).

Traditionally, high-quality 3D texture information can

be stored in UV maps which assign 3D texture data into

2D planes with a universal per-pixel alignment for all tex-

tures. Each vertex of the geometry has a texture coordinate

tcoord ∈ R
n×2 in the UV image plane in which the tex-

ture information is stored. In our approach, starting from

2Please note that no texture reconstruction from the 3DMM fitting al-

gorithm is passed to the next stages.

the texture available in the input image, we progressively

complete the texture in the UV space.

Given a set of 2D vertex coordinates, a texture UV map

T ∈ R
w×h×3 and texture coordinates, one can render a tex-

tured geometry by performing rasterization with barycentric

interpolation expressed as R : (Rn×2,Rw×h×3,Rn×2) →
R

w′×h′×3.

In order to acquire the visible part of the texture from

the input image (I0), we perform a similar rendering by

swapping vertex coordinates with texture coordinates and

the texture UV map with the input image (i.e., image-to-UV

rendering). In other words, the dense landmarks (S′) from

3DMM fitting replace texture coordinates where the texture

is actually the original image (I0). So, we unfold the input

image into the UV space by giving the actual tcoord of our

topology as the vertex coordinates to be rendered. Conse-

quently, the rendering is performed by the following:

T0 = R′(tcoord, I0,S
′) (1)

in which image-to-UV rendering (R′) is essentially same

operation as UV-to-image rendering (R), however, we de-

note them differently to avoid confusion.

An obvious motivation of this work can be seen in the

illustration of this operation in Fig. 2. After acquisition of

the visible texture from the input image, we can see huge

artefacts at invisible and narrow-angled parts of the geom-

etry. Therefore, we explain how to detect and inpaint these

regions by slowly building on top of the visible texture from

the input image.

3.2. ReRendering of the Mesh

In order to fill-in the less-visible parts of the texture ac-

quired from the original image, we rotate and render the fit-

ted mesh by certain angles. We take the textured geometry

as described in Sec. 3.1 and render it with a set of prede-

fined camera parameters. The perspectives of these novel

views are defined to maintain best visibility of every part of

the face with a near-perpendicular view.

Given ci (i > 0) as the ith novel camera parameters,

we project geometry to the image plane and render texture

geometry under this new perspective by the followings3:

S
′
i = P(S, ci) (2)

Ii = R(S′
i,Ti−1, tcoord) (3)

3.2.1 Building a Visibility Index

Each of the novel perspectives dominates certain part of the

texture map in terms of clarity and visibility, i.e. bottom

view is best for under-chin and side views are for cheeks.

3The term Ti−1 refer to progressive texture of the previos iteration. It

is explained in Sec. 3.4
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(a) Input view (b) Input view (c) Bottom (d) Bottom-left

(e)Bottom-right (f) Left (g) Right (h)Visibility Ind.

Figure 3: Visibility scores are to measure optimal camera

angles with respect to facial surface in UV-map.(a) V0. of

input image (b-g) Vi of different views. (h) Visibility index

(Vi): an index of optimal angles for texture acquisition.

This visibility score can be defined in terms of the angle

between the normal of each triangle and its vector point-

ing towards the camera. Meaning that, the acquired texture

would have higher resolution and less artefact with lower

angles between the two vectors, i.e. for triangles that are

facing towards the camera. For each perspective (ci), we

extract a visibility UV map Vi, ranging between (−1, 1)
where 1 indicates that the triangles around the vertex are

facing towards the camera in average and −1 is facing the

opposite direction. This process can be formulated by ap-

plying camera ci to the geometry S, and taking a dot prod-

uct between vertex coordinates with respect to the camera

and vertex normals.

Vi = diag(
[S′

i,h]

||[S′
i,h]||2

· N (Si)
T ) (4)

where h ∈ R
n×1 stands for a vector of ones to make S′

i ho-

mogeneous. And N denotes the calculation the normals of

the vertices. Some visibility score UV maps can be seen in

Fig. 3 for different camera settings. Fig. 3h illustrates dom-

inance map of all visibility scores, which we call visibility

index and use it for stitching texture maps that are generated

from the optimization of different views. Based on the pre-

vious equations, the binary masks of visibility index can be

formulated as the following:

Vi =
⋂

i 6=j

(Vi > Vj) (5)

3.3. Inpainting by Projection

The main assumption of this work is that we can utilize

a generator network trained by 2D images as a prior ap-

pearance model for inpainting. Since we extracted a part of

texture from the original image in Sec. 3.1, we can now use

it for conditional projection to styleGAN model to generate

high quality and consistent faces for the invisible part.

3.3.1 Masking

In order to separate visible and invisible regions, for each

novel view, binary masks are generated from the visibility

scores (Vi). We empirically found that intersection of two

masks gives the best results: 1) regions where the visibil-

ity score of the original camera is higher than a threshold

(V0 > t1), and 2) regions where the visibility score of the

original camera perspective is higher than the target cam-

era4, as formulated below:

M
UV
i =

(

(V0 > t1) ∩ (2V0 > Vi)
)

∪
⋃

i>j

Vj (6)

where ∪i>jVj denotes progressive mask enlargement by

the dominant regions of all previously processed camera

views, which is explained in Sec. 3.4.

The mask as explained above would give a mask in UV

space which is then rendered to the image space by the cur-

rent camera parameters ci (i.e. similar to Eq. 3):

Mi = R(S′
i,M

UV
i , tcoord) (7)

3.3.2 Face Generation

The proposed approach requires a good quality generator

that can synthesize face images from an arbitrary noise vec-

tor. Therefore, we borrow one of the state-of-the-art GAN

network: StyleGANv2 [30] for this task. The StyleGAN

or StyleGANv2 generators are particularly practical for this

task as they consist of a mapping network that adds flexi-

bility for manipulation and better projection. The mapping

network (GM : R1×512 → R
18×512) inputs a noise vector

z ∈ R
1×512 and generates an extended latent parameters

W ∈ R
18×512. The generator network can synthesize face

images from this extended latent parameters fed into its dif-

ferent layers, i.e. G : R18×512 → R
h′×w′×3. In this work,

we optimize only based on W which we call latent param-

eters and ignore the mapping network.

During the forward pass of the optimization, we generate

an image G
∗
i by the generator network G(W∗

i ) and extract

a set of features for the energy terms that we explain below.

As explained in Sec. 3.3.4, the loss is backpropagated to

find a good generation by updating the latent parameters

W.

3.3.3 Energy Functions

Photometric Loss : Obviously, one of the simplest form

of supervision is photometric loss which encourages low-

level similarity at the visible part of the image. Although

4Other cameras are handicapped by a factor of 2 to enlarge texture from

the original image
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Figure 4: Overview of the method. The proposed approach iteratively optimizes the texture UV-maps for different re-rendered

images with their masks. At the end of each optimization, generated images are used to acquire partial UV images by dense

landmarks. Finally, the completed UV images are fed to the next iteration for progressive texture building.

simpler form of photometric loss can be defined as pixel-

wise mean absolute difference between two images, we em-

pirically find that log-cosh loss provides smoother conver-

gence. Log-cosh loss can be defined as the following:

Lp =
1

w′ × h′ × 3

w′×h′×3
∑

log
(

cosh
(

Mi ⊙ (Ii −Gi)
)

)

(8)

where ⊙ stands for element-wise multiplication.

Identity Loss : Since photometric loss is only concerned

by the low-level similarity, it struggles to achieve smooth

convergence. Following [19, 10, 20, 17], we exploit iden-

tity features from a pretrained face recognition network [12]

in order to capture good identity resemblance with the orig-

inal image. Given a network F : Rh′×w′×c → R
512, we

calculate the cosine distance between the identity features

of the generated image and the input image as following:

Lid = 1−
F(I0) · F(Gi))

||F(I0)||2||F(Gi))||2
(9)

Perceptual Loss : Following the previous studies [19, 3],

we exploit high-level similarity features, known as percep-

tual loss, to regularize convergence. We empirically choose

9th layer of a VGG-16 network that is pretrained as an Im-

ageNet classifier as below:

Lper =
∑

log

(

cosh
(

Mi ⊙
(

VGG(Ii)− VGG(Gi)
)

)

)

(10)

Landmark Loss : All previous objectives are segmented

by the visibility mask that covers the face partially. There-

fore, invisible parts become totally relaxed, which leads to

ill-aligned generations with the rendered dense landmarks

(S′
i). To this end, we propose to minimize the landmark dis-

tance between Ii and Gi. As we rotate 3D mesh with a fixed

topology, sparse landmark locations of the rendered images

can be easily obtained from the mesh with pre-defined land-

mark indices (l ∈ N
68, l < n), i.e. (S′

i(l)). In order to

extract landmarks of the generated image (Gi) during the

optimization 5, we employ a differentiable landmark esti-

mator [14] defined as K : Rw′×h′×3 → R
68×2. And the

loss is expressed as:

Llan =
1

68

68
∑

||K(Gi)− S
′
i(l)||2 (11)

3.3.4 Projection

Initialization by Regression : Following [3], we train an

encoder CNN network E : Rh′×w′×3 → R
18×512 from ran-

dom styleGAN generated images (G(GM (z)), z ∼ N (0, I))
to predict their latent parameters (W = GM (z)). We ini-

tialize W by the regression of this network for the rendered

images, i.e. W∗ = E(Ii). Initializing the latent parameters

with this regression not only accelerate the convergence but

also assist optimizer to avoid local minimas.

Optimization : Given a rendered image Ii, its respective

mask Mi, and dense landmarks S
′
i, our goal is to find the

5In order to flow the gradient from landmark loss, landmarks need to

be computed by differentiable connections. To the best of our knowledge,

this is the first attempt of such point-based supervision to a 2D image.
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best latent parameters (Wi) to reconstruct Ii by a pretrained

StyleGANv2 generator G. To this end, we first align Ii, Mi,

and S
′
i to the alignment template of StyleGANv2. And,

we perform gradient descent optimization by ADAM op-

timizer [31] with a weighted sum of loss functions defined

above:

min
Wi

Ltotal(Wi) = λpLp + λidLid + λperLper + λlanLlan

(12)

After convergence, we synthesize a face image with the

novel view ci by Gi = G(Wi). Finally, we can acquire

partial texture in the same way as input texture acquisition

in Sec. 3.1 by Ti = R′(tcoord,Gi,S
′
i).

3.4. Progressive Texture Building for Consistency

In order to generate globally consistent texture maps, we

run the optimization for each of the camera views iteratively

to progressively improve the texture UV map. After every

iteration, we blend the generated UV map (Ti) into the cur-

rent UV map at the dominated pixels (Vi) by that particular

camera settings ci.

Ti = Vi ⊙Ti + (1−Vi)⊙Ti−1 (13)

Blending: Texture UV-maps are stitched by alpha blend-

ing for smooth shift between different UV maps. Also, they

are RGB normalized by Gaussian statistics at the intersec-

tion of visibility indices V0 and Vi
6.

Face Frontalization: Finally, with the complete UV map

T, we render it once more by a frontal camera and perform a

final optimization as in Eq. 12 to generate the frontal image

of the input image.

4. Experiments

We implement the proposed approach in Tensorflow

framework [1] and it takes around 5 minutes to UV-

complete and frontalize an input image. Unfortunately,

some of the preprocessing steps are CPU-intensive, there-

fore is a room for further efficiency. We have used ge-

ometry fitting pipeline of GANFit [19] as a preprocessing

step. Other than pretrained networks for the loss function,

the method itself does not require any additional training

data. In the following, we illustrate some qualitative and

quantitative results of our method.

4.1. Unsupervised Texture Model: UTEM

Many 3D texture reconstruction approaches rely on

large-scale high-quality 3D appearance data which is costly

6Normally, these two indices do not overlap, however we build Vi

without the handicap to find out true dominated regions. And V0 is from

the previous index in which it is given advantage by a factor of 2

Figure 5: Comparison of our frontalization to others:

Rotate&Render [51], FNM [37], CAPG-GAN [25], FF-

GAN [49], HF-PIM [8], HPEN [52], LFW-3D [24]

to collect, difficult to maintain diversity (e.g. ethnicity, age)

and often kept private due licensing issues. On the other

hand, large-scale high-quality 2D face datasets are widely

available [33, 28] for all. As a by-product of our approach,

we build a 3D texture model by completing texture UV-

maps for ∼1,500 images from CelebA-HQ [33] (as can be

seen in Fig. 7 a), without any 3D data collection. After

the completion, we train a GAN [28] as a GAN-based tex-

ture model and perform 3DMM fitting similar to [19]. We

call this model UTEM and show some generated samples

in Fig. 7 b. The 3DMM fitting results by the original GAN-

Fit [19] and the one with UTEM texture model can be seen

in the last two rows of Fig. 8. The reconstructed textures

show similar identity recovery and quality as GANFit tex-

tures, and it will be available for all.

4.2. Qualitative Results

We run our algorithm on some images in comparison

with the recent state-of-the-art approaches, as shown in
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(a) Input (b) E(I0) (c) +Lp (d) +Llan (e) +Lper (f) +Lid

Figure 6: Additive ablation study. ‘+’ refers to addition of

that loss term compared to the column on the left. (f) refers

to all loss term used in this paper, i.e. Ours.

(a) Training Samples from OSTeC (Ours)

(b) Generated samples from Unsupervised Texture Model (Ours)

Figure 7: We build a texture model from completed textures

from 2D image and train a GAN similar to GANFit [19]

approach for high-quality texture modeling.

Fig. 8,5 and 1. Fig. 8 shows better quality and semanti-

cally meaningful UV-maps compared to UV-GAN [11] and

GANFit [19]. Frontalization results in both Fig. 8 and 5

look superior to other previous methods in terms of identity-

resemblance, artefacts and resolution.

4.3. Quantitative Results

UV Texture Completion. For the quantitative evaluation of

UV texture completion, we employ the UVDB (Multi-PIE

[21]) dataset released by [11]. Following [11], we skip the

first 200 subjects, as there is no training, and test on the re-

maining 137 subjects. We employ two metrics namely peak

signal-to-noise ratio (PSNR) and structural similarity index

(SSIM), which are computed between the predicted UV tex-

ture and the ground truth. In Tab. 1, the proposed method

shows great priority over UV-GAN [11] and CE [35], espe-

cially for the profile faces.

Pose-invariant Face Matching. We evaluate the perfor-

mance of frontalization of our work on pose-invariant face

recognition in the wild. We choose the widely used dataset

Methods Metric 0◦ ±30◦ ±60◦ ±90◦

CE [35]
PSNR 23.03 21.93 20.27 19.63

SSIM 0.9201 0.8920 0.8881 0.7179

UV-GAN [11]
PSNR 23.36 22.25 20.53 19.83

SSIM 0.9241 0.8971 0.8919 0.7250

Ours
PSNR 23.95 22.54 21.04 20.44

SSIM 0.9282 0.9018 0.8979 0.7462

Table 1: Quantitative evaluations of UV texture completion

on the MultiPIE dataset [21] under view changes.

Method Frontal-Frontal Frontal-Profile

Human 96.24 ± 0.67 94.57 ± 1.10

DR-GAN [45] 97.84 ± 0.79 93.41 ± 1.17

DR-GAN+ [46] 98.36 ± 0.75 93.89 ± 1.39

PIM [50] 99.44±0.36 93.10 ± 1.01

HF-PIM [9] - 94.71 ± 0.83

UVGAN [11] 98.83 ± 0.27 93.09 ± 1.72

+Profile2Frontal - 93.55 ± 1.67

+Frontal2Profile - 93.72 ± 1.59

+Set2set - 94.05 ± 1.73

CASIA-R18-ArcFace 99.34 ± 0.49 93.69 ± 1.33

+Profile2Frontal - 94.87 ± 0.96

+Frontal2Profile - 95.68 ± 0.91

+Set2set - 95.92 ± 0.87

MS1M-R18-ArcFace 99.68 ±0.29 96.14 ± 1.06

+Profile2Frontal - 97.06 ± 0.74

+Frontal2Profile - 97.43 ± 0.61

+Set2set - 97.85 ± 0.57

Table 2: Verification accuracy(%) comparison on the CFP

dataset [39].

CFP [39], which focuses on extreme pose face verifica-

tion. We employ the ArcFace loss [13] to train the ResNet-

18 networks [51] on CASIA-WebFace [48] and the refined

version of MS1M [23, 12]. Note that the backbone of

our embedding network is smaller than LightCNN-29 [47]

used by HF-PIM [9] and ResNet-27 used by UV-GAN [11].

As shown in Tab. 2, synthesising frontal faces from pro-

file faces improves the accuracy by 1.18% and 0.92% for

the ArcFace models trained on CASIA and MS1M, respec-

tively. Since face frontalization is a very challenging prob-

lem, we also synthesise profile faces from frontal faces fol-

lowing [11], which leads to even better results, 95.68% for

the CASIA model and 97.43% for the MS1M model. In

addition, we use a view interpolation of 15◦ to generate a

set of images for each test face. Then, we use the generated

set centres to conduct verification. The accuracy further im-

proves to 95.92% for the CASIA model and 97.85% for the

MS1M model, both surpassing recent state-of-art methods

(e.g. HF-PIM [9] and UV-GAN [11]) by a large margin.

4.4. Ablation Study

We performed an ablation study to explore the contri-

bution of each loss terms in Fig. 6. The study shows that
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Figure 8: Qualitative results in comparison with other state-of-the-art methods (UV-GAN [11], Rotate&Render [51] and

GANFit [19]). (From Top to down) First block shows input images, second block UV-completion, third block frontalization,

and the fourth block texture completion/reconstruction results.

encoder E starts with a good initialization. Lp helps to

match some low-level features. Llan aligns generated im-

ages to the input geometry, e.g. background leakage around

the neck. Lper matches mid-level features and finally Lper

shows the biggest contribution by precise identity recovery.

5. Conclusion

In this paper, we propose an optimization-based one-

shot 3D texture completion and frontalization approach by

exploiting pretrained 2D image generation networks. Our

approach can generate visually remarkable, accurate and

identity-resembling complete texture maps and frontalized

faces. The experiments show its superiority over other

methods by accuracy and face matching at extreme poses.

Acknowledgment: The work of Stefanos Zafeiriou was

funded by the EPSRC Fellowship DEFORM: Large Scale Shape

Analysis of Deformable Models of Humans (EP/S010203/1).

7635



References

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian

Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath

Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
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