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Abstract. Automatic pain intensity estimation from facial images is challenging
mainly because of high variability in subject-specific pain expressiveness. This
heterogeneity in the subjects causes their facial appearance to vary significantly
when experiencing the same pain level. The standard classification methods (e.g.,
SVMs) do not provide a principled way of accounting for this heterogeneity.
To this end, we propose the heteroscedastic Conditional Ordinal Random Field
(CORF) model for automatic estimation of pain intensity. This model generalizes
the CORF framework for modeling sequences of ordinal variables, by adapting
it for heteroscedasticity. This is attained by allowing the variance in the ordinal
probit model in the CORF to change depending on the input features, resulting
in the model able to adapt to the pain expressiveness level specific to each sub-
ject. Our experimental results on the UNBC Shoulder Pain Database show that
modeling heterogeneity in the subjects with the framework of CORFs improves
the pain intensity estimation attained by the standard CORF model, and the other
commonly used classification models.

1 Introduction

Automatic analysis of pain has received increased attention over the last few years
mostly because of its applications in health care. For example, in intensive care units
in hospitals, it has recently been shown that enormous improvements in patient out-
comes can be gained from the medical staff periodically monitoring patient pain levels.
However, due to the burden of work/stress that the staff are already under, this type of
monitoring has been difficult to sustain, so an automatic system would be an ideal solu-
tion [1]. Recent research has evidenced the usefulness of facial cues for automatic pain
analysis (e.g., see [2]), however, it has mainly focused on detection of presence/absence
of pain.

In this paper, we address the problem of estimating the level of patients’ shoulder
pain from video recordings of their facial expressions, provided by the recently released
UNBC-MacMaster Shoulder Pain Expression Archive Database [2]. The recorded pa-
tients suffer from chronic shoulder pain, intensity of which is quantified into discrete
ordinal levels, ranging from no pain to the maximal level of pain, measured using the
Prkachin and Solomon Pain Intensity (PSPI) metric [3]. As the patients perform a range
of arm motion tests in front of the camera, the aim being to estimate their pain level in
every frame of the video. This poses a number of challenges for the modeling task. First,
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different pain levels are characterized by subtle changes of facial appearance within
subjects, and large changes of facial appearance between subjects. This is because the
latter depends on what constitutes the maximal level of the change in facial appearance
of each subject. Consequently, the between-subject variation can easily overshadow the
pain-intensity-related variation. Second, subjects’ facial expressions are typically toned
down due to a long-term exposure to chronic pain. Therefore, it is important to account
for temporal dynamics of pain intensity changes.

To the best of our knowledge, only a few works ([1, 4, 5]) have addressed the prob-
lem of automatic pain intensity estimation so far. Lucey et al. [1] proposed a system for a
three-level pain intensity estimation at the sequence level. The authors used the shape-
and appearance-based features obtained using an Active Appearance Model (AAM).
These features were then used to train separate Support Vector Machine (SVM) classi-
fiers for each pain intensity level. To deal with spurious noisy signals, a moving-average
smoothing filter was applied to the SVM output probability scores. Kaltwang et al. [4]
proposed a feature-fusion approach for continuous pain intensity estimation based on
the Relevance Vector Regression (RVR) model. As the input, the authors used the shape
features, and the appearance features, obtained by computing the Discrete Cosine Trans-
form (DCT) and Local Binary Patterns (LBPs) from the normalized facial appearance.
As the targets for the regression model, the authors used the discrete pain intensity lev-
els defined on a 16 point scale. Finally, Hammal and Cohn [5] performed the estimation
of 4 pain intensity levels. The authors applied Log-Normal filters to the normalized
facial appearance, which resulted in high-dimensional facial features. These features
were then used to separately train SVMs for each pain intensity on a frame-by-frame
basis. Note that the works mentioned above focus mainly on the feature extraction step.
The classification/regression of the target pain intensity is performed consequently by
applying the standard learning techniques for nominal data, therefore ignoring the fact
that pain intensity is defined on the ordinal scale. Finally, none of these methods explore
temporal dynamics of the pain intensity.

In this paper, we propose a model for pain intensity estimation that is based on
the Conditional Ordinal Random Field (CORF) [6, 7] model, specifically designed for
estimation of sequences of ordinal variables. Although the CORF model can address
the limitations of the existing methods mentioned above, its underlying assumption is
that the noise on the ordinal targets (in our case, the pain intensity) is homogeneous,
i.e., constant. To account for heterogeneity in the subjects, we need to relax this as-
sumption. This is attained by allowing its variance to change depending on the input
features, resulting in the heteroscedastic CORF model. In contrast to the existing meth-
ods for pain intensity estimation, the proposed model is able to adapt to varying pain
expressiveness levels of different subjects. The benefit of this is reflected in the results
of the experiments conducted on the ShoulderPain dataset [2].

The remainder of the paper is organized as follows. Sec.2 reviews standard ordinal
regression models. In Sec.3 we introduce the proposed heteroscedastic CORF model.
Sec.4 shows the results of the experimental evaluation, and Sec.5 concludes the paper.
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2 Ordinal Regression Models

Different models for data with ordinal targets have been proposed (e.g., see [8] for an
overview). In this paper we restrict the consideration to the popular probit threshold
model proposed by McCullagh(1980) [9]. In this model, it is assumed that there is a
latent continuous variable Y ∗ that underlies the observed ordinal response Y . For ex-
ample, in the context of the target task, Y represents intensity of pain described as
‘none’, ‘moderate’ or ‘severe’. These outcomes may literally be considered as result-
ing from pain severity, the unobserved continuous latent response Y ∗. Since we are
interested in the intensity of pain, we need to model the relationship between the un-
observed variable Y ∗ (i.e., the latent process causing pain) and the observed response
Y (i.e., the intensity of pain). This relationship can be expressed using the following
probit threshold models.

2.1 Homoscedastic Threshold Model

Let Y ∗ = f(x) + σZ be a 1-D continuous latent variable, where x is a vector of
covariates (i.e., image features), where f : X → R and Z is a noise variable with
the standard normal distribution N (0, 1). The probability distribution function of Y ∗

is then given by Pr (Y ∗ ≤ z) = Φ
(
z−f(x)
σ

)
, where Φ (·) is the CDF of the standard

normal distribution. Under the threshold concept, the observed ordinal response Y is
obtained as Y := {y ∈ {1, ..., R}|by−1 < Y ∗ ≤ by}, where b0 = −∞ ≤ · · · ≤ bR =
∞ are increasing thresholds or cut-off points. The conditional probability of Y is then
given by:

Pr (Y = y|x) = Φ

(
by − f(x)

σ

)
− Φ

(
by−1 − f(x)

σ

)
. (1)

2.2 Heteroscedastic Threshold Model

The homoscedastic threshold model has some limitations. In real-world data, the uncer-
tainty of the labels may depend on the input x. That is, on some x the label y will almost
certainly appear, and on other x the label Y may have nearly uniform distribution [8].
This can be leveraged by allowing the scale σ to depend on inputs x, i.e., σ ≡ σ(x),
where σ : X → R+, with R+ denoting the set of positive real numbers. Using the
notation from Sec.2.1, the continuous latent variable is defined as Y ∗ = f(x)+σ(x)Z.
Then, the conditional distribution function of Y with heteroscedastic noise is

Pr (Y = y|x) = Φ

(
by − f(x)
σ(x)

)
− Φ

(
by−1 − f(x)

σ(x)

)
, (2)

where the uncertainty of labels is adjusted by the intensity of σ(x).

3 Heteroscedastic Conditional Ordinal Random Fields

In this section, we present the proposed model for automatic pain intensity estimation.
The model is based on the CORF model for temporal data with ordinal targets. We
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extend this model by accounting for heterogeneity of subjects, which is incorporated in
the model by using the modeling approach of heteroscedastic ordinal regression from
the previous section.

3.1 The Model

Consider the standard Conditional Random Field (CRF) [10] model. It represents the
conditional distribution P (y|x) as the Gibbs form clamped on the observation x:

P (y|x,θ) = 1

Z(x;θ)
es(x,y;θ), (3)

where Z(x;θ) =
∑

y∈Y e
s(x,y;θ) is the normalizing partition function (Y is a set of all

possible output configurations), and θ are the model parameters1 of the score function.
The choice of the output graph G = (V,E) and the cliques critically affects the

representational capacity and the inference complexity of the model. For simplicity, a
linear-chain model with node cliques (r ∈ V ) and edge cliques (e = (r, s) ∈ E) is
often assumed. By letting {v,u} be the parameters of the node features, Ψ (V )

r (x, yr),
and the edge features, Ψ (E)

e (x, yr, ys), respectively, the score function s(x,y;θ) can
be expressed as the sum:

s(x,y;θ) =
∑
r∈V

v>Ψ (V )
r (x, yr) +

∑
e=(r,s)∈E

u>Ψ (E)
e (x, yr, ys). (4)

The score function in (4) has a great modeling flexibility, allowing the node and edge
features to be chosen depending on the target task.

Node features. In the CORF framework, the node features are defined using the ho-
moscedastic ordinal regression model in (1). In our model, we use the heteroscedastic
ordinal regression model, defined in (2), to set the node features as:

vTΨ(V )
r (x, yr)→

R∑
c=1

I(yr = c) ·
[
Φ

(
byr − f(xr)
σ(xr)

)
− Φ

(
byr−1 − f(xr)

σ(xr)

)]
. (5)

By applying the Representer Theorem to the regularized negative log-likelihood in (9),
we obtain the optimal functional form for the location model f(·) as

f(x∗) =

S∑
i=1

αikf (xi,x∗), (6)

where kf (·, ·) is a Mercer kernel, and S is the number of kernel bases. Similarly, the
scale model σ(·) is obtained as

σ(x) = exp(β0 +

M∑
i=1

βikσ(xi,x∗)), (7)

1 For simplicity, we often drop the dependency on θ in notations.
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where we also include an intercept β0, so when the data do not exhibit heterogeneity (or
they do, but to a lesser extent), we recover the homoscedastic ordinal model. Also, to
guarantee the non-negativity of σ, we use the exponential form of the kernel function.

The most important aspect of using the varying scale σ(x) is that the inputs x can
now directly influence the locations of the thresholds b in the ordinal model, which are
constant in the homoscedastic CORF model. In this way, the proposed model with het-
eroscedastic (ordinal) node features can automatically adapt its thresholds to account
for individual differences in pain tolerance and/or the level of individual pain expres-
siveness.

Edge features. The edge features are defined as in the standard CRF model, i.e., us-
ing the absolute difference between the features of the temporally neighbouring frames,
resulting in

Ψ(E)
e (x, yr, ys) =

[
I(yr = k ∧ ys = l)

]
R×R

⊗
∣∣xr − xs

∣∣, (8)

where I(·) is the indicator function that returns 1 (0) if the argument is true (false) and
⊗ denotes the Kronecker product. The role of the edge features is to enforce smooth
predictions of the pain intensities across time.

With the node and edge features as defined above, we arrive at the following opti-
mization problem:

argmin
θ

N∑
i=1

− lnP (yi|f(xi), σ(xi), θ) +Ω(θ), (9)

where N is the number of the training image sequences, Ω(θ) is the (kernel-inducing)
regularizer, and θ = {b, α, β,u} are the model parameters.

3.2 Regularizers

As the objective function in (9) is nonlinear and nonconvex, it is critical to regularize it
to improve the model’s performance. We apply L2 regularizer to the kernel weights and
parameters u in order to avoid diverging solutions. To encourage the latent coordinates
f(x) to be close in the latent space, we employ the widely used Laplacian regularizer
for kernels:

Ω(‖f‖K) =
∑
i,j

(f(xi)− f(xj))2Wij = 2αTKLKα, (10)

where K is computed using the kernel function kf , and L = D − W is the graph
Laplacian, with Dii =

∑
jWij . The similarity W is derived using the target labels y as

Wij = 1− |yi − yj |
R− 1

, yi, yj = 1, ..., R. (11)

Notice that when the absolute difference between two pain intensities increases, the ex-
tent of distance enlargement in (11) increases accordingly. This regularization approach
has been shown effective in other facial-expression-related modeling tasks (eg. see [7]).
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3.3 Learning and Inference

To minimize the objective in (9), we use the quasi-Newton limited-memory BFGS
method. We briefly describe the learning strategy. Initially, we set the scale models
σ to 1 to form a homoscedastic model. This is accomplished by optimizing the parame-
ters of the location model f , the ordinal thresholds b and the transition parameters u. In
the next step, we fix the parameters of the homoscedastic model and optimize w.r.t. the
parameters of the scale model. In the final run, we optimize all the parameters simulta-
neously. The regularization parameters are found using a cross-validation procedure on
the training set. Once the parameters of the model are estimated, the inference of test
sequences is carried out using Viterbi decoding.

(a) (b)

Fig. 1. a) Distribution of the pain intensity levels in The ShoulderPain dataset [2], b) Feature
extraction process.

4 Experiments

We conducted experiments on The ShoulderPain dataset [2] containing video record-
ings of patients suffering from shoulder pain while performing range-of-motion tests of
their arms (see Sec. 1 for details). 200 sequences of 25 subjects were recorded (48,398
frames in total). For each frame, discrete pain intensities (0-15) according to Prkachin
and Solomon [3] are provided by the database creators (see Fig.1(a)). All the image se-
quences with the pain intensity > 0 were pre-segmented, so that the number of frames
with the intensity 0, the most frequent in the dataset, was balanced with the second most
frequent intensity. The resulting intensity distribution was still highly imbalanced, so we
discretized it into 6 pain levels as: 0 (none), 1 (mild), 2 (discomforting), 3 (distressing),
4-5 (intense), and 6-15 (excruciating). The ratio of the highest and the lowest pain level
was 3:1. This data balancing was performed in order to avoid the tested methods over-
fitting the majority classes. To evaluate the methods, we selected 147 image sequences
from 22 subjects, 10 of which were used as the training set, and the rest as the test set.

To obtain the input features, we first aligned the image frames using a piece-wise
affine warp based on the 66 points of the AAM provided by the database creators (see [2,
4] for details). The aligned images were then divided into 6x6 even patches to preserve
local texture information. From each image patch we extracted Local Binary Patterns
(LBP) [11] with radius 2, resulting in 59 histogram bins per patch. This process is
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(a) KCORF [7] (b) KCORFh

Fig. 2. Comparison of the: (a) homoscedastic and the proposed (b) heteroscedastic KCORF mod-
els with the same dynamic features. The upper row shows the values of the latent variable Y ∗

across time, where the horizontal lines are the learned thresholds. The estimated variance is also
shown on Y ∗. The T ime represents the frame number, where we concatenated two sequences
of two test subjects (1-150 / subject 1, 151-222 / subject 2). Note the change in variance in the
heteroscedastic model as the subjects change. The bottom row shows the intensity prediction by
the two methods.

outlined in Fig.1(b). We used LBPs as the input features since they have been shown to
perform well for the facial affect data (e.g., see [7, 4]).

We compare the proposed heteroscedastic (kernel) CORF (KCORFh) model with its
homoscedastic counterpart, KCORF [12], recently proposed for AU temporal segmen-
tation. We used 150 kernel bases for the location and scale models. The bases selection
was performed by sampling 25 kernel bases from each pain intensity at random. It was
found that this is a good trade-off between the performance and computational com-
plexity of the models. Using the small number of kernel bases also helped to reduce the
overfitting. For both the kernel methods, we used the Histogram Intersection (CHI) ker-
nel [13], since it is a non-parametric kernel, and, therefore, it does not involve learning
of additional parameters. The balancing trade-off between the regularization and the
log-likelihood terms was estimated by grid search under cross validation on the training
data.

As a baseline model, we used one-vs-all SVM [14], since most of the prior work
on pain intensity estimation is based on this classifier. We also performed comparisons
with the state-of-the-art static ordinal regression models, Support Vector Ordinal Re-
gression with implicit constraints (SVOR) [15] and Gaussian Process Ordinal Regres-
sion [16]. For the kernel methods, we used the same kernel function as explained above.
Finally, we performed the comparison with the base models for sequential data: Gaus-
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sian Hidden Markov Models (GHMM)[17] and linear-chain Conditional Random fields
(CRFs) [18], since these models are commonly used for modeling sequential data. For
the GHMM, each pain intensity level was treated as the model’s state parametrized us-
ing a single Gaussian. We also included comparisons with the Laplacian-regularized
Conditional Ordinal Random Field (CORF) [12] model, recently proposed for emo-
tion intensity estimation. Because learning in the linear models (GHMM/CRF/CORF)
is intractable due to the high dimensionality of the input features, we applied differ-
ent dimensionality reduction techniques. The reported results are the best obtained, and
they were achieved using the 6D features derived with the Kernel Locality preserving
projections [19]. The performance of the tested models is reported using: (i) average
F-1 measure computed from predictions for each pain intensity, (ii) the mean absolute
loss computed between actual and predicted pain intensities, and (iii) Intra-Class Cor-
relation (ICC(3,1) [20]). The ICC is commonly used in behavioral sciences to quantify
agreement between different coders, and it is a measure of correlation or conformity of
data with multiple targets. The higher the ICC the better.

Fig.2 shows the latent variable learned in the homoscedastic KCORF and the pro-
posed heteroscedastic KCORFh model. Note that the variance in the heteroscedastic
model varies across time. This is especially true when switching between the subjects.
The change in the variance helps to adjust the locations of the intensity thresholds in
the heteroscedastic ordinal model depending on the test subject. Therefore, depending
on the pain expressivness level of each subject, the model changes its parameters ac-
cordingly. Based on the prediction results shown in Fig.2, it is evident that this helps to
improve estimation of the pain intensity levels, especially of the higher levels. For ex-
ample, around the frame number 50, the heteroscedastic model correctly detects level 5,
in contrast to the homoscedastic model. Also, the heteroscedatic model gives smoother
predictions compared to the homoscedastic model. Since both models use the same
dynamic features, we attribute this to the heteroscedastic component in the proposed
model.

Methods SVM SVOR GPOR GHMM CRF CORF KCORF KCORFh

F-1 [%] 31.1 33.9 34.1 24.8 34.7 35.5 36.8 40.2
Abs. Loss 1.25 1.10 1.07 1.30 1.22 0.92 0.88 0.80
ICC [%] 46.5 57.1 57.8 39.4 49.0 63.2 66.5 70.3

Table 1. The performance of different methods applied to the task of automatic pain intensity
estimation. The features for the linear models (GHMM/CRF/CORF) were pre-processed using
KLPP[19].

Table 1 shows the performance of different classification methods applied to the
target task. First, note that all methods attain low the F-1 measure. This is expected
because the large variation in facial appearance of different subjects poses a significant
challenge for any classifier. We checked the training results of the tested methods and
found that all methods attained significantly higher F1 values. This overfitting of the
models is ascribed to the fact that subject-specific variation in the used features domi-
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Fig. 3. Confusion matrices obtained using different models. For a baseline, we include the results
attained by the SVM-based method.

nates over the pain-level-specific variation. We next examine how far off are the predic-
tions from the labels. This is reflected in the absolute loss by the tested models. Note
that the standard classification methods (SVM/GHMM/CRF) exhibit the highest loss,
followed by the static ordinal regression models (SVOR/GPOR). The better results are
attained by the dynamic ordinal models, i.e., KCORF and KCORFh, with the latter per-
forming the best. This evidences that both the ordinal and temporal modeling contribute
to improving the pain intensity estimation. Furthermore, accounting for heterogeneity
in subjects additionally helps to improve the estimation. The same conclusions can be
drawn from the ICC scores for the tested models. However, it is important to mention
that the ICC used here is insensitive to bias in the predictions, in contrast to the abso-
lute loss. Nevertheless, the obtained scores reveal that the ordinal models exhibit better
conformity between the predictions and the labels, with the proposed model achieving
the highest score. To further analyze the performance of the models, we plot in Fig.3
confusion matrices for the SVM, KCORF, and proposed KCORFh. Note that both the
ordinal models confuse mostly the neighboring intensity levels, which explains their
high ICC scores and low absolute loss. On the other hand, the misclassification by the
SVM does not conform to any pattern. We attribute this to the fact that SVM treats the
output variables as nominal. From Fig.3(a), it is also evident that the SVM fails to dif-
ferentiate well between intermediate intensity levels, as opposed to the ordinal models.
Finally, compared to the homoscedastic KCORF model, the KCORFh reduces the mis-
classification with the classes being further from the diagonal, which, again, evidence
the importance of modeling the heterogeneity in subjects.

5 Conclusion

In this paper, we proposed the heteroscedastic CORF model for automatic pain intensity
estimation. The proposed model relaxes the homoscedasticity assumption in the CORF
model, designed for modeling sequential ordinal data. Our experimental results indicate
that, when LBPs are used as the image descriptors, the subjects in the dataset used do
exhibit a certain level of heterogeneity. Based on the three performance measures used
in our experiments, it is evident that accounting for this heterogeneity results in better
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pain intensity estimation attained by the proposed model compared to that attained by
the homoscedastic ordinal model, and the other classification models.
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