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ABSTRACT

Accent is an important biometric characteristic that is defined
by the presence of specific traits in the speaking style of an
individual. These are identified by patterns in the speech
production system, such as those present in the vocal tract or
in lip movements. Evidence from linguistics and speech pro-
cessing research suggests that visual information enhances
speech recognition. Intrigued by these findings, along with
the assumption that visually perceivable accent-related pat-
terns are transferred from the mother tongue to a foreign
language, we investigate the task of discriminating native
from non-native speech in English, employing visual features
only. Training and evaluation is performed on segments of
continuous visual speech, captured by mobile phones, where
all speakers read the same text. We apply various appear-
ance descriptors to represent the mouth region at each video
frame. Vocabulary-based histograms, being the final rep-
resentation of dynamic features for all utterances, are used
for recognition. Binary classification experiments, discrim-
inating native and non-native speakers, are conducted in a
subject-independent manner. Our results show that this task
can be addressed by means of an automated approach that
uses visual features only.

Index Terms— Non-Native Speech Identification, Ac-
cent Classification, Visual Speech Processing

1. INTRODUCTION

Accent manifests itself in speech through a set of pronun-
ciation, intonation, lexical stress, rhythmic and articulation
patterns, present in a common language of a group of peo-
ple. Determining whether a speaker is native or non-native
from a spoken utterance, without knowledge of speech con-
tent, could arguably enhance speech recognition, as a pre-
processing accent-biasing step, or serve speaker verification
purposes, as a biometrics problem in its own right [1]. More-
over, it could provide assistance to intelligent applications
that require voice/conversation adaptation [2].

Most related early work has approached accent identifi-
cation through a classification framework whose goal is to
assign a speech example either to the accent of mother tongue
or to one of separately modelled foreign-language accents [1,

2, 3]. These approaches use Hidden Markov Models (HMMs)
modelling, on the phoneme or word level, trained on cepstral
or prosodic acoustic features, and are evaluated on isolated
word databases. Trajectory-based classifiers are, alterna-
tively, used to capture accent-sensitive spectral dynamics [4].

More recently, binary discrimination between native and
non-native speech has been targeted, as opposed to the mul-
ticlass accent identification task [5, 6, 7]. These works
borrow inspiration from the similar fields of language and
speaker recognition, and perform evaluation in larger speech
databases. Shriberg et al. [5] employ maximum likelihood
regression and phone N-gram features, while in [6] the pro-
posed framework consists of two phonetic-based and two
non-phonetic-based subsystems, built on HMMs and Gaus-
sian Mixture Models (GMMs), respectively. Omar and Pele-
canos [7] introduce a novel universal background model and
use it in conjunction with Support Vector Machines (SVMs)
to detect non-native speakers and their native language.

All the above mentioned related research has relied ex-
clusively on acoustic features, ignoring information from
the visual cue. However, features derived from the visual
modality have been successfully used for speech recogni-
tion [8, 9, 10]. Such findings underline the contribution of
visual information to speech perception by humans, espe-
cially when the auditory stream is noisy. Furthermore, visual
speech alone has proved sufficient source of information for
human observers to identify the language spoken by a talker.
For example, Ronquest et al. [11] report several experiments,
where the participants perform much better than chance in
visual discrimination between English and Spanish. Newman
and Cox [12] employ appearance and shape features, along
with language phonotactics modelling, and show that auto-
matic language identification is feasible even through visual
features only. However, their approach depends on the accu-
rate sub-phonetic or phone-level recognition of visual speech.

Motivated by the aforementioned ideas, we address dis-
crimination between native and non-native speech in English,
formulated as a binary visual-only classification problem.
To the best of our knowledge, there has been no previous
work that addresses this task through the visual modality
only. Furthermore, our approach has the advantage of not
relying on either speech transcriptions or language-specific
modelling, as opposed to other visual-only speech processing
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Fig. 1. Instances of the ROI extraction process, illustrated on a non-native speech example frame from the MOBIO Database.
(a) Actually tracked points, (b) Pose-normalised points, including the 6 base points for alignment (shown in blue), (c) Triangulated mesh on
the input lower face image, (d) Triangulated mesh of the aligned pose-normalised points, (e) Warped frontal lower face and mouth bounding
box, (f) Final rescaled mouth ROI.

works [12]. Appearance descriptors are extracted at each
frame from a rectangular region surrounding the speaker’s
mouth. Dynamic information is encoded through concatena-
tion of static features in a temporal window. Bag-of-features
histograms are then used to represent these dynamic features
for each sample. Modelling dynamics of visual speech prior
to the classification stage allows us to circumvent the need
for use of a sequence classifier, such as HMMs, and resort
to SVMs for classification. We test the proposed methodol-
ogy in a challenging setting, that is, on continuous speech
examples recorded by mobile devices and uttered by speakers
of various nationalities. The results indicate the discrimi-
native power of quantised dynamic appearance features for
discrimination between native and non-native speech.

2. DATABASE

The proposed framework is evaluated in a subject-independent
fashion on native and non-native speech episodes in English
from the MOBIO Database [13]. This bimodal database was
recorded at six sites in five countries in two phases, each com-
prised of six sessions. Each session includes different scenar-
ios, such as short-response questions, pre-defined text, and
free-speech questions. In total, 192 audiovisual recordings in
English, almost exclusively captured on mobile phones, are
available for each of the 150 participants. In all cases, the
acquisition device is handheld, which implies high variability
in pose and illumination. Additional challenges are posed by
the varying appearance of subjects and background, as well
as the different recording conditions.

In the current study, we choose to include only the vi-
sual speech samples from Phase I in which all subjects read
the same pre-defined text, thus establishing a text-dependent
experimental scenario. The data used are balanced over the
two classes, with 135 samples belonging to 28 native En-
glish speakers and 137 to 28 non-native English speakers. The
paragraph read in all such recordings is the following:
“I have signed the MOBIO consent form and I understand that my
biometric data is being captured for a database that might be made
publicly available for research purposes. I understand that I am
solely responsible for the content of my states and my behaviour.

I will ensure that when answering a question I do not provide any
personal information in response to any question.”

Long silence segments in the beginning and end of the
recordings are removed by applying a voice activity detector
on the corresponding audio stream. The mean and standard
deviation of duration over all 272 samples used is 22.5 and 3.4
seconds, respectively. The video stream, which is provided in
variable frame rate encoding, is converted in a sequence of
still frames, corresponding to approximately 15 frames per
second, for almost all samples.

3. FEATURES

Experimental findings have shown that appearance-based fea-
tures, calculated in the area around the speaker’s mouth, can
efficiently encode valuable information from visual speech
[8, 14, 15]. However, their performance largely depends on
the accuracy of the Region Of Interest (ROI) tracking.

3.1. Region of Interest

Locating and tracking the mouth ROI, as well as registration,
i.e., removing variations due to head movements, is an in-
dispensable step that precedes appearance features extraction.
This is achieved here in the following steps.
Facial point tracking: We initially track 113 characteris-
tic facial points, using the Appearance-Based Tracker [16].
These are manually annotated in the first frame and tracked
for the remaining frames. Out of these points, we only use 34
points that correspond to the lower face region, specifically
their 2D spatial coordinates (Fig. 1(a)), along with the coor-
dinates of their pose-free version (Fig. 1(b)), all provided as a
part of the tracker’s output. Six base points (see blue points in
Fig. 1(b))), are relatively invariant to facial deformations - the
two “ear-level” points on the face boundary, the two points
where the jaws are attached to one another, the tip of the nose
and the center of the mouth (calculated based on the location
of 16 points representing the lips contour) - and serve to reg-
ister the face region and calculate the pose-free points. This is
done for all 34 pose-free points, which are subsequently used.



Lower Face Texture Warping: Texture warping is per-
formed to acquire lower face images in frontal view. First, for
each frame, two 2D meshes (one for actually tracked points
and one for aligned pose-normalised points), are triangulated.
A piecewise affine warp is defined between the corresponding
triangles. This warp is then used to map the texture of the
mesh in the input image (Fig. 1(c)), onto the pose-free mesh
(Fig. 1(d)). Finally, all warped lower faces are re-sampled
to dimension 200×200 (Fig. 1(e)), and the pose-normalised
points are accordingly rescaled.
Mouth ROI Extraction: The mouth ROI is extracted from
the warped frontal image as a 94×114 bounding box around
the center of the mouth (Fig. 1(e)). Finally, all mouth ROIs
are downsampled to dimension 64×64 and, subsequently,
smoothed by a 3×3 gaussian filter (Fig. 1(f)).

In this work, we choose to apply frame differencing be-
fore the computation of appearance features. In particular,
after extracting the mouth ROIs, we replace them by the dif-
ference ROIs, as in [17]. These are computed by subtracting
the mouth ROI at the previous frame from the mouth ROI at
the current frame. In this way, effects caused by local vary-
ing illumination are alleviated, while, at the same time, subtle
coarticulation transitions are considered before the feature ex-
traction phase. Henceforth, when we refer to mouth ROIs we
mean the difference ROIs. Note that samples for which ROIs
were erroneously extracted, e.g., due to erratic point tracking
or inaccurate warping, were excluded from the experiments.

3.2. Appearance Features

In order to describe appearance within the mouth ROIs, we
examine five appearance features: PCA, DCT, DWT [14],
LBP [18] and HOG [19], all applied to pixel intensities.

Principal Component Analysis (PCA), when applied to
pixel intensity values, models the intensity variation over the
training mouth ROIs through an optimal linear transforma-
tion, in terms of minimum mean squarred error. Our feature
vector corresponds to the principal components accounting
for the 95% of the total variance.

Discrete Cosine Transform (DCT) compresses mouth
ROI information by decoupling components in the frequency
domain. Similarly to [15], we apply 2D DCT to 8 non-
overlapping 32×16 blocks of the ROI. Then, the 2D DCT
coefficients that lie in the upper-left corner of each block
correspond to the lowest frequencies. After arranging these
coefficients in a zig-zag manner, we collect the first 4 for each
block and thus construct a 32-dimensional vector.

Discrete Wavelet Transform (DWT) is used to perform fre-
quency decomposition of the mouth images at various levels
of resolution. After rescaling the ROIs to dimension 16×16,
we employ the Daubechies-4 wavelet filter, with 3 levels of
decomposition, to compute the 2D DWT coefficients. As
in [15], the approximation coefficients of the third level, along
with all the detailed coefficients of the 2nd and 3rd level, are

Table 1. Distribution of Native and Non-Native speakers and corre-
sponding samples, over Training, Validation and Test Set (notation
a/b: a for number of speakers, b for number of samples).

Native Non-Native All
Training 14/71 14/65 28/136

Validation 8/32 7/36 15/68
Test 6/32 7/36 13/68
All 28/135 28/137 56/272

retained in a single 64-dimensional vector.
Local Binary Operator (LBP) relies on intensity differ-

ences between neighbouring pixels to encode patterns in tex-
ture. We use the LBPu2

(8,1) operator, which acts in a neigh-
bourhood of 8 pixels on a circle of 1-pixel radius. Its output
is the discrete occurence histogram of 59 “uniform” LBP pat-
terns, calculated over the entire ROI [18].

Histograms of Oriented Gradients (HOG) is employed to
reveal local edge orientation information in the area inside
and around the lips. Parameters are chosen so that the di-
mensionality is comparable to that of the other features. Each
mouth ROI is divided into four 32×32 cells. The gradient
at each pixel is discretised into one of four orientation bins,
and each pixel contributes to the local histogram of the cell
with a “vote” proportional to the gradient magnitude. Each
histogram is normalised four times, with respect to the total
energy of the four 2×2 blocks of cells that contain that partic-
ular cell. This leads to a vector of length 64 for the whole ROI.

A feature-level normalisation scheme is applied on each
speech sample, for all utilised image descriptors. In partic-
ular, the mean vector over the whole utterance is subtracted
from the feature vector corresponding to each frame. This
technique is in accordance with the feature mean subtraction,
commonly used in the lipreading research [8].

3.3. Bag of dynamic features

Dynamics of visual speech carry valuable information related
to accent patterns and modes of articulation. In order to cap-
ture dynamic characteristics of speech, we concatenate ±L
adjacent feature vectors around the current frame into a large
vector. The value for L is set to 2 in this study, i.e., a 5-frame
window with a corresponding duration of 1/3 secs is used.

For the final representation of dynamic features by means
of a vector of lower dimensionality, we employ the quanti-
sation technique known as Bag-Of-Features (BOF) [20]. We
perform k-means clustering on all training dynamic feature
vectors, belonging to either the native-speaker class or to the
non-native-speaker class, to construct a “vocabulary” of vi-
sual “words”. K-means is initialised five times. The clus-
ter centroids yielded by the iteration with the best conver-
gence form the final vocabulary. For every speech segment
processed, each dynamic feature is assigned to the closest
“word”, in terms of the Euclidean distance. The visual speech
example is finally represented by a histogram encoding the
frequency of occurence of each “word”.



4. EXPERIMENTAL STUDIES

Evaluation of the proposed method is conducted through a
subject-independent experiment. Half of our data is used for
Training, while 25% of the speech samples is held out as a
Validation Set, that serves for parameter tuning. The remain-
ing 25% is used for testing. All sets are balanced in terms
of gender. The distribution of speakers and samples for each
class across the three sets is shown in Table 1.

For binary classification, we rely on RBF (Gaussian) Sup-
port Vector Machines. The Gaussian kernel width and the
soft-margin cost of the SVM decision function are optimised
on the Validation Set through a single-resolution gridsearch,
based on the mean value of the F1 measure over the two
classes. The number of clusters-“words” of the BOF vocabu-
lary (or, equivalently, the dimension of the histograms that are
input to the classifier) is tuned separately for each appearance
descriptor. The values examined lie in {16, 32, 64, 128, 256}.
The BOF histograms used on the Test Set for each feature
are those corresponding to the best-performing vocabulary di-
mension on the Validation Set.

The diagram in Figure 2 illustrates how mean F1 varies on
the Validation Set with increasing values of vocabulary size,
for each different appearance feature. As can be seen, the op-
timal number of clusters for all features, except for LBP, is 16.
This finding suggests that broader clusters of the vector space
are more suitable to quantise dynamic appearance of mouth
configurations. This is intuitive, taking into account that most
practical definitions of visemes, i.e., the equivalent in the vi-
sual domain of audio phonemes, agree on a total number of
visemes in the range 11-16 [21].

Results on the Test Set are reported in Table 2. Our re-
sults show that dynamic appearance features address quite
accurately the task of discriminating native from non-native
speech. This behaviour is to be expected, as appearance in-
formation from the mouth ROI reveals fine movement and
tale-telling transient features, such as bulges and wrinkles. In
other words, different pronunciation and articulation patterns
can be visually identified by the positioning and configuration
of the mouth and flesh around it.

Fig. 2. Performance on the Validation Set, in terms of mean F1,
varying with vocabulary size, for each appearance feature.

Table 2. Results on the Test Set, reported as percentages: Class-
wise F1 measure (F1-N for Native, F1-NN for Non-Native), mean
F1 over the two classes, Unweighted Average Recall (UAR), and
classification accuracy (acc.), for each appearance feature.

Features #clusters F1-N F1-NN F1mean UAR acc.

PCA 16 72.1 77.3 74.7 74.7 75.0

DCT 16 78.1 80.6 79.3 79.3 79.4

DWT 16 72.7 74.3 73.5 73.6 73.5

LBP 64 67.7 67.7 67.7 67.9 67.7

HOG 16 60.0 57.6 58.8 59.2 58.8

Image transform-based features, namely DCT, PCA and
DWT, stand out as the best-performing, with DCT achieving
the highest scores in terms of all measures. Thus, frequency
decomposition as well as eigen-decomposition of global tex-
ture variation provides discriminative information for the
target task. This conforms to results stemming from the
lipreading research [22], which similarly show the robustness
of the above descriptors in capturing essential information in
visual speech. The high accuracy achieved by block-based
DCT could be attributed to its ability to encompass the rich-
est local frequency information, that corresponds to the most
prominent texture and edge structures in the mouth region.
Lower performance is yielded by LBP and HOG, which
capture local texture and edge orientation information, re-
spectively. These are less informative as they do not capture
buldges and folds representing the speaking patterns.

5. CONCLUSIONS

We have presented a novel approach for visual discrimina-
tion between native and non-native speech in English. To the
best of our knowledge, this work is the first attempt to ad-
dress this binary accent classification problem by means of
visual features only. We have shown that dynamic appearance
descriptors, after undergoing vocabulary-based quantisation,
are sufficiently informative to render the target task feasible.
Our experiments on a challenging corpus, that includes visual
speech samples captured by mobile devices, illustrate the ef-
ficiency of the proposed fully-automatic method even in such
challenging in-the-wild scenarios.
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