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Course 495: Advanced Statistical Machine 
Learning/Pattern Recognition 

Deterministic Component Analysis 

 

• Goal (Lecture): To present two more component analysis 
algorithms, Independent Component Analysis (ICA). 
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•    Goal (Tutorials): To provide the students the necessary 
mathematical tools for deeply understanding the CA 
techniques.  
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• Pattern Recognition & Machine Learning by C. Bishop Chapter 12  

• ICA: Hyvärinen, Aapo, and Erkki Oja. "Independent component 
analysis: algorithms and applications." Neural networks 13.4 (2000): 
411-430. 

• ICA: Hyvarinen, Aapo. "Fast and robust fixed-point algorithms for 
independent component analysis." Neural Networks, IEEE 
Transactions on 10.3 (1999): 626-634.        

Materials 
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Sources 

Observations 

y1 

y2 

𝑥1 = 𝑤11𝑦1 +𝑤12𝑦2 
Mixing matrix W 

𝒙 = 𝑾𝒚 
𝑑 sources (latent space), 𝑁 observations 

𝑥2 = 𝑤21𝑦1 +𝑤22𝑦2 

‘Cocktail party’  
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•  ICA 

•Observing signals •Original source signal 
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𝑥 𝑦 

‘Cocktail party’  
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•Two Independent Sources •Mixture at two Mics 
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‘Cocktail party’  
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•Get the Independent Signals out of the Mixture 
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‘Cocktail party’  
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‘Cocktail party’  
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Independent Components 

 of natural images 
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‘Cocktail party’  
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𝑥𝑖1 =  𝑤𝑖𝑘𝑦𝑘1

𝑑

𝑘=1

 

𝑥𝑖𝑁 =  𝑤𝑖𝑘𝑦𝑘𝑁

𝑑

𝑘=1

 

⋮ 𝑿 = 𝑾𝒀 

Find the mixing matrix 𝑾 

and the independent components Y 

If W is a square and invertible then  𝒀 = 𝑾−𝟏𝑿 

Formulating the problem  

9 
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1. We cannot determine the variances (energies) of the 

independent components. 

Sources of ambiguity: 

𝑿 = 𝑾𝑳−1𝑳𝒀 

𝑳−1 =

1

𝑙1
0 0

0
1

𝑙2
0

0 0
1

𝑙3

 𝑳 =

𝑙1 0 0
0 𝑙2 0
0 0 𝑙3

 

𝐸[𝒚]=1 

Though sign ambiguity cannot  be resolved 

It can be partially resolved by 

10 

Formulating the problem  
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2. We cannot determine the order of the independent 

components. 

𝑿 = 𝑾𝑷−1𝑷𝒀 
𝑷 can be a permutation matrix  

𝑷𝒀 are the independent components but 

in another order 

𝑾𝑷−1 is the new mixing matrix 

11 

Formulating the problem  
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A first example  
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𝑝 𝑦1, 𝑦2   
= 𝑝 𝑦1 𝑝(𝑦2) 

𝑦1~𝑝(𝑦) 𝑦2~𝑝(𝑦) 

13 

A first example  
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𝑥1 = 2𝑦1 + 3𝑦2 

𝑥2 = 2𝑦1 + 1𝑦2 

𝑾 =
2 3
2 1

 

𝑾−1 =
−0.25 0.5
   0.75 −0.5

 

𝒘1 =
2
2

 

𝒘2 =
3
1
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A first example  
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𝑝 𝑦1, 𝑦2 = 𝑝 𝑦1 𝑝(𝑦2) 

𝐸 ℎ1(𝑦1), ℎ2(𝑦2) = 𝐸 ℎ1 𝑦1 𝐸(ℎ2(𝑦2)) 

𝐸 ℎ1(𝑦1), ℎ2(𝑦2) =  ℎ1 𝑦1 ℎ2 𝑦2 𝑝 𝑦1, 𝑦2 𝑑𝑦1𝑑𝑦2

+∞

−∞

 

=  ℎ1 𝑦1

+∞

−∞

𝑝 𝑦1 𝑑𝑦1 ℎ2 𝑦2

+∞

−∞

𝑝(𝑦2)𝑑𝑦2 

 = 𝐸 ℎ1 𝑦1 𝐸(ℎ2(𝑦2)) 

Definition  of independence  

𝑦1  and 𝑦2   are independent iff  

Alternative definition 

15 
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Uncorrelated variables are only partly independent 

𝐸 𝑦1, 𝑦2 = 𝐸 𝑦1 𝐸 𝑦2  

ℎ1 𝑦 = 𝑦 ℎ2 𝑦 = 𝑦 

𝑦1, 𝑦2 = (0,1) 

𝑦1, 𝑦2 = (0,−1) 

𝑦1, 𝑦2 = (1,0) 

𝑦1, 𝑦2 = (−1,0) 

𝐸 𝑦1, 𝑦2 = 𝐸 𝑦1 𝐸 𝑦2  

𝐸 𝑦1
2𝑦2

2 = 0 

≠ 𝐸 𝑦1
2 𝐸 𝑦2

2 =
1

4
 

To show that 

16 
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𝑝 𝑦1 =
1

2𝜋
𝑒−𝑦1

2
 

𝑝 𝑦2 =
1

2𝜋
𝑒−𝑦2

2
 

𝑝 𝑦1, 𝑦2 =
1

2𝜋
𝑒−(𝑦2

2+𝑦1
2) 

𝑾 orthogonal it gives 

Non Gaussianity 

17 
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The joint density of unit variance 𝑦1 & 𝑦2 is symmetric. 

So it doesn‘t contain any information about the 

directions of the cols of the mixing matrix 𝑾.  

If only one IC is gaussian,  

the estimation is still possible. 

We need non-gaussianity for the 

independent components(IC) 

So 𝑾can‘t be estimated. 

18 

Non Gaussianity 
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𝑨 = 𝑾−1 

• Key element is non-gaussianity 

𝒚 = 𝒂𝑻𝑿 

• If 𝒂  was one of the rows of the inverse of 𝑾, this linear 

combination 𝒚  would actually equal  to one of the independent 

components. 

• How could we use the Central Limit Theorem to determine 𝑾 

so that it would equal to one of the rows of the inverse of 𝑨? 

19 

Non Gaussianity 
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•  Let us make a change of variables 

defining 𝒛 = 𝑾𝑻𝒂  

𝒚  is thus a linear combination of 𝒀, with weights given by 𝒛  

Even the sum of two independent random variables is more 

Gaussian than the original variables 

𝒚 = 𝒂𝑻𝑿 = 𝒂𝑻𝑾𝒀 = 𝒛𝑻𝒀 

20 

Non Gaussianity 
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• Maximize the non-Gaussianity of 𝒂𝑻𝑿. This means that 𝒂𝑻𝑿  ̂ 

equals to one of the independent components! 

• Maximizing the non-Gaussianity of 𝒂𝑻𝑿 thus gives us one 

of the independent components.  

• In fact,  non-Gaussianity in the n-dimensional space of vectors 

𝒂𝑖 has 2n local maxima, two for each independent component, 

corresponding to 𝒚𝑖 and –𝒚𝑖. 

• To find several independent components, we exploit the fact that  

different independent components are uncorrelated 

21 

Non Gaussianity 
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𝐸[𝑦] = 0 𝜎2 = 𝐸[𝑦2] = 1 

• Assuming a random variable y such that  

• The classical measure of non-Gaussianity is kurtosis or 

the fourth-order cumulant 

𝑘𝑢𝑟𝑡 𝑦 = 𝐸 𝑦4 − 3(𝐸 𝑦2 )2 𝑘𝑢𝑟𝑡 𝑦 = 𝐸 𝑦4 − 3 

kurtosis is zero for a Gaussian random variable. For most 

(but not quite all) non-Gaussian random variables, kurtosis is 

non-zero. 

22 

Measures of Non Gaussianity 
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• 𝑘𝑢𝑟𝑡 𝑦 < 0 are called sub-Gaussian, 

• 𝑘𝑢𝑟𝑡 𝑦 > 0 are called super-Gaussian.. 

Super-Gaussian random variables have typically a 

“spiky” pdf with heavy tails, i.e. 

Sub-Gaussian random variables, on the other 

hand, have typically a “flat” pdf, 

𝑝 𝑦 =
1

2
𝑒− 2|𝑦| 
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Measures of Non Gaussianity - Kurtosis 
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• Kurtosis, or rather its absolute value, has been widely used 

as a measure of non-Gaussianity in ICA and related fields.  

• The main reason is its simplicity, both computational and 

theoretical.  

• Computationally, kurtosis can be estimated simply by using 

the fourth moment of the sample data. 

24 

Measures of Non Gaussianity - Kurtosis 
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• Kurtosis has problems when its value is estimated from a 

measured sample. 

1. It is very sensitive to outliers.  

2. Its value depends on only a few observations in the tails 

of the distribution, which may be erroneous or irrelevant 

observations.  

 

• Thus, other measures of non-Gaussianity might be better than 

kurtosis in some situations, i.e. negentropy that more or less 

combine the good properties of both measures. 

25 

Measures of Non Gaussianity - Kurtosis 
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• A very important measure of non-Gaussianity is given by 

negentropy. Negentropy is based on the information-

theoretic quantity of (differential) entropy. 

• Entropy is the basic concept of information theory 

(measure of  “randomness” of a variable) 

• Entropy H is defined for discrete/continuous random 

variable y as 

𝐻 𝑦 = − 𝑝 𝑦𝑖 log 𝑝(𝑦𝑖) 𝐻 𝑦 = − 𝑝(𝑦) log 𝑝 𝑦 𝑑𝑦 

26 

Measures of Non Gaussianity - Negentropy 
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• A fundamental result of information theory is that: a Gaussian 

variable has the largest entropy among all random variables 

of equal variance. 

• Gaussian distribution is the “most random” or the least 

structured of all distributions.  

• How entropy could be used as a  measure of non-Gaussianity? 

• Negentropy J is defined as follows: 

J 𝑦 = 𝐻 𝑦𝐺𝑎𝑢𝑠𝑠 −𝐻(𝑦) 

where is a 𝑦𝐺𝑎𝑢𝑠𝑠 Gaussian random variable of the same 

covariance matrix as y. 

27 

Measures of Non Gaussianity - Negentropy 
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•  Negentropy is always non-negative, and is zero if and only if 

y has a Gaussian distribution 

•  Negentropy is in some sense the optimal estimator of non-

Gaussianity, as far as statistical properties are concerned. 

•  The problem in using negentropy is, however, that it is 

computationally very difficult 

•  Estimating negentropy using the definition would require an 

estimate (possibly non-parametric) of the pdf. 

28 

Measures of Non Gaussianity - Negentropy 
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• The classical method of approximating negentropy is 

using higher-order moments, for example as follows (zero 

mean and unit variance) 

J 𝑦 ≈
1

12
𝐸 𝑦3 2 +

1

48
𝑘𝑢𝑟𝑡(𝑦)2 

• However, the validity of such approximations may be rather 

limited.  

• In particular, these approximations suffer from the non-

robustness encountered with kurtosis 

29 

Measures of Non Gaussianity - Negentropy 
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• Assuming a zero mean and unit variance 𝒚,  a more useful 

approximation is the following  

J 𝒚 ≈ 𝑐[𝐸(𝐺 𝒚 ) − 𝐸(𝐺 𝒗 ]2 

where 𝐺 is practically any non-quadratic function (higher 

order than 2), c is an irrelevant constant, and 𝒗 is a Gaussian 

variable of zero mean and unit variance (i.e., standardized).  

• If we set      𝒚 = 𝒂𝑇𝑿   then negentropy is reformulated as 

J 𝒂 = [𝐸(𝐺 𝒂𝑇𝑿 ) − 𝐸(𝐺 𝒗 ]2 

30 

Measures of Non Gaussianity - Negentropy 
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𝐺1 y =
1

4
𝑦4 𝑔1 y = 𝑦3 

𝐺2 y = −
1

𝑐1
𝑒−

𝑐1
2
𝑦2

 𝑔2 y = 𝑦𝑒−
𝑐1
2
𝑦2

 

𝐺3 y =
1

𝑐2
log cosh 𝑐2𝑦 𝑔3 y = tanh 𝑐2𝑦 

1 ≤ 𝑐2 ≤ 2, 𝑐1 ≈ 1 

Examples of function  𝐺 

31 

Measures of Non Gaussianity - Negentropy 
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𝑨 = argmax𝐀 J 𝑨 =  𝐽(𝒂𝑘)

𝑑

𝑘=1

 

s.t. 𝑨𝑇𝑿𝑿𝑻𝑨 = 𝑰 

Assuming whitened data, i.e. 𝑿𝑿𝑻 = 𝑰 

  

𝑨 = argmax𝑨 J 𝑨 =  𝐽(𝒂𝑘)

𝑑

𝑘=1

 

s.t. 𝑨𝑻𝑨 = 𝑰 

32 

Measures of Non Gaussianity - Negentropy 
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Lagrangian 

  

𝒂 = argmax𝒂 𝐽(𝒂) s.t. 𝒂𝑇𝒂 = 1 

Let that we want to find one 𝒂  

L 𝒂, 𝜆 = 𝐽 𝒂 − 𝜆(𝜶𝚻𝜶 − 1) 

𝜕2L

𝜕𝒂𝑖𝜕𝒂𝑗
= 𝐸 𝒙𝑖𝒙𝑖

𝑇𝑔′ 𝒂𝑇𝒙𝑖 − λ𝐈 

𝜕L 𝒂, 𝜆

𝜕𝜶
= 𝐸 𝒙𝑖𝑔 𝒂𝑇𝒙𝑖 − 𝜆𝒂  𝜆 = 𝐸 𝒂𝑇𝒙𝑖𝑔 𝒂𝑇𝒙𝑖  

33 

Measures of Non Gaussianity - Negentropy 
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𝐸 𝒙𝑖𝒙𝑖
𝑇𝑔′ 𝒂𝑇𝒙𝑖 ≈ 𝐸 𝒙𝑖𝒙𝑖

𝑇 𝐸 𝑔′ 𝒂𝑇𝒙𝑖 = 𝐸 𝑔′ 𝒂𝑇𝒙𝑖 I 

𝜶+
(𝑡) = 𝒂(𝑡−1) −

𝐸 𝒙𝑖𝑔 𝒂𝑇𝒙𝑖 − 𝜆𝒂

𝐸 𝑔′ 𝒂𝑇𝒙𝑖 − 𝜆
 

𝒂(𝑡) =
𝜶+

(𝑡)

||𝜶+
(𝑡)||

 

𝜆 = 𝐸 𝒂𝑇𝒙𝑖𝑔 𝒂𝑇𝒙𝑖  

𝜶+
(𝑡) = 𝐸 𝒙𝑖𝑔 𝒂𝑇𝒙𝑖 - 𝐸 𝑔′ 𝒂𝑇𝒙𝑖 𝒂(𝑡−1) 

Assuming the approximation 

We get the Newton updates 

Also setting that  

We get the fix point updates 

34 

Measures of Non Gaussianity - Negentropy 
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•A simple way of achieving decorrelation is a deflation scheme based 

on a Gram–Schmidt-like decorrelation.  

𝒂𝑖+1= 𝒂𝑖+1- 𝒂𝑖+1
𝑇𝒂𝒋𝒂𝒋

𝑖
𝑗=1  

𝒂𝑖+1=
𝒂𝑖+1

| 𝒂𝑖+1 |
 

•We estimate the independent components one by one, i.e. to 

estimate d independent components, or d vectors 𝒂1, 𝒂2,… 𝒂𝑑  we 

run the one-unit fixed point algorithm for 𝒂𝑖+1; and after every 

iteration step we subtract from 𝒂𝑖+1  the “projections” of the 

previously estimated i vectors, and then renormalize as: 

35 

Measures of Non Gaussianity - Negentropy 



 Stefanos Zafeiriou        Adv. Statistical Machine Learning (course 495) 

• Centering 

𝒙𝑖 = 𝒙𝑖 − 𝝁 where   𝝁 =
1

𝑁
 𝒙𝑖

𝑁

𝑖=1

 

• Sphering 

𝑿 = 𝑼𝚲−
𝟏

𝟐𝑼𝚻𝑿  

where 𝚲 is the diagonal matrix of the possitive eigenvalues   
and  𝑼 is the matrix with the corresponding eigenvectors 

36 

Preprocessing 
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PCA: Maximize the global variance  

  
LDA: Minimize the class variance while maximizing 

the mean variance  

  
LPP: Minimize the local variance 

ICA: Maximize independence by maximizing non-

Gaussianity 

  
All are deterministic!! 
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An overview 


