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a b s t r a c t

We present a new method for the incremental training of multiclass support vector machines that can

simultaneously modify each class separating hyperplane and provide computational efficiency for training

tasks where the training data collection is sequentially enriched and dynamic adaptation of the classifier is

required over time. An auxiliary function has been designed, that incorporates some desired characteristics

in order to provide an upper bound for the objective function, which summarizes the multiclass

classification task. A novel set of multiplicative update rules is proposed, which is independent from any

kind of learning rate parameter, provides computational efficiency compared to the conventional batch

training approach and is easy to implement. Convergence to the global minimum is guaranteed, since the

optimization problem is convex and the global minimizer for the enriched dataset is found using a warm-

start algorithm. Experimental evidence on various data collections verified that our method is faster than

retraining the classifier from scratch, while the achieved classification accuracy rate is maintained at the

same level.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Support Vector Machines (SVMs) [1–3] have become popular
in pattern recognition problems due to their excellent general-
ization performance on unseen data and their wide range of
applicability in various classification tasks. For the simple binary
pattern recognition problem, given a set of training examples,
each belonging to one of two pattern classes, SVMs usually map
each example to a point in a higher or infinite dimensional feature
space. Consequently, a SVM training algorithm, based on the
statistical learning theory, constructs an optimal decision hyper-
plane in this feature space, which separates the two classes, while
at the same time, maximizes the margin between itself and the
nearest training examples (called the support vectors) of each
class. Classification of unseen examples is then performed by
firstly mapping them on the same high dimensional feature
space and assigning them to a class based on which side of the
separating hyperplane they fall in. The optimization process
during SVM training is driven by the structural risk minimization
(SRM) [1] principle, attempting to find the optimal balance
between the minimization of the mean error rate in the training
set (called the empirical risk) and the prevention of overfitting.
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The major drawback of SVMs is their complicated training
procedure which restricts their applicability especially for large
scale industrial applications. Indeed, SVM training involves the
solution of a large quadratic programming (QP) problem [4], which
demands significant computational effort and requires consider-
able memory resources. These requirements are further increased
when training is performed on large scale datasets containing high
dimensional data, thus making SVM training almost impractical.

To this end, significant effort has been spent in order to
provide simplified, fast and less resource demanding SVM batch
training algorithm variants. Among the most notable and wide-
spread approaches for fast SVM training is the one proposed by
Frieß et al. [5], where the kernel theory and the ability to form
linear decision surfaces in feature space have been adapted to the
Adatron algorithm. Another well known variant is the sequential
minimal optimization (SMO) [6] algorithm by Platt, which works
with reduced problems by splitting the QP problem in the
smallest possible subproblem including at each step the optimi-
zation of a single pair of Lagrange multipliers. In order to choose
the two Lagrange multipliers for joint optimization, SMO com-
putes the violation on Karush–Kuhn–Tucker (KKT) condition
constraints [4] and selects for optimization the pair that causes
the highest violation. Next, the optimal values for these multi-
pliers are computed and SMO updates the SVM to reflect the new
optimal solution. Another popular variant is the MinOver algo-
rithm by Krauth and Mezard [7], which defines the maximum
margin hyperplane in linearly separable problems by determining
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synaptic matrices of optimal stability, thus achieving faster
convergence compared with the conventional SVM batch training
approach.

The main limitation of all the aforementioned methods is that
they employ a batch training approach which requires all training
data to be available at once and training is performed in one
batch. This implies that if more training data are available
subsequently, the SVM classifier should be retrained from scratch.
Let us investigate the scenario, where we have obtained the
optimal Lagrange multipliers defining the normal vector of the
decision surface for n initial training samples that form the so-
called base training set, and we seek the new optimal values for
the augmented dataset formed when m new training pairs are
added to the base training set. In such a case, since the classifier
was initially well trained, resolving the optimization problem
from scratch over the augmented training dataset, is computa-
tionally inefficient. An alternative approach could be to use the
initial solution and the optimal Lagrange multipliers obtained
from the base training dataset, as an advanced starting point to
warm-start the new optimization process. The computational
advantage of such an approach is extremely large in cases where
a small amount of new training samples is added in a large base
training dataset (m5n), over which the SVM classifier has already
been well trained.

To this end, numerous approaches for online training of two
class classifiers have been proposed in the literature. In online
training when a single data point is added and/or removed, these
algorithms can efficiently update the trained model without re-
training it from scratch. Huller algorithm [8] is such a method,
which tries to solve the two class SVM quadratic problem in an
online manner based on geometrical arguments. The ideas intro-
duced in Huller were further extended in LASVM [9] algorithm,
which uses stochastic gradient decent to approximate the opti-
mum solution. However, optimization algorithms that rely on
the full gradient computation are less attractive since gradient is
usually very large and not sparse. To overcome this issue, the
LaRank algorithm [10] which exploits only the related to the
support vectors partial gradient information was introduced.
Another approach for incremental SVM training has been pro-
posed in [11] by Cauwenberghs et al., that ensures fulfilment of
the KKT conditions on all previously seen training samples, while
‘‘adiabatically’’ adding a single data sample to the solution. An
extension of this algorithm that incorporates an efficient storage
design able to cope with limited memory resources and a
different organization of the computation procedure that signifi-
cantly speeds up training was presented in [12]. An implementa-
tion of the two previously mentioned methods on one-class
support vector classifiers has been presented in [13].

It is common knowledge that support vectors comprise a small
fraction of the total training data samples set. Moreover, con-
sidering that the optimal decision hyperplane resulting from
SVMs training is determined explicitly by those training samples
that correspond to support vectors, in order to reduce the
computational cost it is essential to train the classifier using the
smallest possible number of non-support vector samples. An
attractive approach towards this direction is active set optimiza-
tion, since these methods are able to reduce problem dimension-
ality by reducing the number of training data, ideally considering
only the support vectors (or those training samples appearing as
support vector candidates). Solving a linearly constrained QP
problem, as the one appearing in SVMs training, an active set
method divides imposed constraints into two sets: the set of
active constraints (the active set) and the set of inactive ones.
Consequently, in the context of SVMs training an active set
method starts with an initial set of constraints and iteratively
adjusts it by adding and removing constraints, while testing if the
solution remains feasible, until the optimal active set and, hence,
the optimal solution is reached.

Towards this direction, active set methods have been effec-
tively combined with warm-start algorithms. The main motiva-
tion for applying a warm-start strategy is the expectation that
two closely related optimization problems, such as the batch
training over a base training set and the incremental training
over an augmented training set, should, in general, share similar
characteristics. More precisely, the new decision surface is
expected to have minimal disturbances with respect to its pre-
vious form, when a small number of new training samples is
added to a base training dataset. An active set approach which
involves a warm-start algorithm to incrementally train SVMs was
proposed in [14], while in [15] incremental training achieved by
solving the primal minimization problem instead. Another active
set approach that bounds the training set size by seeking to
identify possible support vectors among the available training
samples has been presented in [16]. In order to do so, only those
training data samples belonging to different classes whose dis-
tance in the projected feature space is less than a defined
threshold are included in the working set during the learning
procedure. Similarly, Katagiri et al. proposed in [17] an incre-
mental training algorithm for one-class SVMs that considers a
hypersphere in order to identify support vector candidate sam-
ples utilized for incremental training, while in [18] the training
data working set is determined based on geometrical arguments.

Although various papers have been published proposing more
efficient variants of the SVM batch training and also many have
considered incremental training of two class SVM classifiers, the
problem to handle incremental training of multiclass classifiers
remains unsettled. The dominant approach for solving multiclass
problems using SVMs has been based on reducing a single multi-
class problem into multiple binary ones. For instance, a common
method is to build a set of binary classifiers where each classifier
distinguishes members of one class to the rest. The main dis-
advantage of such an approach is that such a classifier cannot
capture correlations between the different classes. Direct acyclic
graph (DAG) SVMs [19] are among the most popular such methods,
consisting of multiple binary classifiers organized so that during
testing, a path is traversed starting from a root node and reaching a
leaf node indicating the predicted class. Although DAGSVMs
achieve fast testing time, which makes them suitable for practical
use, since they are composed of multiple binary classifiers, correla-
tions between different classes are neglected, thus making
online training of DAGSVM classifiers not a trivial task. In [20]
incremental and decremental training of DAGSVMs has been
attempted based on the idea presented in [11]. However, the
computational gain attained by the applied incremental training
strategy is counterbalanced, since DAGSVM training requires to
adapt kðk�1Þ=2 binary classifiers, where k is the number of classes.
Consequently, the application of such an approach becomes
impractical for problems involving a large number of classes.

Few attempts have been made to generalize SVMs to multi-
class problems that handle all available data together [21,22]. In
these attempts, extensions of the binary case into a multiclass one
are achieved by adding appropriate constraints for every class.
Consequently, the size of the quadratic optimization problem is
proportional to the number of classes in the classification task at
hand. Moreover, the result of these approaches is often a homo-
geneous quadratic problem which is hard to solve and difficult to
store [23]. Crammer and Singer [24] proposed an approach for
multiclass problems by solving a single optimization schema. This
approach considers all variables together, which is achieved using
a direct multiclass formulation and the output space handles all
classes simultaneously. As a result, correlations between different
classes are retained and thus simultaneous modifications of the
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various separating hyperplanes, as the training samples of each
class adjust, can be studied. This property could be exploited by a
proper incremental learning algorithm which is required to
simultaneously modify the decision hyperplanes of all classes
when new samples are added in the training dataset. We explore
this property and propose an incremental training method sui-
table for dynamic multiclass training tasks.

In this paper, we propose a set of multiplicative update rules
for the evaluation of the optimal Lagrange multipliers that
determine the normal vectors of a multiclass SVM classifier, in
an incremental manner. The proposed incremental learning algo-
rithm can simultaneously modify the form of each class separat-
ing hyperplane, when new samples are inserted in the training
dataset. The update rules are derived using a proper auxiliary
function and are totally independent from any learning rate
parameter, provide computational efficiency compared to the
conventional batch training approach and are easy to implement.
Moreover, convergence to the global minimum is guaranteed,
since the optimization problem is convex and, as a result, any
reached minimum is global. In order to further speed up the
optimization procedure, we have selected to warm-start the
solution process by using the previous solution and the optimal
Lagrange multipliers computed over the base training set. With
this approach, faster convergence is expected, since, in general,
the new training samples modify the decision hyperplane in a
relatively smooth manner. As a result, only a small portion of the
SVM parameters should be evaluated and only few of the old
Lagrange multipliers would require an update. Additionally, the
proposed update rules can be applied to sign insensitive kernels,
thus enabling us to perform the kernel trick [25] and to separate
linearly classes projected in higher dimensional feature space
using arbitrary Mercer’s kernels [26].

In summary, the novel contributions of this paper are the
following:
�
 An extension of the conventional multiclass SVMs formulation
that enables the simultaneous incremental update of the SVM
parameters.

�
 The design of a convex auxiliary function bounding from above

the objective function summarizing the multiclass classifica-
tion problem.

�
 A novel set of multiplicative update rules for the evaluation of

the optimal Lagrange multipliers associated with the multi-
class SVM classifier. The proposed updates monotonically
converge to the global minimum.

�
 The proposed update rules are combined with a warm-start

algorithm to further speed up the optimization procedure.

The rest of the paper is organized as follows. Section 2 briefly
reviews the general configuration of multiclass SVMs and pro-
vides an extension of this formulation in order to facilitate the
proposed incremental training method. In Section 3, the design of
an auxiliary function that provides the upper bound of the
objective is described and the proposed multiplicative update
rules are derived. Verification regarding convergence of the
proposed multiplicative update rules is also provided and the
concept of the warm-start framework is introduced. Section 4
describes the conducted experiments and presents experimental
evidence regarding the convergence and the computational effi-
ciency of the proposed incremental training method, while con-
cluding remarks are drawn in Section 5. This paper substantially
extends our preliminary work in [27]. Compared to the previous
work, here we extend the proposed method such as to handle
arbitrary Mercer’s kernels, relax the non-negativity constraint
applied in the Lagrange multipliers, demonstrate in detail the
design of the used auxiliary function and prove the desired
optimization properties.
2. Problem formulation

2.1. Multiclass SVMs

Crammer and Singer [24] proposed an approach for multiclass
classification problems by solving a single optimization schema.
Given a set of l training data X ¼ fðx1,y1Þ, . . . ,ðxl,ylÞg where

xiARd,i¼ 1, . . . ,l are the input feature vectors, yiAf1, . . . ,kg is
the class label associated with sample xi, d is the dimensionality
of the input feature vectors and k is the number of classes, the
idea is to consider all available training data at once and construct
k two-class classification rules. Solving this single optimization
problem leads to the construction of k decision functions, where

the p-th decision surface wT
pfðxÞ determined by its normal vector

wpARd separates the training vectors of the p-th class from all the

others, by solving the following primal minimization problem:

min
wp ,xi

1

2

Xk

p ¼ 1

wT
pwpþC

Xl

i ¼ 1

xi ð1Þ

subject to the constraints:

wT
yi
fðxiÞ�wT

pfðxiÞZbp
i �xi, i¼ 1, . . . ,l: ð2Þ

Here, fð�Þ is a function that maps the input feature vector xi to an
arbitrary-dimensional space F , which usually has the structure of
a Hilbert space [28,29], where the data are supposed to be linearly
or near linearly separable. C is the term that penalizes the training

errors, n¼ ½x1, . . . ,xl�
T is the slack variables vector and b is a bias

vector defined for p¼ 1, . . . ,k as

bp
i ¼ 1�dp

yi
¼

1 if yiap,

0 if yi ¼ p,

(
ð3Þ

where dp
yi

is the Kronecker delta function which is 1 for yi ¼ p and

0 otherwise. The decision function is

arg max
p ¼ 1,...,k

ðwT
pfðxÞÞ: ð4Þ

Switching to the dual formulation, the solution of the con-
strained optimization problem summarized in (1) and (2) can be
found from the saddle point of the Lagrangian function:

Lðw,n,nÞ ¼
1

2

Xk

p ¼ 1

wT
pwpþC

Xl

i ¼ 1

xi�
Xl

i ¼ 1

Xk

p ¼ 1

np
i ½ðw

T
yi
�wT

pÞfðxiÞþxi�bp
i �,

subject to : 8i,p np
i Z0, i¼ 1, . . . ,l, p¼ 1, . . . ,k, ð5Þ

where n¼ ½n1
1, . . . ,nk

1, . . . ,n1
l , . . . ,nk

l �
T are the Lagrange multipliers

associated with the constraints in (2). The Lagrangian function in
(5) has to be maximized with respect to the dual variables n and
minimized with respect to the primal ones w and n. Since the
minimum over the primal variables satisfies the KKT conditions
for p¼ 1, . . . ,k, the following equations hold:

@Lðw,n,nÞ

@xi
¼ 0)

Xk

p ¼ 1

np
i ¼ C,

@Lðw,n,nÞ

@wp
¼ 0) wp ¼

Xl

i ¼ 1

fðxiÞðn
p
i �Cdyi

i Þ: ð6Þ

Substituting terms from (6) into (5), the saddle point of
the Lagrangian is reformulated to the maximization of the Wolfe
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dual problem:

max
n

WðnÞ ¼�
1

2

Xl

i ¼ 1

Xl

j ¼ 1

fðxiÞ �fðxjÞ
Xk

p ¼ 1

ðCdp
yi
�np

i ÞðCd
p
yj
�np

j Þ

þ
Xl

i ¼ 1

Xk

p ¼ 1

np
i bp

i : ð7Þ

In order to produce a more compact equation form, let us
introduce the following notations:

½K�i,j ¼Kðxi,xjÞ ¼fðxiÞ � fðxjÞ ¼fðxiÞ
TfðxjÞ,

n i ¼ ½n
1
i , . . . ,nk

i �
T and b i ¼ ½b

1
i , . . . ,bk

i �
T , ð8Þ

where K is the kernel matrix, whose (i, j)-th element is ½K�i,j ¼

fðxiÞ
TfðxjÞ. Additionally, we define the k-dimensional vector 1yi

with all its components equal to zero, except the yi-th, which is

equal to one. Then we perform the substitution: ai ¼ C1yi
�n i.

Now the maximization of the Wolfe dual problem in (7) is
equivalent to the following minimization problem:

min
a

WðaÞ ¼
1

2

Xl

i ¼ 1

Xl

j ¼ 1

½K�i,ja
T
i aj�C

Xl

i ¼ 1

1yi
b iþ

Xl

i ¼ 1

aT
i bi, ð9Þ

which is a quadratic function in terms of a¼ ½a1
1, . . . ,ak

1, . . . ,

a1
l , . . . ,ak

l �
T since

Pl
i ¼ 1 1yi

bi ¼ 0 and the bias vector is defined as

b¼ ½b1
1, . . . ,bk

1, . . . ,b1
l , . . . ,bk

l �
T . Consequently, the multiclass classi-

fication task can be summarized to the following single optimiza-
tion problem:

min
a

WðaÞ ¼
1

2
aT HaþbTa, ð10Þ

under the following linear constraints:

8i,p, ap
i r

0 if yiap,

C if yi ¼ p:

(
ð11Þ

Here H is the Hessian matrix defined as H¼K� I, I is a k by
k identity matrix and � denotes the Kronecker product. The
Hessian matrix H is symmetric and positive semidefinite, since
it has been derived by a direct product operation on the kernel
matrix K, which is also symmetric and positive semidefinite. This
property reveals a so-called quadratic program, since the objec-
tive function WðaÞ is a convex quadratic function with linear
constraints and, consequently, its optimization problem has a
global minimizer. Finally, the decision rule for a test sample x is
given by

arg max
p ¼ 1...k

Xl

i ¼ 1

ap
i Kðxi,xÞ: ð12Þ

2.2. Extending the conventional multiclass SVM formulation

We investigate the incremental training task by examining the
scenario where the SVM classifier has been trained over a base
dataset Xn of n training pairs Xn ¼ fðxi,yiÞ,i¼ 1, . . . ,ng and the
optimal Lagrange multipliers an,o that minimize the objective
function in (10) have been evaluated. When m new training
samples Xm ¼ fðxs,ysÞ,s¼ nþ1, . . . ,nþmg are added to the base
training dataset, creating the augmented training dataset
Xnþm ¼Xn [ Xm, we want to update the current SVM configura-
tion and obtain a new SVM classifier that also incorporates
information from the new training data contained in set Xm.

In order to facilitate dynamic adaptation of the SVM classifier
to the augmented training dataset Xnþm, we express the new
training task with respect to its initial form, along with an update
term corresponding to the new training samples set Xm. However,
since the base and the augmented classification problems do not
have the same number of constraints and variables, it is required
to expand vectors an,o, bn and the Hessian matrix Hn accordingly:

anþm ¼
an,o

as

" #
, Hnþm ¼

Hn Kðxi,xsÞ � I

Kðxi,xsÞ
T
� I Kðxs,xsÞ � I

" #
,

bnþm ¼
bn

bs

" #
, i¼ 1, . . . ,n, s¼ nþ1, . . . ,nþm, ð13Þ

where an,o ¼ ½a1
1, . . . ,ak

1, . . . ,a1
n, . . . ,ak

n�
T , as ¼ ½a1

nþ1, . . . ,ak
nþ1, . . . ,

a1
nþm, . . . ,ak

nþm�
T and bias vectors bn ¼ ½b

1
1, . . . ,bk

1, . . . ,b1
n, . . . ,bk

n�
T

and bs ¼ ½b
1
nþ1, . . . ,bk

nþ1, . . . ,b1
nþm, . . . ,bk

nþm�
T . Hn is the nk� nk

Hessian matrix computed over the n base training samples of
set Xn, while Kðxi,xsÞ and Kðxs,xsÞ are n�m and m�m kernel
matrices used in order to expand the initial Hessian matrix Hn to
Hnþm and are evaluated, the first using only the training pairs of
the base dataset, while the latter over the augmented training
dataset.

The Hessian matrix Hnþm can be expressed as the sum Hnþm ¼

HnþHm, of the Hessian Hn computed over the base training
dataset and an update term, matrix Hm, evaluated using the
training samples of the augmented set Xm. Both matrices are
defined as

Hn ¼
Hn 0nk�mk

0mk�nk 0mk�mk

" #
,

Hm ¼
0nk�nk Kðxi,xsÞ � I

Kðxi,xsÞ
T
� I Kðxs,xsÞ � I

" #
i¼ 1, . . . ,n,

s¼ nþ1, . . . ,nþm,
ð14Þ

where 0 is an all-zero matrix of appropriate dimensions. In order
to handle sign-insensitive kernels, whose elements can be posi-
tive, negative or zero, we decompose Hn such as Hn ¼H

þ

n �H
�

n ,
where the non-negative matrices H

þ

n and H
�

n are expressed in
terms of the positive and negative elements of matrix Hn as

½H
þ

n �ij ¼
½Hn�ij if ½Hn�ij40,

0 otherwise,

(
½H
�

n �ij ¼
9½Hn�ij9 if ½Hn�ijo0,

0 otherwise:

(

ð15Þ

Similarly Hm is decomposed into Hþm and H�m. Subsequently, the
objective function WðanþmÞ minimized over the augmented
training set is formulated as

min
anþm

WðanþmÞ ¼
1

2
aT

nþmðH
þ

n �H
�

n þHþm�H�mÞanþmþbT
nþmanþm

ð16Þ

under the linear constraints summarized in (11), where, in this
case, i¼ 1, . . . ,nþm.
3. Incremental training algorithm

In this section, we demonstrate the design of an auxiliary
function that provides an upper bound of the objective function
WðanþmÞ formulated in (16), which summarizes the multiclass
classification task as a single optimization problem. We also
derive the proposed multiplicative update rules that guarantee
convergence to the objective function global minimum and
finally, we introduce the warm-start optimization framework.

3.1. Auxiliary function

We define an auxiliary function F in order to identify the global
minimizer of the objective function WðanþmÞ. The derivation of
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the auxiliary function we have followed is similar with the one
presented in [30,31]. Similar techniques have been also used in
order to establish the convergence of many statistical learning
algorithms, e.g., the Expectation–Maximization algorithm [32] for
maximum likelihood estimation and non-negative matrix factor-
ization [33]. Since the minimization problem is a QP problem and
has a global and no local minima, we seek to define an appro-
priate convex auxiliary function F, which will provide an upper
bound on the objective. This auxiliary function should satisfy the
following properties:
1.
 It should bound the objective function from above:

WðuÞrFðu,anþmÞ: ð17Þ
2.
 The following equality should hold:

WðanþmÞ ¼ Fðanþm,anþmÞ: ð18Þ

Such an auxiliary function provides an upper bound on the
objective function WðanþmÞ. Our goal is to use this auxiliary
function F in order to derive a series of minimizers a0, using the
update rule a0 ¼ arg minuFðu,aÞ, which will never increase the
objective function, since the following inequality is valid:

W a0ð ÞrFða0,aÞrFða,aÞ ¼WðaÞ: ð19Þ

The minimizer a0 can be found by computing the derivative of the
auxiliary function with respect to u and setting it equal to zero.
By iterating this update, a series of minimizers a0 are generated
that improve the objective function and will eventually lead to
the global minimum, since the convexity property of WðanþmÞ

implies that any reached local minimum is also a global one.

3.2. Multiplicative update rules derivation

As has been shown in [30], the following inequalities hold:

1

2
uT H

þ

n ur
1

2

X
i

½H
þ

n anþm�i

½anþm�i
u2

i , ð20Þ

�
1

2
uT H

�

n ur�
1

2

X
ij

½H
�

n �ij½anþm�i½anþm�j 1þ log
uiuj

½anþm�i½anþm�j

 !
,

ð21Þ

where ½H
�

n �ij and ½anþm�i denote the (i, j)-th and i-th components

of matrix H
�

n and vector anþm, respectively. Similar inequalities

also hold for the non-negative matrices Hþm and H�m. In terms of

the non-negative matrices H
þ

n , H
�

n , Hþm and H�m, we can decom-

pose the quadratic part of the objective function and formulate it
as follows:

WðanþmÞ ¼WcðanþmÞ�WdðanþmÞþWeðanþmÞ�Wf ðanþmÞþWbðanþmÞ,

ð22Þ

where each part is defined as

WcðanþmÞ ¼
1
2 aT

nþmH
þ

n anþm, WdðanþmÞ ¼
1
2a

T
nþmH

�

n anþm,

WeðanþmÞ ¼
1
2 aT

nþmHþm anþm, Wf ðanþmÞ ¼
1
2a

T
nþmH�manþm,

WbðanþmÞ ¼ bT
nþmanþm: ð23Þ

The upper bound of the objective function can be determined by
applying inequalities (20) and (21) separately in each one of the
five terms of (22). Hence, the auxiliary function Fðu,anþmÞ can be
derived by adding the upper bounds of each term in the objective:

Fðu,anþmÞ ¼
1

2

X
i

½H
þ

n anþm�i

½anþm�i
u2

i

�
1

2
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ij
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�
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½anþm�i½anþm�j
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þ
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½H�m�ij½anþm�i½anþm�j

� 1þ log
uiuj
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þ
X

i

½bnþm�iui, ð24Þ

which is an auxiliary function for WðanþmÞ satisfying Fðu,anþmÞZ

WðanþmÞ by construction via inequalities (20) and (21). The
following relation also holds:

Fðanþm,anþmÞ ¼
1

2

X
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ij
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þ
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2
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þ
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þbT
nþmanþm ¼WðanþmÞ: ð25Þ

We can rewrite the auxiliary function in (24) as the sum of the
second order convex functions f iðuiÞ as:

Fðu,anþmÞ ¼
X

i

f iðuiÞ�
1

2
aT

nþmH
�

n anþm�
1

2
aT

nþmH�manþm, ð26Þ

where

f i uið Þ ¼
1

2

½H
þ

n anþm�i

½anþm�i
u2

i þ
1

2

½Hþm anþm�i

½anþm�i
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i

�½H
�

n anþm�i½anþm�ilog
ui
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�½H�manþm�i½anþm�ilog
ui

½anþm�i
þ½bnþm�iui: ð27Þ

By examining the second order partial derivative of fi with respect
to ui, it is found that

@2f i

@2ui
¼
½H
þ

n anþm�i

½anþm�i
þ
½H
�

n anþm�i½anþm�i

u2
i

þ
½Hþm anþm�i

½anþm�i

þ
½H�manþm�i½anþm�i

u2
i

40 ð28Þ

since for the negative vector anþm, vector elements ½H
�

n anþm�i,
½H
þ

n anþm�i, ½H
�
manþm�i and ½Hþm anþm�i are also negative and cannot

all be simultaneously equal to zero. This implies that f iðuiÞ is
strictly positive in ui and, consequently, the auxiliary function
Fðu,anþmÞ is the sum of strictly convex functions f iðuiÞ.

The minimizer a0 of Fðu,anþmÞ can be determined by finding
the minimum of each individual function f iðuiÞ separately. To do
so, we compute the first order partial derivative of each f iðuiÞwith
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respect to ui, set it equal to zero and solve for ui:

@f i

@ui
¼
½H
þ

n anþm�i

½anþm�i
ui�
½H
�

n anþm�i½anþm�i

ui

þ
½Hþm anþm�i

½anþm�i
ui�
½H�manþm�i½anþm�i

ui
þ½bnþm�i ¼ 0 ð29Þ

leading to the following multiplicative update rules:
ui ¼
�½bnþm�i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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þ
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q
2ð½H

þ

n anþm�iþ½H
þ
m anþm�iÞ

0
@

1
A½anþm�i: ð30Þ
As can be observed from the applied SVM formulation and the
resulting multiplicative updates, this iterative optimization rule
enforces non-positivity constraints across all optimized Lagrange
multipliers. However, the normal vector wp is obtained subject to
the constraints in (11), which involves the derivation of mixed
sign Lagrange multipliers. As a result, we need to derive a multi-
plicative update that operates on ap

i , when yiap and on C�ap
i ,

when yi ¼ p. More precisely, we define the new variable:

âp
i 9

ap
i if yiap,

C�ap
i if yi ¼ p

(
ð31Þ

and express ap
i in terms of âp

i as follows:

ap
i ¼ â

p
i ð1�2dp

yi
ÞþCdp

yi
: ð32Þ

Since ap
i and âp

i are linearly related, minimizing the quadratic
function WðâÞ obtained by substituting (32) into (10) as:

WðâÞ ¼ 1
2â

T Ĥâþ b̂
T
â ð33Þ

is equivalent to minimizing WðaÞ. The coefficients Ĥij and b̂i

correspond to the coefficients of the terms âp
i â

p
j and âp

i in (33),
respectively. These coefficients are defined as:

Ĥij ¼ ð1�2dp
yi
Þð1�2dp

yj
ÞHij,

b̂
p

i ¼ bp
i ð1�2dp

yi
ÞþC

X
j

ð1�2dp
yi
Þdp

yj
Hij: ð34Þ

By defining the matrices Ĥ n and Ĥ m from Ĥ using the same
approach as in (14) and then performing the decomposition in
(15), we can obtain Ĥ

�

n , Ĥ
þ

n , Ĥ
�

m and Ĥ
þ

m and define a minimiza-
tion problem in terms of these matrices, which is equivalent to
the enriched minimization problem formulated in (16). Thus we
propose the following set of multiplicative update rules which
operates separately on Lagrange multipliers with different con-
straints:
ui ¼

�½bnþm�i�
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ð35Þ
The proposed updates decrease WðanþmÞ by enforcing the non-
positivity constraint on ap

i , and at the same time, drive âp
i towards

zero, thus increasing those Lagrange multipliers towards C.
3.3. Convergence analysis of the proposed multiplicative

update rules

We can show that the proposed updates converge to the global
minimum by examining the derivative of the objective function. As
will be shown, the derived multiplicative updates take steps propor-
tional to the negative of the objective function gradient, moving each
element ½anþm�i to a direction opposite to that of its partial
derivative. Recalling the decomposition of the objective function
we have performed in (22), the gradient of WðanþmÞ can be similarly
decomposed in terms of contributions of these five parts as follows:

ci ¼
@Wc

@½anþm�i
¼ ½H

þ

n anþm�ir0, di ¼
@Wd

@½anþm�i
¼ ½H

�

n anþm�ir0,

ei ¼
@We

@½anþm�i
¼ ½Hþm anþm�ir0, f i ¼

@Wf

@½anþm�i
¼ ½H�manþm�ir0,

bi ¼
@Wb

@½anþm�i
¼ ½bnþm�iZ0: ð36Þ

Since @W=@½anþm�i ¼ ci�diþei�f iþbi it arises directly that the
respective update rule decreases ½anþm�i if @W=@½anþm�i40 and
increase it if @W=@½anþm�io0. Similarly, the opposite observation is
valid for the update rule operating on ½ânþm�i.

3.4. Reoptimization using a warm-start strategy

Warm-start strategy is a popular approach in reoptimization
problems where small perturbations in the form of the initial
optimization problem occur. In the literature warm-start algorithms
were found to efficiently handle two main cases of perturbation
[34,35]. The first considers that the initial optimization problem is
modified by adding new constraints and/or new variables which is
the actual case in our considered incremental training scenario, while
the other, regards that the reoptimization problem has exactly the
same constraints and variables with respect to the initial one but the
underlying data are perturbed. In [36] the authors have investigated
the extend of perturbation with respect to the problem size and
proposed conditions in order to determine, whether the previous
optimum solution is a convenient starting point to warm-start the
optimization process for the perturbed problem. Theoretical analysis
in [36] indicated the superiority of warm-start algorithms, to attain
reduced computational effort compared with cold-start methods (i.e.
performing optimization from scratch) especially for problems having
undergone small degree of perturbation. These theoretical indications
have been verified by extensive experimental results in [37].
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The main motivation for applying a warm-start strategy for the
optimization of the enriched problem is the expectation that two
closely related optimization problems, such as the batch training
over a base training set Xn and the incremental training over an
augmented training set Xnþm, should, in general, share similar
characteristics. Considering the classification task, this can be inter-
preted as the expectation that the new decision surface of the SVM
classifier will have minimal disturbances with respect to its previous
form, when a small number of new training samples is added to a
base training dataset. Consequently, warm-start strategy can be
applied as a mean to exploit the information gained during training
over the base dataset. As a result, the proposed multiplicative update
rules are expected to converge faster to the optimal solution, i.e.
within fewer iterations, when starting from the previous global
minimizer and initializing only the Lagrange multipliers as related
to the new training samples Xm, compared to starting from an
arbitrary initialization point when performing training from scratch.

Consider the minimization problem regarding the base n

training samples:

min
an

WðanÞ ¼
1

2
aT

nðH
þ

n �H
�

n ÞanþbT
nan,

subject to the linear constraints defined in ð11Þ, ð37Þ

where H
þ

n , H
�

n ARnk�nk
þ , anARnk. Let an,o be the optimal solution

containing the Lagrange multipliers that minimize the objective
function WðanÞ. We use the notationDn ¼ fan,o,H

þ

n ,H
�

n ,bng to denote
the data instance related to the primal minimization problem applied
to the n base training pairs found in Xn. In order to perform
incremental training and find the optimal solution of the augmented
problem summarized by the objective function in (16) the data
instance related to the primal minimization problem Dn is required
in order to warm-start the optimization procedure. The reoptimiza-
tion process using the warm-start strategy is outlined in Algorithm 1.
Algorithm 1. SVM reoptimization using warm-start algorithm.

Require: Data instance Dn ¼ fan,o,H
þ

n ,H
�

n ,bng evaluated from solving

1. Read an,o, H
þ

n , H
�

n and bn

2. Compute bs and Hm via Eqs. (3) and (14), respectively.

3. Obtain the non-negative matrices Hþm and H�m.

4. Compute matrices Ĥ
�

n , Ĥ
þ

n , Ĥ
�

m and Ĥ
þ

m .

5. Obtain bnþm ¼
bn

bs

" #

6. Initialize as ¼�1

7. Obtain anþm ¼
an,o

as

" #

8. repeat
9. for i¼1 up to nþm do
10. if DaiZe then
11. if yiap then

12. ½anþm�
0
i ¼

�½bnþm�i�
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þ
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15. end if

16. Compute Dai ¼ 9½anþm�
0
i�½anþm�i9 or Dai ¼ 9½ânþm�

0
i�½ânþm

17. end if
18. end for
19. until ) DaiZe
4. Experimental study

In this section, we provide experimental validation regarding
the computational efficiency of the proposed incremental SVM
training algorithm. To comply with the standard terminology
used in the related literature, throughout this section we will use
the term ‘‘online’’ training when referring to cases where the
increment step size equals to one and ‘‘incremental’’ training
when the training set is augmented by adding more than one new
training data samples. We are primarily interested in comparing
the computational cost of solving the reoptimization problem
using an online/incremental training approach combined with a
warm-start algorithm, with the cost of retraining the classifier
from scratch, for the augmented training dataset Xnþm. We
investigate these settings that, on one hand, significantly down-
size the required computational cost for updating the SVM
classifier and, on the other hand, maintain the same classification
accuracy achieved by brute force retraining from scratch. It
should be mentioned that, whenever we are performing online
or incremental training, it is always required that the SVM
classifier has been previously trained over a base dataset Xn of
n initial training samples, which is subsequently augmented
by adding m new training pairs Xm. Moreover, each time we
incrementally update the SVM classifier, it is assumed that the

data instance Dn ¼ fan,o, H
þ

n , H
�

n , bng related to the previous

optimization problem is available. Apart from the proposed
multiplicative update rules, we can derive in a straightforward
manner a batch training model by modifying the update rules in

(35) setting ½Hþm anþm�i ¼ ½H
�
manþm�i ¼ ½Ĥ

þ

m ânþm�i ¼ ½Ĥ
�

mânþm�i ¼ 0,

8i. This batch training approach is used as a test bed in order to
experimentally verify that the proposed incremental training
model converges to the same optimal solution and thus the
obtained classification accuracy is also maintained.
the base optimization problem.
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Table 1
Characteristics of the examined datasets.

Dataset Training

samples

Test

samples

Classes Features

dimensionality

Mushroom 5009 – 2 22

Satimage 4435 2000 6 36

ORHD 3823 1797 10 64

Letter 16 000 4000 26 16

XM2VTS 3431 3431 2 1200
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Experiments have been conducted on three multiclass data-
sets, namely, the Satimage, the Optical Recognition of Hand-
written Digits (ORHD) and the Letter databases and on the
two-class Mushroom collection. Each dataset has different con-
tent and size and were all obtained from the UCI Repository of
machine learning databases [38]. Moreover, experiments for the
frontal face view recognition problem have been conducted using
the XM2VTS database [39]. Table 1 summarizes the character-
istics of each examined dataset. Although the implemented SVM
formulation has been designed for multiclass classification pro-
blems, we have selected to include in the experimental study two
two-class datasets, in order to examine variations in the conver-
gence process, since the number of Lagrange multipliers being
optimized by the proposed method is proportional to the number
of classes. Those collections that contain entries of qualitative
attribute characteristics in non-arithmetic form, such as the
Mushroom and the Letter datasets, were first transformed to
numerical form. Moreover, all training and testing data were
randomly ordered and normalized so as to be in the ½�1;1� range
with zero mean. Finally, since for the Mushroom collection there
is no available test set, we conducted a five-fold cross validation
on the entire dataset in order to measure the mean achieved
classification accuracy over all five folds.

Since our main goal is to provide computational efficiency by
achieving faster convergence to the optimal solution, when the
underlying training data collection changes dynamically over
time, we have chosen to train the SVM classifier on the examined
datasets using only radial basis functions (RBF) as kernel func-
tions Kðxi,xjÞ ¼ eg99xi�xj99

2

considering different spreads of the
Gaussian in the set g¼ f2�8,2�7, . . . ,27,28

g, which generates a
non-negative kernel. Moreover, in the test phase we applied the
spread value g for the Gaussian function that achieved the highest
accuracy rate at the validation procedure. That is, we search for
that value of g, within the specified set that achieves the highest
recognition rate on the training set.

Whenever we report the measured classification accuracy rates
in the experimental results, we also provide the related g para-
meter value. The rationale behind our decision to consider across
all our experiments only the RBF kernel function is twofold. Firstly,
the search space for parameter selection is significantly reduced
and secondly, direct comparisons with the classification accuracy
rates achieved by the proposed online training method are feasible,
since the highest achieved classification accuracy rates using the
multiclass SVM formulation by Crammer and Singer for two of the
examined datasets and for the RBF kernel are reported in [40].

4.1. Multiplicative update rules convergence results

Here we demonstrate the optimization convergence of the
Lagrange multipliers within the feasible optimization bounds using
the proposed multiplicative update rules. First, we show convergence
results obtained from the batch training model. Then we present
convergence curves for the variables under optimization during the
incremental training, while sequentially enriching the training set
using parts of the complete dataset and show that they reach to the
same optimal solution with the one obtained after batch processing
the same training data. Regarding the provided plots of the optimized
variables it should be noted that since we train the classifier with the
RBF kernel the obtained Lagrange multipliers take values either close
to zero or close to C and as a result the demonstrated plots do not
have the spiky form as those presented in [30]. This is due to the fact
that Lagrange multipliers corresponding to support vectors take
values close to C, while the rest are attenuated close to zero, since
Gaussian RBF SVMs of sufficiently small width can classify an
arbitrarily large number of training points correctly [3].

It is important to terminate the optimization algorithm, when
no significant alternations in the updated Lagrange multiplier
values are observed. Terminating the optimization process before
it starts oscillating around a convergence point with no improve-
ment in the classification accuracy, significantly reduces the
required computation cost. In our implementation, we stop the
optimization process for those Lagrange multipliers whose value
changes for less than 2�10�2 in an update, since we have strong
evidence that they have reached convergence.

Figs. 1 and 2 illustrate the convergence of the optimized Lagrange
multipliers for the batch and the incremental training algorithms on
the Satimage and Mushroom datasets, where cost parameter C

measuring the penalty per unit slack, has been set to 5 for both
experiments. The subgraphs demonstrate the convergence progress
of the optimized Lagrange multipliers, where the horizontal axes
index the Lagrange multipliers involved in each optimization step
sorted in ascending order according to their value, while the vertical
axes show their values. In order to verify that both the batch and the
incremental training approaches converge to the same optimal
solution we have applied the following procedure. First, we applied
the batch training model using the entire training set of each
collection. Second, in order to simulate an incremental training
scenario we have split each dataset into five almost equally sized
subsets, each containing approximately 20% of the total available
training samples. We then applied the proposed incremental train-
ing method starting by training the classifier using one of these
subsets and performing five steps by sequentially augmenting the
training set by adding each time one of the remaining subsets.

In more detail, Figs. 1(a) and 2(a) demonstrate the conver-
gence progress of the optimized Lagrange multipliers during
batch training. Each subplot presents graphically the solution
found after a number of iterations. Figs. 1(b) and 2(b) present
graphically the optimal solution found using the proposed incre-
mental training method, while we sequentially augmented the
training set size using each one of the five training subsets. It
should be mentioned that each time we performed incremental
training the optimal solution found at the previous step was used
to warm-start the new optimization process, while the Lagrange
multipliers corresponding to unseen training samples were uni-
formly initialized to ½as�i ¼�1, i¼ nþ1 . . .nþm.

As it can be observed from the graphs, the proposed dual set of
multiplicative update rules enforces the Lagrange multipliers of both
datasets to converge inside the feasible optimization boundaries in
the range ½�C,C�. Except from the obvious visible resemblance
between the sketched optimal solutions found using the batch
and the incremental training models shown in the last plots in
Figs. 1 and 2, in order to experimentally verify that the optimized
variables converge to the same optimal solution for both the batch
and the incremental training models, we have measured the mean
square error (MSE) between the two solutions. More precisely, we
measured the MSE between each temporary solution found, while
seeking for the optimal one, during incremental training the
classifier where the training set has been augmented by adding
the last training samples subset (the final 20% of the samples), thus
resulting to the complete dataset, with the optimal solution
obtained after performing batch training using the same complete
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Fig. 1. Lagrange multiplier convergence for the Satimage dataset: (a) The solution found using the batch training approach for different iterations. (b) The solution found

by performing incremental training each time adding 20% of the samples.
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dataset. Since, the solution of each optimization problem is deter-
mined by the values of the Lagrange multipliers, we evaluate the
MSE at the k-th iteration as

MSEðkÞ ¼
1

n

Xn

i

ð½an,o�i�½an,k�iÞ
2, ð38Þ

where an,o corresponds to the optimal Lagrange multipliers vector
found after batch training and an,k denotes a temporary solution
found after the k-th iteration of the proposed multiplicative update
rules during incremental training. Figs. 3(a) and 4(a) show the
computed MSE for the Satimage and Mushroom collections, respec-
tively. As it can be observed faster convergence is attained on the
two-class Mushroom collection, since the proposed multiplicative
update rules required 19 iterations compared with 50 iterations
required in order the algorithm to reach convergence on the
Satimage dataset. Figs. 3(b) and 4(b) show the minimization of the
objective function WðanþmÞ formulated in (16), after each iteration
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of the proposed set of update rules during incremental training. As it
can be seen the proposed updates decrease the objective function
value while seeking for the global minimum. Moreover, as it can be
observed continuing the optimization process beyond this point
does not provide any significant gain regarding the minimization of
the objective function value.

4.2. Computational complexity comparison against current state-of-

the-art multiclass SVM solvers

In this subsection we compare our method against LaRank, in
terms of computational complexity, since both methods optimize
the same dual problem. For completeness in this comparison we
have also included SMO method, which is a state-of-the-art
algorithm for fast batch SVM training and the iterative optimiza-
tion algorithm proposed in [23] solving the considered dual
multiclass problem, which will be referred below as MCSVM
algorithm.

A common characteristic across all the other considered
optimizers is that they explicitly rely on the dual objective
function gradient to find the optimum solution. Among the
examined methods SMO and MCSVM exploit the full gradient
information i.e. consider the dual objective functions gradient
with respect to the Lagrange multipliers associated to every
sample in the training set, while LaRank exploits this information
only partially, arguing that computing and storing gradients
that do not correspond to support patterns is computationally
inefficient, since the optimum solution is determined only by a
fraction of the kernel matrix that involves only the support
patterns.

A common way to express the complexity of an algorithm is by
using the big O notation [41], which will also facilitate our
comparison. The attempted computational complexity compar-
ison is performed at a single parameter optimization level, thus
estimating the cost for finding the optimal value of a single
Lagrange multiplier. The most expensive operation in the pro-
posed multiplicative updates is the computation of the i-th
element of vectors ½H

þ

n anþm�, ½H
þ
m anþm�, ½H

�

n anþm� and ½H�manþm�.
However, since the Hessian matrices are too large to be stored (i.e.
of dimensionality lk� lk, where l is the number of training
samples and k the number of classes), one can only calculate
their i-th row when applying the updates. Recall, that Hessian
matrices are sparse and initiated from the kernel matrix by
performing a Kronecker multiplication with an appropriate
dimensional identity matrix. For each kernel matrix element
evaluation given that d is the dimensionality of the input feature
vectors, O(d) is required. Subsequently, calculating its i-th row
takes O(ld). Thus, the evaluation of the i-th element involving the
multiplication of the i-th row with the column vector anþm,
requires O(l). Finally, since usually the feature vector dimension-
ality is much larger than the number of classes, that is dbk, the
overall cost for updating a single Lagrange multiplier is of order
OðldÞþr1 � OðlkÞ, where r1 is the average number of iterations
required to reach convergence.



Table 2
Computational complexities of the examined methods.

Method Complexity

SMO Oð ~ndÞþr2 � Oð ~nkÞ

Proposed method OðldÞþr1 � OðlÞ

LaRank OðndÞþr3 � OðnÞ

MCSVM OðldÞþr4 � ðOðlÞþOðk log kÞÞ
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SMO requires Oð ~ndÞ in order to compute the kernel matrix
elements involved in the Lagrange multipliers update, where ~n is
the average number of candidate support vectors. As support
vector candidates are considered those samples that violate a
thresholded error function and thus, are amenable to update.
Additionally, SMO involves in each update rule the computation
of the prediction error generated by the updated samples. This
operation requires Oð ~nkÞ. Thus, the total cost for updating a single
Lagrange multiplier is of order Oð ~ndÞþr2 � Oð ~nkÞ, where r2 is the
average number of iterations required by SMO in order to
converge. Typically the number of candidate support vectors is
much larger than that of the actual ones ( ~n4n). In other words,
effectively reducing ~n results in significant computational gain on
the performance of SMO. This is addressed by LaRank algorithm
which operates on support patterns, identified as those samples
whose associated Lagrange coefficient in non-zero for some class
label. LaRank algorithm involves three different optimization
routines which are invoked according to a computed probability.
These strategies select for optimization those Lagrange multi-
pliers that correspond either to a new unseen training sample or
to an already identified support pattern and those two class labels
that yield the maximum and the minimum derivative of the dual
objective function. Consequently, LaRank requires O(nd) to com-
pute a single row of the kernel matrix where n is the number of
support patterns with no ~no l. The derivative gi(y) of the dual
objective function with respect to the Lagrange multiplier ay

i

associated with sample xi and class y, is given by

giðyÞ ¼ ðy�yiÞ�
Xn

j ¼ 1

ay
j Kðxi,xjÞ: ð39Þ

Consequently, the computational cost for evaluating the deriva-
tive with respect to the optimized Lagrange multiplier is O(n) and
finally the total computational cost is OðndÞþr3 � OðnÞ, where r3 is
the average number of iterations required by LaRank to reach
convergence.

On the other hand, MCSVM algorithm decomposes the quadratic
optimization problem into smaller subproblems and iteratively
optimizes a single Lagrange multiplier. MCSVM learning resembles
the SMO algorithm, although it optimizes a single variable at each
round, in contrary to SMO which performs optimization in a
pairwise manner. To do so, the algorithm selects a working set
and chooses for optimization k variables associated with the same
training sample in the working set. The involved update rule
similarly with our approach requires the evaluation of a single
row of the kernel matrix considering the pairwise similarities
between all the training samples and the sample under considera-
tion. This operation requires O(ld). The computed kernel row is
subsequently multiplied by the Lagrange multipliers vector an
operation that takes O(l). We should also note that the algorithm
needs to sort k values on each iteration which may become costly
when k is large. The considered sorting algorithm as specified by the
authors requires Oðk log kÞ to sort k values. Thus, the total computa-
tional cost of MCSVM is OðldÞþr4 � ðOðlÞþOðk log kÞÞ.

Finally, regarding the average number of iterations required by
each examined method in order to reach convergence, based on
empirical observations LaRank and our approach both require a
few tens of iterations, while SMO and MCSVM require a few
hundreds. Table 2 summarizes the estimated computational com-
plexity of each examined method. According to the performed
computational complexity analysis the required training time by
LaRank is significantly smaller compared to that required by our
approach, which is mainly attributed to the reduced training set
size that is used by LaRank. More precisely, the estimated
computational complexity of the LaRank training process is
proportional to the number of support patterns, in contrary to
that of our approach which scales proportionally to the number of
training samples.

4.3. Computational cost comparison between online/incremental

and batch training

In order to examine the computational efficiency of the
proposed incremental training method, we considered the case
where the training set is sequentially augmented and we compare
the computation time required in order to train the SVM classifier
using the conventional batch training model with the one that is
required by the proposed method. More precisely, for the online/
incremental training approach, we have measured the required
training time for the set Xnþm starting from the already known
optimal solution for the set Xn and considering two different
increment size steps m¼1 and m¼100 (i.e. set Xm has 1 or 100
training samples, respectively). For the batch training counter-
part, we measured the time needed for training from scratch
using Xnþm.

Figs. 5 and 6 demonstrate the recorded training time until
convergence is reached, for both the batch training model and the
online/incremental training approaches with respect to the num-
ber of training samples on each of the examined collections. The
horizontal axis shows the cardinality of the training set Xnþm. We
assume that the optimal solution for the training set Xn is known
and available to warm-start online or incremental training for the
augmented training set Xnþm. It is clearly seen that both the
online and the incremental training algorithms are always much
faster than batch training across all examined datasets.

To better illustrate the advantages of incremental training,
consider two different training scenarios, where we have trained
the SVM classifier over 3000 training samples of the Mushroom
dataset (n¼3000) and we want to enrich the training set by
including, in one case, a single new sample (m¼1) and in the
other, 100 new samples (m¼100). Retraining the SVM classifier
from scratch over nþm¼ 3001 samples requires 12.76 s, while
for nþm¼ 3100 samples 13.57 s, whereas online/incremental
training using the proposed algorithm requires 6.44 and 6.96 s,
to incorporate the 1 or 100 new samples, respectively. In other
words, the computational gain between the two approaches for
the two examined scenarios is 6.32 and 6.61 s, respectively.

We have also measured the average, over all sample sizes,
computation time gain on each dataset for the two examined
increment step sizes m¼1 and m¼100 as

Average time gain¼
1

n

Xn

i ¼ 1

ðBatch training time for X i

�Incremental training time for X iÞ:

Table 3 summarizes the obtained gain results, as a percentage of
the required time by the batch training model across the various
examined collections for both applied increment step sizes. As it
can be seen the higher is the feature vectors dimensionality and
the less the number of involved data classes and the training
set cardinality, the higher is the achieved computational gain.
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Fig. 5. Computational time for online/incremental and batch training on the same training data measured over: (a) the Mushroom and (b) the Satimage datasets.
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Fig. 6. Computational time for online/incremental and batch training on the same training data measured over: (a) the ORHD and (b) the Letter datasets.

Table 3
Computational time reduction percentage.

Dataset Increment step size (%)

m¼1 m¼100

Mushroom 44.62 41.47

Satimage 65.28 60.02

ORHD 70.64 61.42

Letter 33.13 31.19
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Consequently, the highest computational gain was attained in the
ORHD dataset, which is a database of such characteristics. In
contrary, the smallest improvement was attained in the Letter
dataset, which is a large scale data collection with its samples
partitioned into many classes (i.e l¼16 000 and k¼26), while
feature sample vectors dimensionality is small (d¼16).

4.4. Online learning using a small fraction of the complete

training set

For our third experiment we have exclusively considered
online learning, where the underlying training set is sequentially
enriched by adding a single new example, the classifier is
adjusted such as to learn the additional information and its
efficacy is subsequently assessed by predicting the class labels
of the same standard testing sample set. Our aim is to investigate
the behavior of the classifier, with respect to the classifica-
tion accuracy, as the number of training samples increases and
to derive useful insights regarding the effect of the new samples
to the decision surface.

To perform online learning we initially trained the classifier by
randomly selecting a single training sample from each class in
order to define the initial decision hyperplanes. Subsequently, and
as long as new training samples sequentially arrive, we performed
online training and tested the classifier on the available standard
testing set. To train in an online manner, a single unseen training
sample was randomly selected and fed to the proposed algorithm
which exploited the optimal solution found during the previous
optimization to warm-start the new training process.

As can be observed from the provided graphs in Fig. 7, for both
the Mushroom and the Satimage datasets there exist some
specific training samples that represent well the test data and,
therefore, when included in the training set, boost the classifica-
tion performance. The same observation regarding the Mushroom
dataset has been reported in [14], where it has been shown that a
carefully selected subset of around 100 samples from the com-
plete training set is adequate in order to train well the SVM
classifier and achieve 100% classification accuracy rate. On the
other hand, as shown in Fig. 8, the recognition rate for the Letter
and the ORHD datasets increases smoothly, while we augment
the training set by adding each time a single new sample.

The highest achieved recognition rate using the online training
model is 100% for the Mushroom dataset with a Gaussian spread
g¼ 2�6, 91.35% for the Satimage collection with g¼ 23 and
98.5% and 93.66% with Gaussian spread g¼ 2�7 and g¼ 2�2 for
the ORHD and Letter datasets, respectively. Although superiority on
classification accuracy is not our primary concern, for completeness,
we compare our method on the examined datasets against current
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Fig. 7. Classification accuracy rate versus the training set cardinality for online training on: (a) the Mushroom and (b) the Satimage datasets.
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Fig. 8. Classification accuracy rate versus the training set cardinality for online training on: (a) the ORHD and (b) the Letter datasets.

Table 4
Comparison against other multiclass SVM classifiers using the RBF kernel on

accuracy.

Dataset DAG SVM

(%)

Weston

Watkins (%)

MCSVM

(%)

LaRank

(%)

Proposed

method (%)

Mushroom 100 100 100 100 100

Satimage 91.25 91.25 92.35 91.15 91.35

Letter 97.98 97.76 97.68 97.35 93.66
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state-of-the-art batch and online trained multiclass classifiers on
accuracy. In this comparison we have considered DAG SVMs [19],
the multiclass counterpart of the Weston and Watkins SVM
classifier [21], MCSVM method and the LaRank algorithm. The
highest measured classification accuracy rates achieved by each
method in each examined database are summarized in Table 4. As
it can be seen, with the exception of Letter dataset, the proposed
method achieves equal or comparable performance with the best
performing algorithms of the comparison.

The minor degradation in the calculated recognition rate here
is due to the tight box constraints that we have adopted. We
should highlight that there is a trade off between the required
training time and the achieved classification accuracy rate.
Regarding our algorithm, the fastest training time is attained
when considering the cost parameter C to be equal to zero, since
this restricts the feasible optimization bounds of the optimized
Lagrange multipliers and leads to faster convergence. Unfortu-
nately, for some of the examined datasets, setting parameter C

equal to zero is not the optimal selection in terms of the reached
classification accuracy rate.
4.5. Frontal face view recognition

In the final set of experiments we have applied the online
learning scenario to the frontal face view recognition problem,
where our aim is to distinguish the frontal views of a person’s face
from the non-frontal ones, while he/she is performing various
head poses. For this experiment we have used data samples
derived from the XM2VTS database, which has been widely
applied for frontal face verification.

Experiments on frontal facial view recognition have been
carried out similarly to those concerning online learning with
limited training samples, presented in Section 4.4. That is, cost
parameter C was set equal to zero, in order to achieve the fastest
training time, while parameter g was sought during a validation
procedure. Initially two samples, one for each class, were ran-
domly selected to start batch training the classifier. Subsequently,
and as long as new training samples were sequentially arriving
(one at a time) augmenting the training set, the classifier was
trained in an online manner warm-starting the optimization
process by exploiting the previously found optimal solution.
Finally, after each training round we measured the classifiers
efficacy by testing each time on the same standard test set.

In order to form the training and test sets, face detection and
tracking were applied on the frames of the video sequences
and the resulting regions of interest (ROIs) were anisotropically
scaled, so as to have fixed size of 30�40 pixels and were
converted to grayscale. Each such fixed size facial image was
scanned row-wise so as to form a feature vector x¼ ½f 1 . . . f 1200�

T

(fi being the luminance of the i-th pixel) which was used to
compose the training and test sets that are fed to the SVM
classifier. In total 6862 facial images were extracted and divided
in two equally sized parts for training and testing, each containing
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Fig. 9. Frontal face view recognition rate versus the number of training samples on online training in the XM2VTS database.
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1243 samples labelled as frontal face instances (according to
the range of degrees we defined as an acceptable head rotation
in each axis) and 2188 non-frontal samples. Fig. 9 shows the
recognition percentage rate versus the number of samples used
in order to train online the classifier. The highest achieved classi-
fication accuracy rate is 96.33% when considering the whole
available training samples set, with a Gaussian spread parameter
value g¼ 2�2. Equal performance was also achieved by our batch
training algorithm which was trained on the whole training set,
while training using the MCSVM method achieved a slightly
better recognition performance rate of 96.67%. It is important to
note that the classifier can effectively classify the facial images
even when only a few tens of samples from each class are used for
training. Moreover, the decision surface essentially remains static,
as we keep augmenting the training set beyond 1000 training
samples, since the achieved classification accuracy rate remains
constantly over 96%.
5. Conclusions and discussion

We have investigated incremental training of multiclass SVMs
in order to provide computational efficiency for training pro-
blems, where the training data collection is sequentially enriched
and dynamic adaptation of the classifier is required. We have
introduced an auxiliary function designed for QP problems with
non-positivity constraints which can be applied in both non-
negative and sign insensitive kernels. A set of novel multiplicative
update rules that guarantee convergence to the optimal solution
is proposed. The proposed update rules have been applied using
tight box constraints regarding the feasible optimization bounds
and were incorporated within a warm-start framework in order
to further enhance computational efficiency.

The proposed method has been tested on practical, nontrivial
problems involving five datasets and showed that the computa-
tional benefits are significant, since our method is much faster
than retraining the classifier from scratch, while the achieved
classification accuracy is maintained close to the state-of-the-art
recognition rate reported on the examined datasets, for the
applied SVM classifier. Moreover, faster convergence is achieved,
since only a few tens of iterations are required so that the
optimized variables reach the convergence point, as we have
experimentally verified. In our experimental study we have also
considered online learning, which provided valuable insights
regarding the training set samples and their ability to boost
classification accuracy.
Various issues for future research came up through this study,
such as reducing memory requirements by splitting the QP
problem in smaller subproblems, the investigation about a fea-
sible parallel implementation of the optimization procedure,
dynamic data normalization and decremental learning. These
are only some promising extensions of the proposed method
which we plan to address in a future work.
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