
0-7803-7724-9/03/$17.00 © 2003 IEEE 500

Abstract—This paper describes a Java-implemented agent

framework developed for the purposes of an introductory
undergraduate course of Knowledge Engineering. Although
numerous agent frameworks have been proposed in the vast body
of literature, none of these available agent frameworks is simple
enough for the usage by first year undergraduate students of
computer science. Hence, we set out to create our own framework
that would fulfill all requirements, satisfying the aims of the
course, the computing skills level of the intended group of
students, and the size of the intended group of students. Besides
the designed agent framework, which embodies the concepts of
concurrency, multi-agent systems, and persistency, the strategy
decided upon the best possible utilization of the developed tool for
the goals of guiding and instructing the students in their learning
of AI concepts and techniques, is also discussed. The results of the
coursework suggest that the developed agent framework is highly
suitable for the purposes of teaching the students the AI basics
including the knowledge representation schemes, rule-based
reasoning and intelligent agents paradigm.

Index Terms— educational tools, intelligent agents, agent
framework, rule-based systems, semantic networks, Java

I. INTRODUCTION
ccording to the Dutch Statistical Bureau, over 69% of
Dutch households use a PC [1]. This ever-increasing role
of computers in our society clearly forecasts the type of

working environments and information-communication spaces
we are about to use in our everyday activities. Namely, even
nowadays the majority of people in our country exploits
computers for work and uses the Internet to communicate with
each other, to shop, to seek out new information, and to
entertain themselves. This clearly indicates that in the future,
with the aid of computers, we will carry out our daily tasks,
we’ll communicate and entertain ourselves in cyberspace
across distance, cultures and time. Of course, the specifics of
such cyber worlds and smart environments and of pertinent
interfaces, which should facilitate easy and natural
communication within those environments and with the variety
of embedded computing devices, are far from settled. Hence,
computing technology breakthroughs are compulsory. This

The work of Maja Pantic is supported by the Netherlands Organization for

Scientific Research (NWO) Grant EW-639.021.202.

necessity forms the main drive behind the abundance of job
offers for IT specialists in the Netherlands. It also explains
why so many of our prospective young minds choose just this
branch of exact sciences to examine their capabilities, to
enhance their skills and to develop themselves into valuable
experts in one of the IT fields. At the very least, as computers
become ever more ubiquitous in our society, a further
development of computing technology becomes one of the
most exiting and economically important topics for both the
professional and scientific sector.

It is this view on reality that has motivated the development
of a new educational program, called Media and Knowledge
Technology, of the Computer Science at Delft University of
Technology, the Netherlands. In the academic year 2001-2002
this new program has been officially introduced. The main
objective of this program is to educate students to become
engineers who are able to design and develop intelligent
systems for multimedia and multimodal information and
knowledge processing and who are able to design, realize, and
deploy properly working man-machine interfaces.

As a part of this program, an introductory first-year
undergraduate course on Knowledge Engineering has been
introduced with the main aim of achieving two different but
overlapping goals:
1) to introduce the basic concepts of knowledge engineering

and relevant artificial intelligence (AI) techniques, and
2) to explain and instruct on issues related to AI

programming in general and intelligent (multi-) agent
applications in particular.

In contrast to the classic notion of AI, which represented a
promise of intelligent machines with abilities comparable or
possibly superior to those in humans [2], this course has been
envisioned to approach AI as a set of techniques for making
software that is more intuitive and easier to use and which
makes users more productive (e.g., as proposed in [3]). The AI
techniques handled in this course include search algorithms,
knowledge acquisition and representation techniques, rule-
based reasoning algorithms, and distributive AI techniques
focusing on agent technology. The second part of this course
has been envisioned as to pertain to various practical issues in
creating intelligent agents and understanding intelligent agent
applications. It has been envisioned to build on the first part of

M. Pantic, R. Zwitserloot and R.J. Grootjans
Electrical Engineering, Mathematics and Computer Sciences – Mediamatics Department

Delft University of Technology
P.O. Box 5031, 2600 GA Delft, the Netherlands

mpantic@ieee.org, reinier@zwitserloot.com, robbertjan@dds.nl

Simple Agent Framework: An educational tool
introducing the basics of AI programming

A

mailto:mpantic@ieee.org
mailto:reinier@zwitserloot.com
mailto:robbertjan@dds.nl

 501

the course by taking AI algorithms and using them for the
development of intelligent agent applications aimed at
monitoring, filtering and retrieval of relevant information from
Internet and Web pages. The overall course has been
envisioned to include 4 hours of weekly lectures (part one of
the course) and 40 hours of practical work (part two of the
course) during the second half of the second semester.

II. TEACHING MATERIAL REQUIREMENTS
Several requirements have been imposed on the selection of

the appropriate teaching material to be used in the second part
of the introductory course in question. Given that the students
attending the pertinent course are the first year students who
have been previously thought only the Java programming
language, all programs and examples to be learned and
developed in the course have to be Java-coded. Another
important issue, valid for any introductory course, concerns
the focus of the envisioned practical coursework – it should be
on learning how to implement the principle AI techniques
listed above rather than on learning complex software to be
used as a tool for supporting the learning process. In summary,
the requirements that are to be fulfilled in order to come up
with an appropriate selection of the teaching material to be
used have been defined as:
1) The tool to be used by students should support the

development of intelligent agent applications aimed at
monitoring, filtering and retrieval of relevant information
from Internet and Web pages.

2) It should be Java-based, easy to use, and facilitating the
students to use built-in Java-implemented agent
“templates”, to edit them, and to include the desired AI
algorithms according to the goals of the current exercise.

3) It should embody the concepts of concurrency (a kind of
multi-threaded setup), multi-agency (by allowing simple
communication from one agent to the other), and
persistency (saving settings between executions).

Although numerous agent frameworks have been proposed
in the vast body of literature (e.g., [3], [4], [5], etc.; see [6] for
a very large database of the related works) and although there
are now several commercially available software packages
enabling the development of agent-based applications (e.g.,
CIAgent [3], ADE [7], ADK [8], AgentSheets [9], etc.; see
[10] for an almost exhaustive list of the existing commercially
available tools), none of these available agent frameworks
satisfy all the requirements delimited above. Some are not
simple enough for the usage by first year undergraduate
students (e.g., CIAgent [3], ADE [7], ADK [8]). Others could
prove suitable in regards to complexity (i.e., taking into
account the computing skill level of the intended group of
students), but missed other important properties. For example,
AgentSheets [9] allow a user with no programming experience
to develop agent-based applications in Java but the pertinent
software is available only for Mac workstations, which we do
not have at our university labs. Hence, we set out to create our
own framework that would fulfill all the requirements

delimited above and yield an appropriate tool to be used in the
practical coursework in question.

III. SIMPLE AGENT FRAMEWORK
The first step in any software development project is the

collection of requirements from the intended user community.
In our case, this was made difficult because the students
considering to attend the newly introduced first-year course on
Knowledge Engineering could not provide this kind of
feedback until we had already designed, developed, and
deployed the product (the Simple Agent Framework tool used
in the practical coursework). Yet, as already explained above,
we made some obvious decisions based upon our knowledge
about the intended users and the stipulated purpose of the
educational tool in question. We decided to develop a platform
supporting the development of intelligent agents using Java.
We also decided to provide the ability to add intelligence to
built-in agent templates written in Java. This also meant that
we were supposed to implement (partially) the basic artificial
intelligence techniques listed in the introduction and to enable
the re-usage of this Java code. Focus on the topic at hand –
intelligent agents – was another requirement. Yet, we would be
doing the students a disservice if we spent large amounts of
time developing communications code, an object-oriented DB,
or a mechanism for performing remote procedure calls that are
all out of the scope of the educational goals of the course in
question. In summary, we wanted to develop a Java-based
framework with a simple yet flexible architecture that is
focused on intelligent agent issues.

Intelligent agents can be viewed either as adding value to a
single standalone application or as a freestanding community
of agents able to interact with each other and other
applications [4]. The first is an application-centric view of
agents, where the agents are helpers / strollers in the
application. The second is a more agent-centric view of agents,
where the agents are able to monitor and drive the
applications. The agent framework that we intended to develop
was envisioned as being easy to understand and
straightforward to use. The primary aim of this framework was
(and still is) to illustrate how intelligent agents and different AI
techniques can be built and combined to yield intelligent
applications. Hence, we chose application-centric approach as
the basis for the architecture of our intelligent agent
framework. This approach is the least complex because agents
can be regarded as simple extensions of the application
functionality yielding a so-called Nouvelle-Expert-System-
oriented application [11].

Simple Agent Framework can be seen as a common
programming interface delimiting the behavior of all the
agents integrated into the framework. Its functional
specifications can be summarized as follows:

• Simple Agent Framework enables an easy addition of
intelligent agents. We could achieve this goal by facilitating
the framework to instantiate and configure the agent and then
call the agent’s methods as service routines. That way the

 502

framework would be always in control, and it could use
intelligent functions as appropriate. This is easy, but this is
hardly what we would consider an intelligent agent. Another
possibility was to have the framework instantiate and configure
the agent and then start it up in a separate thread. This would
give the agent some autonomy, although it would be running in
the framework’s process space. This is the design we chose.

• Simple Agent Framework supports a simple event
processing, allowing the agents to handle the events coming
from the outside world or from other agents and to signal
events to the outside world. Java uses an event-processing
model for various features, including the features of the
graphical toolkit (swing). However, this model relies on the
source of events to maintain a list of registered event listeners
and to deliver the subject events. To alleviate the difficult task
of programming agents, a new event processing system has
been designed for the Simple Agent Framework. It is called a
“delivery system” and it manages and dispatches events to the
interested agents. Both the events coming from the user and
the events coming from other agents are represented as text
strings, each of which is called a message. All messages are
sent to a channel, each of which is analogous to a blackboard.
The blackboard concept is known to our first year students
since it is the design pattern used to develop the system for
posting and distributing information about courses, exams,
homework, etc. To be able to receive messages, an agent
should register for a channel. Once registered, it would be
notified of messages delivered to that channel. Messages are
received through a locally-defined (i.e., at the agent level)
handle(channel, message) method. To send a message, an
agent should invoke a globally-defined (i.e., at the framework
level) write(channel, message) method. A complete list of
methods supported by the framework is given in Table 1.

• Simple Agent Framework supports adding domain
knowledge and intelligence to agents. Facilitating a composite
design has attained this functionality of the framework.
Namely, we designed and developed forward and backward
rule-based inference procedures, rule-base constructs, semantic
networks constructs, and several search algorithms in Java.
The student can use the related Java classes to provide the
pertinent functions to his/her agents.

• Simple Agent Framework supports the concept of
concurrency needed to allow agents to operate independently
and yet at the same time. This has been achieved by starting
each agent in a separate thread, allowing it to access the
delivery system described above at its own convenience. To
prevent overloads, the framework initiates a queue of
messages for each agent, stores it locally (i.e., at the agent
level), and processes it in a one-at-the-time fashion.

• Simple Agent Framework supports the concept of
persistence. Enabling agents to instruct the framework to store
values referenced by a key has attained this. The framework
retains this (key, value) pair and allows access to it at any time,
even when the execution of the framework has been ceased in
the meantime. To do so, the framework saves (key, value) pairs

to a text file and loads them in when its execution is
commenced once again.

• Simple Agent Framework is a graphical agent-building
tool. We wanted a direct-manipulation interface in which
WYSIWYG (what you see is what you get) would be the
guiding principle. Yet we wanted a simple and comprehensible
GUI that could account for differences in computing skills and
experience of the intended users. Given that the target users
were first year students with rather limited computing skills in
the majority of cases, we wanted to omit extensive technical
terminology, irreversible and user-uncontrolled unconcealed
actions, complex screen layouts, incomprehensible error
massages and unexpected crashes. To attain this, we developed
a rather simple GUI which is easy to grasp, use and create. The
students’ feedback provided at the end of the course affirms
this. This feedback also gained us an insight into how to
improve GUI in a next version of the tool (e.g., including help
files about the framework, a tutorial on Java, direct links to
exercise descriptions, etc.). The developed GUI has three main
screens listing active Agents, available Channels, and existing
Properties. A double-click on a property (i.e., a (key, value)
pair) allows the user to change it. A double-click on a channel
opens a channel viewer, which displays messages in the order
in which they were received and allows the user to insert a new
message manually. The later proved to be very helpful for
testing implemented agents. The agent screen features options
such as load in an agent and shut down an agent.

The Simple Agent Framework uses two primary classes.
The Manager is the base class that defines a common
programming interface and behavior for all the agents in the
Simple Agent Framework. Within this class, all four global
methods listed in Table 1 are defined. All the agents in the
Simple Agent Framework communicate with the environment
and each other exclusively by using these methods. Each agent
extends the abstract Agent class and uses modified versions of
handle and init methods given in Table 1. Consequently, users
of the Simple Agent Framework need only to know about these
two classes in order to be able to create new, Simple Agent
Framework compatible agents.

TABLE I. THE METHODS SUPPORTED BY THE SIMPLE AGENT FRAMEWORK

Framework-level methods Agent-level methods
setProperty(key, value, persistent)
This method allows the agent to change
an existing or to create a new (key, value)
pair. A flag persistent facilitates the agent
to define whether the framework should
store the property between sessions.
getProperty(key): value
This method returns values set by using
the setProperty method.

Init()
This method is called, in a
separate thread, when the agent
is loaded.

register(channelname)
This method registers the agent for a
channel. If a message has been sent to
the pertinent channel, the agent's handle
method is called.
write(channelname, messagecontent)
This method allows the agent to send
messages to any channel.

handle(channelname,
messagecontent)
Messages that have been sent to
a channel for which the agent has
been registered are received and
handled by this method.

 503

IV. COURSEWORK
Two main exercises constitute the practical coursework. The

first one delves into the issues of how to incorporate a rule-
based reasoning into an intelligent agent and then use it for
constructive purposes such as to rank available information
according to a set of stipulated preferences. The 2nd exercise
focuses on constructing intelligent agents using the semantic
network concepts and deploying them to monitor, filter, and
retrieve relevant information from Internet and Web pages. In
both cases, the subject problems have been defined so that the
students are incited to program a variety of Simple Agents,
which in collaboration achieve the goal of the exercise.

In order to alleviate “hard-core” programming tasks and, in
turn, to free students’ time for efforts in understanding and
exploring AI concepts and applications, chunks of codes have
been handed out. Namely, a couple of example agents have
been included into the Simple Agent Framework based upon
which the students could commence building their own agents
(e.g., by editing, enlarging or enhancing the existing code).
This also enabled the students to explore the framework and
different agents while “in action”, prior attempting an actual
design of agents. As already noted above, we developed rule-
based inference procedures, rule-base constructs, semantic
networks constructs, and several search algorithms in Java.
The related Java classes were made available to the students.

The fostering of teamwork skills and spirit is considered to
be an objective of immense importance in the educational
programs of Delft University of Technology. Hence, virtually
all the existing practical courses, including the subject course,
have been designed for teams of students. In our case, 5 or 6
students constituted a team.

A. The First Exercise: Rule-Based Reasoning
The first exercise has been defined as follows.

Create an agent-based system that translates a questionnaire,
filled in by each participant in this course, into a chart that
expounds the suitability of each participant for being a part of
your team. Use Simple Agent Framework to build the required
system and employ rule-based reasoning. Explain the choice of
the utilized inference procedure and the final ranking of the
students being a part of your team.

Each of the 14 teams that participated in the course,
approached the posed problem in the following way (Fig. 1):
1) Build a Reader Agent that retrieves for each student who filled
in the questionnaire his/her answers from the Survey Data Web page.
2) Build an Inference Agent that applies forward chaining inference
procedure to determine the profiles of the fellow students based upon
their “survey data”. To do so, develop a knowledge base containing a
set of rules for delimiting the profile of a student. The utilized
questionnaire has been designed in a way that allows students to
define a large variety of such rules. For example, based upon an
affirmative answer to the question “Do you often take the initiative in
a project team?”, different teams defined different rules for assigning
labels such as leader, arrogant, and stupid. By combining different
“survey data” and scored labels, the Inference Agents developed by
different teams generated values like creative, dependable, nerd, etc.

3) Build a
an estimate
example, be
a student, an
to be an unw
4) Build a
scores provi
5) Provid
students un
chaining for
their choice
about their r
ranking gen
particular te
then either t
of the utiliz
standpoints

B. The S
The seco

Creat
news
Simpl
emplo
(if an

Each of
approached
1) Build a
the system w
2) Build a
representati
trivial (word
each non-tri
property wi
related word
network and
the frequen
occurs with
we provided
Fig 1: General structure of the multi-agent
system to be developed in the first excercise
 Score Agent that assigns to each of the fellow students
 of his/her suitability for being a part of the team. For
ing dependable can be decided to be a desired property of
d given a score of +10, while all knowing can be deemed
anted aspect, and given a score of -5.
 Lister Agent that assembles a ranking list by sorting the
ded by the Score Agent.
e the required explanations. Estimating whether the
derstood the difference between forward and backward
med the main incentive for asking the students to explain
 of the inference procedure. Inciting students to think
oles in the team motivated the request to explain the final
erated by their system. For example, if a member of a
am was estimated to be unsuitable for the pertinent team,
he subject member did not participate in the development
ed rules and Score Agent or he was not able to defend his
on how the mechanisms in question are to be developed.

econd Exercise: Semantic Networks
nd exercise has been defined as follows.

e an agent-based system that retrieves and analyses BBC
available via Internet according to your preferences. Use
e Agent Framework to build the required system and
y the semantic network concepts. Explain the drawbacks

y) of the utilized approach.
 the 13 teams that accomplished the subject task,
 the posed problem in the following way (Fig. 2):
 Reader Agent that monitors the BBC Web site and flags
hen a novel news article is posted.
 Make Network Agent that constructs a semantic network

on for each article. To do so, label each word as either
s like a, an, the, is, has, etc.) or non-trivial and represent

vial word as a node of the network. Associate a relevance
th each node to expound the frequency with which the
 occurs in the current article. Connect the nodes of the
 assign a match property to each such link to expound

cy with which the subject connection between words
in a single sentence. To aid the students with debugging,
 an agent capable of printing out an entire semantic net.

 504

3) Build an Analyzer Agent that selects ±5 nodes of the semantic
network having the highest values associated with their relevance
property and outputs the selected nodes, their links to other nodes,
and the pertinent linked nodes themselves.
4) Build a Filter Article Agent that labels the examined article as
being either important or unimportant. To do so, check whether the
word related to a selected node is in the list of keywords (i.e., in the
list of preferred topics). Check also whether a selected node has a
strong link with another node (use the value assigned to the match
property of the links) and, if so, check whether the word related to
that node is in the list of keywords. If either of these checks is in the
affirmative, label the analyzed article as being important. As an
example of both a basic machine learning technique and a task that
an agent-based system could do for us, we provided the students with
the Find Connection Agent which monitors the generated semantic
networks and outputs the series of usually connected words (e.g.,
“World Trade Center”, “Robert Mugabe”, “Tony Blair”, etc.).
5) Provide the required explanation. Inciting students to think
about the fact that homonyms and synonyms might (and probably
will) affect the results generated by their system formed an incentive
for asking the students to list the drawbacks of their system. Another
incentive for doing so was to make an estimation of whether the
students understood the drawbacks of a utilized search algorithm, the
advantages that could be achieved by including a “trained” Find
Connection Agent into the filtering process, etc.

V. EXPERIENCES AND CONCLUSIONS
The evaluation of the utilized educational methods and

materials by students is considered to be an objective of
immense importance in the educational programs of Delft
University of Technology. Based upon the feedback provided
by students, the courses and the utilized tools and readings
could be improved to fit better current students’ knowledge
and skills, their preferences, and overall and/or specific goals
of the entire subject educational program. There is a standard

questionnaire available for eliciting students’ opinions on
computer science courses, which includes all the relevant
questions about the suitability of the used tools and readings,
the experiences of the student during the course, and the ways
the course could be enhanced. From 73 students who attended
the course on Knowledge Engineering, 68 filled in the
pertinent questionnaire. In 67% of cases, students evaluated
the utilized educational material as being suitable for the goals
of the course. In 78% of cases, students labeled the practical
coursework as being interesting and motivating. In 83% of
cases, the students claimed that they enhanced their skills and
acquired new, valuable knowledge on the instructed subjects.
These results suggest that the developed Simple Agent
Framework and the designed exercises are highly suitable for
the purposes of teaching the students the AI basics including
knowledge representation schemes, rule-based reasoning and
intelligent agents paradigm. They also suggest that the students
liked the coursework and regarded it as motivating.

Nevertheless, the students indicated several aspects of the
Simple Agent Framework that could be enhanced in a next
version of the tool. One pertains to the enhancement of the
tool’s GUI. As already noted above, students’ suggestions on
this issue concern the inclusion of more elaborate help files, a
tutorial on Java, and direct links to exercise descriptions.

Currently, if an agent enters an infinite loop, other agents
and the interface become unresponsive and the framework
must forcibly be shut down. This is caused mainly due to the
threaded nature of the Simple Agent Framework. Nevertheless,
given that the students may (and usually do) make
programming mistakes, it is necessary to make the framework
more robust. For instance, eliminating automatically the agents
that are using too many system resources could attain this.

Addressing the two challenges explained up to this point
and, in turn, developing a better version of the Simple Agent
Framework, is a logical and necessary extension of our current
work. In addition, efforts towards enabling the agents of the
Simple Agent Framework being mobile could open up a
fruitful avenue for introducing students to both the concept of
mobile agent and the potential usefulness of such agents.

REFERENCES
[1] http://www.cbs.nl/nl/publicaties/artikelen/algemeen/webmagazine/artike

len/2001/0808k.htm.
[2] J. Haugeland, Artificial Intelligence: The Very Idea. Cambridge, MA:

MIT Press, 1985.
[3] J.P. Bigus and J. Bigus, Constructing intelligent agents using java.

New York: John Wiley & Sins, 2001.
[4] K.A. Arisha, F. Ozcan, R. Ross, V.S. Subrahmanian, T. Eiter and S.

Kraus, “Impact: A platform for collaborating agents”, IEEE Inteligent
Systems, vol. 14, no. 2, pp. 64-72, 1999.

[5] G. Weiss, Ed., Multiagent Systems. Cambridge, MA: MIT Press, 1999.
[6] http://www.agentlink.org/press/
[7] http://samuel.cs.uni-potsdam.de/soft/taxt/research/ade/ade.html
[8] http://www.tryllian.com/index.html
[9] http://agentsheets.com/
[10] http://www.agentlink.org/resources/agent-software.php
[11] Y. Shoham, “What we talk about when we talk about software agents”,

IEEE Inteligent Systems, vol. 14, no. 2, pp. 28-31, 1999.

Fig 2: General structure of the multi-agent system to
be developed in the second excercise

http://www.cbs.nl/nl/publicaties/artikelen/algemeen/webmagazine/artikelen/2001/0808k.htm
http://www.cbs.nl/nl/publicaties/artikelen/algemeen/webmagazine/artikelen/2001/0808k.htm
http://www.agentlink.org/press/
http://samuel.cs.uni-potsdam.de/soft/taxt/research/ade/ade.html
http://www.tryllian.com/index.html
http://agentsheets.com/
http://www.agentlink.org/resources/agent-software.php

	Introduction
	Teaching Material Requirements
	Simple Agent Framework
	Coursework
	The First Exercise: Rule-Based Reasoning
	The Second Exercise: Semantic Networks

	Experiences and Conclusions

