Course 495: Advanced Statistical Machine
Learning/Pattern Recognition

Deterministic Component Analysis

« Goal (Lecture): To present two more component analysis
algorithms, Independent Component Analysis (ICA).

« Goal (Tutorials): To provide the students the necessary

mathematical tools for deeply understanding the CA
techniques.
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Materials

Pattern Recognition & Machine Learning by C. Bishop Chapter 12

ICA: Hyvarinen, Aapo, and Erkki Oja. "Independent component
analysis: algorithms and applications.” Neural networks 13.4 (2000):
411-430.

ICA: Hyvarinen, Aapo. "Fast and robust fixed-point algorithms for
independent component analysis." Neural Networks, I|EEE
Transactions on 10.3 (1999): 626-634.
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‘Cocktail party’

Mixing matrix W

= . X1 = W11Y1 + W12Y2
, € S=_

Observations

¢« -

Xo =W + w
Y, 2 211 22Y2

Sources

. x=Wy
d sources (latent space), N observations
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‘Cocktail party’

*Observing signals Original source signal

« ICA
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‘Cocktail party’

*Two Independent Sources *Mixture at two Mics
X1 (t) — W11 yl(t) + le y2 (t)

X, (1) = wy, y, (1) +w,,y,(t)
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‘Cocktail party’

*Get the Independent Signals out of the Mixture
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‘Cocktail party’
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‘Cocktail party’

Independent Components

of natural images
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Formulating the problem

d
Xi1 = Z Wik Vi1
k=1

— X =WY

d
XinN = 2 WikYkN - — Find the mixing matrix W
k=1

and the independent components Y

If W is a square and invertible then ¥ = w~1X
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Formulating the problem

Sources of ambiguity:
1. We cannot determine the variances (energies) of the

Independent components. -1
— 0 0
Ly
ll O O 1
L=|0 L 0 L1=|0 T 0
0 0 I ?
X=WLLY ! 3. 1
0 0 —
i [5.

It can be partially resolved by
Ely]=1
Though sign ambiguity cannot be resolved
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Formulating the problem

2. We cannot determine the order of the independent
components.

X = WP-1py P can be a permutation matrix

PY are the independent components but
In another order

WP~ is the new mixing matrix
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A first example

p(y)-J/I 1y 1] 1/2v3

otherwise J

y1~p(y)  ¥2~p) 3 J3

E[y;]=0 El[y,]=0

012 = E[)’12] =1

= E[)’zz] =1
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rst example
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rst example

Afi
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Definition of independence

y, andy, areindependentiff p(y,y,) =p(y)p(y2)

Alternative definition

E(hi(y1), h2(y2)) = E(hi(y1))E(h2(y2))

[

] hy (y1)h (¥2)p(y1, ¥2)dy dy,

— 00

E(hy(y1), h2(y2)) =

fre

= hy (y1) p(y1)dy, j_ hy (y2) p(¥2)dy-

— 00

= E(h;(y1))E (hy(¥2))
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Uncorrelated variables are only partly independent

hi(y) =y h,(¥) =y

E(y1,v2) = E(v1)E(y2)
To show that

(y1,¥2) = (0,1) E(1,y2) = EQ)E(2)
(yllyZ) — (Oa_l) E(y12y22 ) =0

(}’1:3’2) — (1,0) 2 2 .
(y1,¥2) = (1,0 # E(y19)E(y,°) = 2
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Non Gaussianity

1 )

(y1) =——e™ 1
P V21

1 2

p(y;) = \/T—ﬂe_yz

W orthogonal it gives

1

( ’ ):_e—(J’z2+3’12)
p yl yZ m
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Non Gaussianity

The joint density of unit variance y; & y, IS symmetric.
So 1t doesn‘t contain any information about the
directions of the cols of the mixing matrix W.

So Wcan‘t be estimated.

We need non-gaussianity for the
Independent components(IC)

If only one IC is gaussian,
the estimation is still possible.
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Non Gaussianity

« Key element is non-gaussianity
A=W1 }Nf =alX

« Ifa wasone of the rows of the inverse of W, this linear
combination y would actually equal to one of the independent
components.

« How could we use the Central Limit Theorem to determine W
so that it would equal to one of the rows of the inverse of A?
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Non Gaussianity

 Let us make a change of variables

definingz = Wla=

y=a'X=a'wy =2z"y

y is thus a linear combination of Y, with weights given by z

Even the sum of two independent random variables is more
Gaussian than the original variables
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Non Gaussianity

- Maximize the non-Gaussianity of a’X. This means that a’X ~
eqguals to one of the independent components!

 Maximizing the non-Gaussianity of a’ X thus gives us one
of the independent components.

» In fact, non-Gaussianity in the n-dimensional space of vectors
a; has 2n local maxima, two for each independent component,
corresponding to y; and —y;.

 To find several independent components, we exploit the fact that
different independent components are uncorrelated
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Measures of Non Gaussianity

« Assuming a random variable y such that

Ely]=0 o*=E[y’]=1

« The classical measure of non-Gaussianity Is kurtosis or
the fourth-order cumulant

kurt(y) = E[y*] — 3(Ely*])?*= kurt(y) = E[y*] — 3

kurtosis I1s zero for a Gaussian random variable. For most
(but not quite all) non-Gaussian random variables, kurtosis is
non-zero.
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Measures of Non Gaussianity - Kurtosis

e kurt(y) < 0 are called sub-Gaussian,
e kurt(y) > 0 are called super-Gaussian..

Super-Gaussian random variables have typically a

“spiky” pdf with heavy talils, I.e.

Sub-Gaussian random variables, on the other -

hand, have typically a “flat” pdf,
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Measures of Non Gaussianity - Kurtosis

« Kurtosis, or rather its absolute value, has been widely used
as a measure of non-Gaussianity in ICA and related ficlds.

« The main reason is its simplicity, both computational and
theoretical.

« Computationally, kurtosis can be estimated simply by using
the fourth moment of the sample data.
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Measures of Non Gaussianity - Kurtosis

« Kurtosis has problems when its value is estimated from a
measured sample.

1. Itis very sensitive to outliers.

2. lIts value depends on only a few observations in the tails
of the distribution, which may be erroneous or irrelevant
observations.

» Thus, other measures of non-Gaussianity might be better than
kurtosis in some situations, i.e. negentropy that more or less
combine the good properties of both measures.
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Measures of Non Gaussianity - Negentropy

« A very important measure of non-Gaussianity is given by
negentropy. Negentropy Is based on the information-
theoretic quantity of (differential) entropy.

* Entropy is the basic concept of information theory
(measure of “randomness” of a variable)

« Entropy H is defined for discrete/continuous random
variable y as

H(y) = —Ep(yi) logp(y;) HY) = —fP(Y) logp(y)dy
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Measures of Non Gaussianity - Negentropy

« A fundamental result of information theory is that: a Gaussian

variable has the largest entropy among all random variables
of equal variance.

e (Gaussian distribution is the “most random’ or the least
structured of all distributions.

« How entropy could be used as a measure of non-Gaussianity?
* Negentropy J is defined as follows:

](:V) = H(yGauss) — H(y)

where IS a y;quss Gaussian random variable of the same
covariance matrix as .
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Measures of Non Gaussianity - Negentropy

* Negentropy is always non-negative, and is zero if and only if
y has a Gaussian distribution

* Negentropy iIs in some sense the optimal estimator of non-
Gaussianity, as far as statistical properties are concerned.

 The problem in using negentropy Iis, however, that it Iis
computationally very difficult

« Estimating negentropy using the definition would require an
estimate (possibly non-parametric) of the pdf.
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Measures of Non Gaussianity - Negentropy

« The classical method of approximating negentropy Is
using higher-order moments, for example as follows (zero
mean and unit variance)

1
JO) ~ E (y3)* + l’mﬂf(y)2

48

* However, the validity of such approximations may be rather
limited.

« In particular, these approximations suffer from the non-
robustness encountered with kurtosis
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Measures of Non Gaussianity - Negentropy

« Assuming a zero mean and unit variance y, a more useful
approximation is the following

J(¥) = c[E(G(y)) — E(G()]?

where G Is practically any non-quadratic function (higher
order than 2), c is an irrelevant constant, and v is a Gaussian
variable of zero mean and unit variance (i.e., standardized).

e Ifweset 1y =a’X then negentropy is reformulated as

J(@) = [E(G(a"X)) — E(G(W)]?
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Measures of Non Gaussianity - Negentropy

Examples of function G

1
G,(y) =Zy4 91(y) =y’

1 L ) _C1. 2
GZ(Y)z_ae 2 g>(y) =ye 2

1
Ga(y) = alog coshc,y  g3(y ) = tanhc,y

1<¢c,<2,¢1=1
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Measures of Non Gaussianity - Negentropy

A = argmax, J(4) = Z/(a,a
s.t. ATXXTA = 1

Assuming whitened data, i.e. XXT =1

d
A = argmax, J(A) = ) J(@)
st ATA=1
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Measures of Non Gaussianity - Negentropy

et that we want to find one a

a = argmax, J(a) st ala=1

Lagrangian L(a, 1) =J(a) — A(a'a — 1)

dL(a, A
(ga : = E[x;g(a"x;)] —2a= 1 = E[a"x;g(a’ x;)]
0%L,
= Elx:x:T g’ (al x:)] — Al
Faa = Elxx’g (@'x)] -2
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Measures of Non Gaussianity - Negentropy

Assuming the approximation
Elx;x;"g'(a"x;)] = E[x;x;"1E[g'(a" x;)] = E[g'(a" x;)]

We get the Newton updates

Elx;g(a’x))] — Aa
o, ® = gt _ [x;g(a’x;)]

Elg'(aTx;)] — 2
a,
e, (O]

Also settingthat A = E[a"x;g(a”x;)]

a® =

We get the fix point updates
a, " =E[x;g(a"x)]- E[g'(a"x)]a't"
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Measures of Non Gaussianity - Negentropy

A simple way of achieving decorrelation is a deflation scheme based
on a Gram—Schmidt-like decorrelation.

*\We estimate the independent components one by one, i.e. to
estimate d independent components, or d vectors a{,a,,... az; we
run the one-unit fixed point algorithm for a;,;; and after every
iteration step we subtract from a;,,; the “projections” of the
previously estimated i vectors, and then renormalize as:

— [ T
Ai11= Qiy1-2=1 i1 A4
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Preprocessing

 Centering N
1
X; =X; — U where ”=Nzxi
=1
» Sphering l

where A is the diagonal matrix of the possitive eigenvalues
and U is the matrix with the corresponding eigenvectors
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An overview

PCA: Maximize the global variance

LDA: Minimize the class variance while maximizing
the mean variance

LPP: Minimize the local variance

ICA: Maximize independence by maximizing non-
Gaussianity

All are deterministic!!
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