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Abstract Speech-driven facial animation is the process that
automatically synthesizes talking characters based on speech
signals. The majority of work in this domain creates a map-
ping from audio features to visual features. This approach
often requires post-processing using computer graphics tech-
niques to produce realistic albeit subject dependent results.
We present an end-to-end system that generates videos of a
talking head, using only a still image of a person and an au-
dio clip containing speech, without relying on handcrafted
intermediate features. Our method generates videos which
have (a) lip movements that are in sync with the audio and
(b) natural facial expressions such as blinks and eyebrow
movements. Our temporal GAN uses 3 discriminators fo-
cused on achieving detailed frames, audio-visual synchron-
ization, and realistic expressions. We quantify the contribu-
tion of each component in our model using an ablation study
and we provide insights into the latent representation of the
model. The generated videos are evaluated based on sharp-
ness, reconstruction quality, lip-reading accuracy, synchron-
ization as well as their ability to generate natural blinks.

Keywords Generative modelling · Face generation ·
Speech-driven animation

K.Vougioukas
Department of Computing, Imperial College London, 180 Queen’s
Gate, London SW7 2AZ, UK
E-mail: k.vougioukas@imperial.ac.uk

S. Petridis
Department of Computing, Imperial College London, 180 Queen’s
Gate, London SW7 2AZ, UK
E-mail: stavros.petridis04@imperial.ac.uk

M. Pantic
Department of Computing, Imperial College London, 180 Queen’s
Gate, London SW7 2AZ, UK
E-mail: m.pantic@imperial.ac.uk

1 Introduction

Computer Generated Imagery (CGI) has become an inex-
tricable part of the entertainment industry due to its abil-
ity to produce high quality results in a controllable manner.
One very important element of CGI is facial animation be-
cause the face is capable of conveying a plethora of inform-
ation not only about the character but also about the scene
in general (e.g. tension, danger). The problem of generat-
ing realistic talking heads is multifaceted, requiring high-
quality faces, lip movements synchronized with the audio,
and plausible facial expressions. This is especially challen-
ging because humans are adept at picking up subtle abnor-
malities in facial motion and audio-visual synchronization.

Facial synthesis in CGI is traditionally performed us-
ing face capture methods, which have seen drastic improve-
ment over the past years and can produce faces that ex-
hibit a high level of realism. However, these approaches re-
quire expensive equipment and significant amounts of la-
bour, which is why CGI projects are still mostly undertaken
by large studios. In order to drive down the cost and time re-
quired to produce high quality CGI researchers are looking
into automatic face synthesis using machine learning tech-
niques. Of particular interest is speech-driven facial anima-
tion since speech acoustics are highly correlated with facial
movements [42].

These systems could simplify the film animation process
through automatic generation from the voice acting. They
can also be applied in post-production to achieve better lip-
synchronization in movie dubbing. Moreover, they can be
used to generate parts of the face that are occluded or miss-
ing in a scene. Finally, this technology can improve band-
limited visual telecommunications by either generating the
entire visual content based on the audio or filling in dropped
frames.
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The majority of research in this domain has focused on
mapping audio features (e.g. MFCCs) to visual features (e.g.
landmarks, visemes) and using computer graphics (CG) meth-
ods to generate realistic faces [19]. Some methods avoid the
use of CG by selecting frames from a person-specific data-
base and combining them to form a video [5, 34]. Regard-
less of which approach is adopted these methods are subject
dependent and are often associated with a considerable over-
head when transferring to new speakers.

Subject independent approaches have been proposed that
transform audio features to video frames [10, 8]. However,
most of these methods restrict the problem to generating
only the mouth. Even techniques that generate the entire face
are primarily focused on obtaining realistic lip movements,
and typically neglect the importance of generating facial ex-
pressions. Natural facial expressions play a crucial role in
producing truly realistic characters and their absence creates
an unsettling feeling for many viewers. This lack of expres-
sions is a clear tell-tale sign of generated videos which is
often exploited by systems such as the one proposed in [22],
which exposes synthetic faces based on the existence and
frequency of blinks.

Some methods generate frames based solely on present
information [10, 8], without taking into account the dynam-
ics of facial motion. However, generating natural sequences,
which are characterized by a seamless transition between
frames, can be challenging when using this static approach.
Some video generation methods have dealt with this prob-
lem by generating the entire sequence at once [38] or in
small batches [31]. However, this introduces a lag in the
generation process, prohibiting their use in real-time applic-
ations and requiring fixed length sequences for training.

In this work we propose a temporal generative adversarial
network (GAN)1, capable of generating a video of a talk-
ing head from an audio signal and a single still image (see
Fig. 1). Our model builds on the system proposed in [39]
which uses separate discriminators at the frame and sequence
levels to generate realistic videos. The frame-level discrim-
inator ensures that generated frames are sharp and detailed,
whereas the temporal discriminator is responsible for audio
visual correspondence and generating realistic facial move-
ments. During training the discriminator learns to differen-
tiate real and fake videos based on synchrony or the pres-
ence of natural facial expressions. Although the temporal
discriminator helps with the generation of expressions and
provides a small improvement in audio-visual correspond-
ence, there is no way of ensuring that both these aspects are
captured in the video.

To solve this problem we propose using 2 temporal dis-
criminators to enforce audio-visual correspondence and real-
istic facial movements on the generated videos. By separat-

1 Videos are available on the following website:
https://sites.google.com/view/facial-animation
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Figure 1: The proposed end-to-end face synthesis model,
capable of producing realistic sequences of faces using one
still image and an audio track containing speech. The gener-
ated sequences exhibit smoothness and natural expressions
such as blinks and frowns.

ing these two tasks, which were undertaken by a single dis-
criminator in [39], we are able to explicitly focus on audio-
visual synchronization through a synchronisation discrim-
inator trained to detect audio-visual misalignment. Further-
more, isolating expressions from synchronisation further en-
courages the generation of spontaneous facial expressions,
such as blinks.

We also present a comprehensive assessment of the per-
formance of our method. This is done using a plethora of
quantitative measures and an in depth analysis that is miss-
ing from previous studies. Our model is trained and evalu-
ated on the GRID [13], TCD TIMIT [17], CREMA-D [6]
and LRW [11] datasets.

The frame quality is measured using well-established re-
construction and sharpness metrics. Additionally, we use lip
reading systems to verify the accuracy of the spoken words
and face verification to ensure that the identity is correctly
captured and maintained throughout the sequence. Further-
more, we examine the audio-visual correspondence in pro-
duced videos by using a recent speech synchronization de-
tection method. Finally, using a blink detector we measure
the number of blinks on the generated videos as well as the
blink duration.

This work provides an in-depth look at our method, ex-
amining how each element affects the quality of the video.
The contribution of each discriminator in our GAN is quan-
tified using the aforementioned metrics through an ablation
study performed on the GRID [13] dataset. Furthermore, we
examine the latent space in order to determine how well our
system encodes the speaker identity. Moreover, we analyze
the characteristics of the spontaneous expressions on videos
generated using our method and compare with those of real
videos. Finally, we present the results of an online Turing
test, where users are shown a series of generated and real
videos and are asked to identify the real ones.

2 Related Work

The problem of speech-driven video synthesis is not new in
computer vision and in fact, has been a subject of interest
for decades. Yehia et al. [42] were first to investigate the
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relationship between acoustics, vocal-tract and facial mo-
tion, discovering a strong correlation between visual and au-
dio features and a weak coupling between head motion and
the fundamental frequency of the speech signal [43]. These
findings have encouraged researchers to find new ways to
model the audio-visual relationship. The following sections
present the most common methods used in each modelling
approach.

2.1 Visual Feature Selection and Blending

The relationship between speech and facial motion has been
exploited by some CG methods, which assume a direct cor-
respondence between basic speech and video units. Cao et
al. [7] build a graph of visual representations called animes
which correspond to audio features. The graph is searched
in order to find a sequence that best represents a given ut-
terance under certain co-articulation and smoothness con-
straints. Additionally, this system learns to detect the emo-
tion of the speech and adjust the animes accordingly to pro-
duce movements on the entire face. The final result is ob-
tained by time-warping the anime sequence to match the
timing of the spoken utterance and blending for smoothness.
Such methods use a small set of visual features and interpol-
ate between key frames to achieve smooth movement. This
simplification of the facial dynamics usually results in un-
natural lip movements, which is why methods that attempt
to model the facial dynamics are preferred over these ap-
proaches.

2.2 Synthesis Based on Hidden Markov Models

Some of the earliest methods for facial animation relied on
Hidden Markov Models (HMMs) to capture the dynamics
of the video and speech sequences. Simons and Cox [32]
used vector quantization to achieve a compact representa-
tion of video and audio features, which were used as the
states for their fully connected Markov model. The Viterbi
algorithm was used to recover the most likely sequence of
mouth shapes for a speech signal. A similar approach is used
in [41] to estimate the sequence of lip parameters. Finally,
the Video Rewrite method [5] relies on the same principles
to obtain a sequence of triphones, which are used to look up
mouth images from a database. The final result is obtained
by time-aligning the images to the speech and then spatially
aligning and stitching the jaw sections to the background
face.

Since phonemes and visemes do not have a one-to-one
correspondence some HMM-based approaches replace the
single Markov chain approach with a multi-stream approach.
Xie et al. [40] propose a coupled HMM to model the audio-

visual dependencies and compare the performance of this
model to other single and multi-stream HMM architectures.

2.3 Synthesis Based on Deep Neural Networks

Although HMMs were initially preferred to neural networks
due to their explicit breakdown of speech into intuitive states,
recent advances in deep learning have resulted in neural net-
works being used in most modern approaches. Like past at-
tempts, most of these methods aim at performing a feature-
to-feature translation. A typical example of this, proposed
in [35], uses a deep neural network (DNN) to transform a
phoneme sequence into a sequence of shapes for the lower
half of the face. Using phonemes instead of raw audio en-
sures that the method is subject independent.

Most deep learning approaches use convolutional neural
networks (CNN) due to their ability to efficiently capture
useful features in images. Karras et al. [19] use CNNs to
transform audio features to 3D meshes of a specific person.
This system is conceptually broken into sub-networks re-
sponsible for capturing articulation dynamics and estimating
the 3D points of the mesh.

Analogous approaches,which are capable of generating
facial descriptors from speech using recurrent neural net-
works (RNNs) have been proposed in [15, 34, 26]. In par-
ticular, the system proposed in [34] uses Long Short Term
Memory (LSTM) cells to produce mouth shapes from Mel-
Frequency Cepstral Coefficients (MFCCs). For each gener-
ated mouth shape a set of best matching frames is found
from a database and used to produce mouth images. These
mouth shapes are blended with the frames of a real target
video to produce very realistic results.

Although visual features such as mouth shapes and 3D
meshes are very useful for producing high quality videos
they are speaker specific. Therefore, methods that rely on
them are subject dependent and require additional retraining
or re-targeting steps to adapt to new faces. For this reason
methods like the one proposed in [45] use speaker inde-
pendent features such as visemes and Jaw and Lip (JALI)
parameters.

Finally, Chung et al. [10] proposed a CNN applied on
MFCCs that generates subject independent videos from an
audio clip and a still frame. The method uses an L1 loss at
the pixel level resulting in blurry frames, which is why a
deblurring step is also required. Secondly, this loss at the
pixel level penalizes any deviation from the target video dur-
ing training, providing no incentive for the model to pro-
duce spontaneous expressions and resulting in faces that are
mostly static except for the mouth.
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2.4 GAN-Based Video Synthesis

The recent introduction of GANs in [16] has shifted the fo-
cus of the machine learning community to generative mod-
elling. GANs consist of two competing networks: a gen-
erative network and a discriminative network. The gener-
ator’s goal is to produce realistic samples and the discrimin-
ator’s goal is to distinguish between the real and generated
samples. This competition eventually drives the generator to
produce highly realistic samples. GANs are typically asso-
ciated with image generation since the adversarial loss pro-
duces sharper, more detailed images compared to L1 and L2
losses. However, GANs are not limited to these applications
and can be extended to handle videos [24, 23, 38, 36].

Straight-forward adaptations of GANs for videos are pro-
posed in [38, 31], replacing the 2D convolutional layers with
3D convolutional layers. Using 3D convolutions in the gen-
erator and discriminator networks is able to capture temporal
dependencies but requires fixed length videos. This limita-
tion was overcome in [31] but constraints need to be im-
posed in the latent space to generate consistent videos. CNN
based GAN approaches have been used for speech to video
approaches such as the one proposed in [44].

The MoCoGAN system proposed in [36] uses an RNN-
based generator, with separate latent spaces for motion and
content. This relies on the empirical evidence shown in [29]
that GANs perform better when the latent space is disen-
tangled. MoCoGAN uses a 2D and 3D CNN discriminator
to judge frames and sequences respectively. A sliding win-
dow approach is used so that the 3D CNN discriminator can
handle variable length sequences. Furthermore, the GAN-
based system proposed in [27] uses Action Unit (AU) coef-
ficients to animate a head. A similar approach is used in the
GANimation model proposed in [28]. These approaches can
be combined with speech-driven animation methods [26]
that produce AU coefficients which drive facial expressions
from speech.

GANs have also been used in a variety of cross-modal
applications, including text-to-video and audio-to-video. The
text-to-video model proposed in [23] uses a combination of
variational auto encoders (VAE) and GANs in its generat-
ing network and a 3D CNN as a sequence discriminator. Fi-
nally, Chen et al. [9] propose a GAN-based encoder-decoder
architecture that uses CNNs in order to convert audio spec-
trograms to frames and vice versa. This work is extended in
[21], using an attention mechanism which helps the network
focus on frame regions that correlate highly with the audio.
However as a result this method neglects other areas such as
the brow and eyes.
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Figure 2: The deep model for speech-driven facial synthesis.
It uses 3 discriminators to incorporate different aspects of a
realistic video.

3 Speech-Driven Facial Synthesis

The proposed architecture for speech-driven facial synthesis
is shown in Fig. 2. The system consists of a temporal gener-
ator and multiple discriminators, each of which evaluates the
generated sequence from a different perspective. The cap-
ability of the generator to capture various aspects of natural
sequences is proportional to the ability of each discriminator
to discern videos based on them.

3.1 Generator

The generator accepts as input a single image and an au-
dio signal, which is divided into overlapping frames corres-
ponding to 0.2 seconds. Each audio frame must be centered
around a video frame. In order to achieve this one-to-one
correspondence we zero pad the audio signal on both sides
and use the following formula for the stride:

stride =
audio sampling rate

video f ps
(1)

The generator network has an encoder-decoder structure
and can be conceptually divided into sub-networks as shown
in Fig. 3. We assume a latent representation that is made up
of 3 components which account for the speaker identity, au-
dio content and spontaneous facial expressions. These com-
ponents are generated by different modules and combined to
form an embedding which can be transformed into a frame
by the decoding network.

3.1.1 Identity Encoder

The speaker’s identity is encoded using a 6-layer CNN. Each
layer uses strided 2D convolutions, followed by batch nor-
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Figure 3: The architecture of the generator network which
consists of a Content Encoder (audio encoder and RNN), an
Identity Encoder, a Frame Decoder and Noise Generator

malization and ReLU activation functions. The Identity En-
coder network reduces a 96× 128 input image to a 128 di-
mensional encoding zid .

3.1.2 Content Encoder

Audio frames are encoded using a network comprising of
1D convolutions followed by batch normalization and ReLU
activation functions. The initial convolutional layer starts
with a large kernel, as recommended in [14], which helps
limit the depth of the network while ensuring that the low-
level features are meaningful. Subsequent layers use smaller
kernels until an embedding of the desired size is achieved.
The audio frame encoding is input into a 1-layer GRU, which
produces a content encoding zc with 256 elements.

3.1.3 Noise Generator

Although speech contains the necessary information for lip
movements it can not be used to produce spontaneous facial
expressions. To account for such expressions we propose
appending a noise component to our latent representation.
Spontaneous expressions such as blinks are coherent facial
motions and therefore we expect the latent space that models
them to exhibit the same temporal dependency. We there-
fore, avoid using white noise to model these expressions
since it is by definition temporally independent. Instead we
use a Noise Generator capable of producing noise that is
temporally coherent. A 10 dimensional vector is sampled
from a Gaussian distribution with mean 0 and variance of
0.6 and passed through a single-layer GRU to produce the
noise sequence. This latent representation introduces ran-
domness in the face synthesis process and helps with the
generation of blinks and brow movements.

(a) (b) (c)

Figure 4: The effect of adding skip connections to the gener-
ator network. The frames obtained without skip connections
shown in (a) do not resemble the person in the ground truth
video (b). Adding skip connections ensures that the identity
is preserved in frames (c).

3.1.4 Frame Decoder

The latent representation for each frame is constructed by
concatenating the identity, content and noise components.
The Frame Decoder is a CNN that uses strided transposed
convolutions to produce the video frames from the latent
representation. A U-Net [30] architecture is used with skip
connections between the Identity Encoder and the Frame
Decoder to preserve the identity of the subject as shown in
Fig. 4.

3.2 Discriminators

Our system uses multiple discriminators in order to capture
different aspects of natural videos. The Frame Discrimin-
ator achieves a high-quality reconstruction of the speakers’
face throughout the video. The Sequence Discriminator en-
sures that the frames form a cohesive video which exhibits
natural movements. Finally, the Synchronization Discrimin-
ator reinforces the requirement for audio-visual synchroniz-
ation.

3.2.1 Frame Discriminator

The Frame Discriminator is a 6-layer CNN that determines
whether a frame is real or not. Adversarial training with
this discriminator ensures that the generated frames are real-
istic. Furthermore, the original still frame is concatenated
channel-wise to the target frame and used as a condition,
which enforces the identity onto the video frames.

3.2.2 Sequence Discriminator

The Sequence Discriminator distinguishes between real and
synthetic videos. At every time step the discriminator will
use a CNN with spatio-temporal convolutions to extract tran-
sient features, which are then fed into a 1-layer GRU. A
single layer classifier used at the end of the sequence de-
termines if a sequence is real or not.
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Figure 5: The synchronization discriminator decides if an
audio-visual pair is in or out of sync. It uses 2 encoders to
obtain embeddings for audio and video and decides if they
are in or out of sync based on their Euclidean distance.

3.2.3 Synchronization Discriminator

The Synchronization Discriminator is given fixed-length snip-
pets (corresponding to 0.2s) of the original video and audio
and determines whether they are in or out of sync. This dis-
criminator uses a two stream architecture to compute an em-
bedding for audio and video. The Euclidean distance between
the 2 embeddings is calculated and fed into a single layer
perceptron for classification. The architecture of this dis-
criminator is shown in Fig. 5.

Showing the discriminator only real or fake audio-video
pairs will not necessarily result in samples being classified
based on their audio visual correspondence. In order to force
the discriminator to judge the sequences based on synchron-
ization we also train it to detect misaligned audio-visual
pairs taken from real videos. During training the discrim-
inator learns to reduce the distance between the encodings
of synchronized audio-video pairs and increase the distance
between misaligned pairs. The distance for the fake pair
(generated video with real audio) lies between these two
distances and its location is determined by how dominant
the discriminator is over the generator. Finally, since move-
ments on the upper half of the face do not affect audio-visual
synchrony we have chosen to use only the lower half of the
face to train the Synchronization Discriminator.

3.3 Training

The Frame discriminator (Dimg) is trained on frames that are
sampled uniformly from a video x using a sampling func-
tion S(x). Using the process shown in Fig. 6 we obtain in
and out of sync pairs pin, pout from the real video x and
audio a and a fake pair p f . We use these pairs as training
data for the Synchronization discriminator (Dsync). Finally
the Sequence Discriminator (Dseq), classifies based on the
entire sequence x. The total adversarial loss Ladv is made up
of the adversarial losses associated with the Frame (Limg

adv),
Synchronization (Lsync

adv ) and Sequence (Lseq
adv) discriminat-

ors. These losses are described by Eq. 2 – 4. The total ad-
versarial loss is an aggregate of the losses associated with

Figure 6: All possible pairs that are used to train the syn-
chronization discriminator. Pairs belong to in one of the fol-
lowing categories {real video, in-sync audio}, {real video,
shifted audio}, {fake video, matching audio}

each discriminator as shown in Eq. 5, where each loss is
assigned a corresponding weight (λimg, λsync, λseq).

Limg
adv =Ex∼Pd [logDimg(S(x),x1)]+

Ez∼Pz [log(1−Dimg(S(G(z)),x1))]
(2)

Lsync
adv = Ex∼Pd [logDsync(pin)]+

1
2
Ex∼Pd [log1−Dsync(pout)] +

1
2
Ez∼Pz [log(1−Dsync(Ssnip(p f ))]

(3)

Lseq
adv = Ex∼Pd [logDseq(x,a)]+Ez∼Pz [log(1−Dseq(G(z),a))] (4)

Ladv = λimgLimg
adv +λsyncLsync

adv +λseqLseq
adv (5)

An L1 reconstruction loss is also used to help capture
the correct mouth movements. However we only apply the
reconstruction loss to the lower half of the image since it dis-
courages the generation of facial expressions. For a ground
truth frame F and a generated frame G with dimensions
W ×H the reconstruction loss at the pixel level is Eq. 6.

LL1 = ∑
p∈[0,W ]×[H

2 ,H]

|Fp−Gp| (6)

The loss of our model, shown in Eq. 7, is made up of the
adversarial loss and the reconstruction loss. The λrec hyper-
parameter controls the contribution of of the reconstruction
loss compared to the adversarial loss and is chosen so that,
after weighting, this loss is roughly triple the adversarial
loss. Through fine tuning on the validation set we find that
the optimal values of the loss weights are λrec = 600, λimg =

1, λsync = 0.8 and λseq = 0.2. The model is trained until no
improvement is observed in terms of the audio-visual syn-
chronization on the validation set for 5 epochs. We use pre-
trained lipreading models where available or other audio-
visual synchronization models to evaluate the audio-visual
synchrony of a video.

argmin
G

max
D
Ladv + λrecLL1 (7)
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Dataset Test Subjects
GRID 2, 4, 11, 13, 15, 18, 19, 25, 31, 33
TCD TIMIT 8, 9, 15, 18, 25, 28, 33, 41, 55, 56
CREMA-D 15, 20, 21, 30, 33, 52, 62, 81, 82, 89

Table 1: The subject IDs that our model is tested on for each
dataset.

We used Adam [20] for all the networks with a learning
rate of 0.0001 for the Generator and Frame Discriminator.
The Sequence Discriminator and Synchronization Discrim-
inator use a smaller learning rate of 10−5. Smaller learning
rates for the sequence and synchronization discriminators
are required in order to avoid over-training the discrimin-
ators, which can lead to instability [2]. The learning rate of
the generator and discriminator decays with rates of 2% and
10%, respectively, every 10 epochs.

4 Datasets

Experiments are run on the GRID, TCD TIMIT, CREMA-
D and LRW datasets. The GRID dataset has 33 speakers
each uttering 1000 short phrases, containing 6 words ran-
domly chosen from a limited dictionary. The TCD TIMIT
dataset has 59 speakers uttering approximately 100 phonet-
ically rich sentences each. Finally, in the CREMA-D dataset
91 actors coming from a variety of different age groups and
races utter 12 sentences. Each sentence is acted out by the
actors multiple times for different emotions and intensities.

We use the recommended data split for the TCD TIMIT
dataset but exclude some of the test speakers and use them as
a validation set. For the GRID dataset speakers are divided
into training, validation and test sets with a 50%− 20%−
30% split respectively. The CREMA-D dataset is also split
with ratios 70%− 15%− 15% for training, validation and
test sets. Finally, for the LRW dataset we use the recom-
mended training, validation and test sets. However we limit
our training to faces that are nearly frontal. To do this we use
pose estimation software [18] based on the model proposed
in [46] to select faces whose roll, pitch and yaw angles are
smaller than 10°.

As part of our pre-processing all faces are aligned to the
canonical face and images are normalized. We perform data
augmentation on the training set by mirroring the videos.
The amount of data used for training and testing is presented
in Table 2.

5 Metrics

This section describes the metrics that are used to assess the
quality of generated videos. The videos are evaluated using

Dataset Samples/Hours (Tr) Samples/Hours (V) Samples/Hours (T)
GRID 31639 / 26.4 6999 / 5.8 9976 / 8.31
TCD 8218 / 9.1 686 / 0.8 977 / 1.2
CREMA 11594 / 9.7 819 / 0.7 820 / 0.68
LRW 112658 / 36.3 5870 / 1.9 5980 / 1.9

Table 2: The samples and hours of video in the training (Tr),
validation (V) and test (T) sets.

Accuracy Precision Recall MAE (Start) MAE (End)
80% 100% 80% 1.4 2.1

Table 3: Performance of the blink detector on a small selec-
tion of videos from the GRID database that was manually
annotated.

traditional image reconstruction and sharpness metrics. Al-
though these metrics can be used to determine frame qual-
ity they fail to reflect other important aspects of the video
such as audio-visual synchrony and the realism of facial ex-
pressions. We therefore propose using alternative methods
that are capable of capturing these aspects of the generated
videos.

Reconstruction Metrics: We use common reconstruction
metrics such as the peak signal-to-noise ratio (PSNR) and
the structural similarity (SSIM) index to evaluate the gen-
erated videos. During our assessment it is important to take
into account the fact that reconstruction metrics will pen-
alize videos for any facial expression that does not match
those in the ground truth videos.
Sharpness Metrics: The frame sharpness is evaluated us-
ing the cumulative probability blur detection (CPBD) meas-
ure [25], which determines blur based on the presence of
edges in the image. For this metric as well as for the recon-
struction metrics larger values imply better quality.
Content Metrics: The content of the videos is evaluated
based on how well the video captures identity of the tar-
get and on the accuracy of the spoken words. We verify the
identity of the speaker using the average content distance
(ACD) [36], which measures the average Euclidean distance
of the still image representation, obtained using OpenFace
[1], from the representation of the generated frames. The ac-
curacy of the spoken message is measured using the word er-
ror rate (WER) achieved by a pre-trained lip-reading model.
We use the LipNet model [3], which surpasses the perform-
ance of human lip-readers on the GRID dataset. For both
content metrics lower values indicate better accuracy.
Audio-Visual Synchrony Metrics: Synchrony is quantified
using the methods proposed in [12]. In this work Chung et
al. propose the SyncNet network which calculates the euc-
lidean distance between the audio and video encodings on
small (0.2 second) sections of the video. The audio-visual
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will have a larger EAR compared to a closed eye.
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E
A

R

Figure 8: A blink is detected at the location where a sharp
drop occurs in the EAR signal (blue dot). We consider the
start (green dot) and end (red dot) of the blink to correspond
to the peaks on either side of the blink location.

offset is obtained by using a sliding window approach to find
where the distance is minimized. The offset is measured in
frames and is positive when the audio leads the video. For
audio and video pairs that correspond to the same content
the distance will increase on either side of point where the
minimum distance occurs. However, for uncorrelated audio
and video the distance is expected to be stable. Based on this
fluctuation Chung et al. [12] further propose using the differ-
ence between the minimum and the median of the Euclidean
distances as an audio-visual (AV) confidence score which
determines the audio-visual correlation. Higher scores indic-
ate a stronger correlation, whereas confidence scores smaller
than 0.5 indicate that audio and video are uncorrelated.
Expression Evaluation: We investigate the generation of
spontaneous expressions since it is one of the main factors
that affect our perception of how natural a video looks. Ac-
cording to the study presented in [4] the average person
blinks 17 times per minute (0.28 blinks/sec), although this
rate increases during conversation and decreases when read-
ing. We use a blink detector based on the one proposed in
[33], which relies on the eye aspect ratio (EAR) to detect
the occurrence of blinks in videos. The EAR is calculated
per frame according to the formula shown in eq. (8) using
facial landmarks p1 to p6 shown in Fig. 7. The blink detector
algorithm first calculates the EAR signal for the entire video
and then identifies blink locations by detecting a sharp drop
in the EAR signal.

EAR =
‖p2− p6‖+‖p3− p5‖

‖p1− p4‖
(8)

GRID TIMIT CREMA LRW
blinks/sec 0.39 0.28 0.26 0.53

median duration (sec) 0.4 0.2 0.36 0.32

Table 4: The average blink rate and median blink duration
for real videos in each dataset.

Once the blink is detected we can identify the start and
end of the blink by searching for the peaks on either side of
that location as shown in Fig. 8. Using this information we
can calculate the duration of blinks and visualize the blink
distribution.

To gauge the performance of the blink detector we meas-
ure its accuracy on 50 randomly selected videos from the
GRID validation set that we have manually annotated. The
performance metrics for the blink detection as well as the
mean absolute error (MAE) for detecting the start and end
points of the blinks are shown in Table 3. The MAE is meas-
ured in frames and the video frame rate is 25 fps.

This method detects blinks with a high accuracy of 80%,
which means that we can rely on it to give us accurate stat-
istics for the generated videos. We have chosen a very strict
threshold for the drop in EAR in order to ensure that there
are minimal if any false alarms. This is evident by the very
high precision of the method. Finally, we note that the de-
tector detects the start and end of a blink with an average
error of 1.75 frames.

We can use the blink detector to obtain the distribution
for the number of blinks per video (GRID videos are 3 seconds
long) as well as the distribution for blink duration for the
GRID test set. These results are shown in Fig. 9. The mean
blink rate is 1.18 blinks/video or 0.39 blinks/second which is
similar to the average human blink rate of 0.28 blinks/second,
especially when considering that the blink rate increases to
0.4 blinks/second during conversation. The average duration
of a blink was found to be 10 frames (0.41s). However, we
find that using the median is more accurate since this is less
sensitive to outliers caused by the detector missing the end
of the blink. Finally, it is important to note that the short
length of the videos will affect our estimate of the blink rate.
The blinks for all the datasets are shown in Table 4.

6 Experiments

Our model is implemented in PyTorch and takes approxim-
ately a week to train using a single Nvidia GeForce GTX
1080 Ti GPU. During inference the average generation time
per frame is 7ms on the GPU, permitting the use of our
method in real time applications. A sequence of 75 frames
can be synthesized in 0.5s. The frame and sequence gener-
ation times increase to 1s and 15s respectively when pro-
cessing is done on the CPU.
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Figure 9: The distributions for (a) amount of blinks per video
and (b) the average blink duration per video from the GRID
dataset.

(a) L1 loss on entire frame

(b) Proposed loss on frames

Figure 10: Frames using (a) only an L1 loss on the entire
face compared to (b) frames produced using the proposed
method. Frames are taken from videos generated on the
CREMA-D test set.

6.1 Ablation Study

In order to quantify the effect of each component of our
system we perform an ablation study on the GRID data-
set (see Table 5). We use the metrics from section 5 and a
pre-trained LipNet model which achieves a WER of 21.76%
on the ground truth videos. The average value of the ACD
for ground truth videos of the same person is 0.98 · 10−4

whereas for different speakers it is 1.4 ·10−3.
The model that uses only an L1 loss achieves better PSNR

and SSIM results, which is expected as it does not gener-
ate spontaneous expressions, which are penalized by these
metrics unless they happen to coincide with those in ground
truth videos. We also notice that it results in the most blurry
images. The blurriness is minimized when using the frame
adversarial loss as indicated by the higher CPBD scores.
This is also evident when comparing video frames generated
with and without adversarial training as shown in Fig. 10.

The Average Content Distance is close to that of the
real videos, showing that our model captures and maintains
the subject identity throughout the video. Based on the res-
ults of the ablation study this is in large part due to the
Frame Discriminator. Furthermore, this indicates that the
identity encoder has managed to capture the speaker iden-

Figure 11: t-SNE plot of the identity encoding of random
frames from the GRID test set. Frames corresponding to the
same subject have the same colour. Male subjects are indic-
ated by a cross whereas female subjects are indicated by a
circle.

tity. Indeed, when plotting the identity encoding (Fig. 11)
of 1250 random images taken from the GRID test set using
the t-Distributed Stochastic Neighbor Embedding (t-SNE)
algorithm [37] we notice that images of the same subject
have neighbouring encodings. Additionally, we notice that
the data points can be separated according to gender.

The Sequence Discriminator is responsible for the gen-
eration of natural expressions. To quantify its effect we com-
pare the distribution of blinks for videos generated by the
full model to those generated without the Sequence Discrim-
inator. This is shown in Fig. 12, where it is evident that re-
moving the sequence discriminator drastically reduces blink
generation. Furthermore, we note the similarity of the gen-
erated and real distribution of blinks and blink duration. The
average blink rate in videos generated by our model is 0.4
blinks/sec with the median blink lasting 9 frames (0.36s).
Both the average blink rate and median duration are very
close to those found in the ground truth videos in Table 4.

We also notice that the removal of the sequence dis-
criminator coincides with a an increase in PSNR and SSIM,
which is likely due to the generation of blinks and head
movements. We test this hypothesis by calculating the PSNR
only on the lower half of the image and find that gap between
the non-adversarial model and our proposed model reduces
by 0.3 dB.

The effect of the synchronization discriminator is reflec-
ted in the low WER and high AV confidence values. Our
ablation study shows that the temporal discriminators have
a positive contribution to both the audio-visual synchroniz-
ation and the WER.

6.2 Qualitative Results

Our method is capable of producing realistic videos of pre-
viously unseen faces and audio clips taken from the test
set. The same audio used on different identities is shown
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Method PSNR SSIM CPBD ACD WER AV Offset AV Confidence blinks/sec blink dur. (sec)

GT ∞ 1.00 0.276 0.98 ·10−4 21.76% 1 7.0 0.39 0.41
w/o Ladv 28.467 0.855 0.210 1.92 ·10−4 26.6% 1 7.1 0.02 0.16
w/o LL1 26.516 0.805 0.270 1.03 ·10−4 56.4% 1 6.3 0.41 0.32
w/o Limg

adv 26.474 0.804 0.252 1.96 ·10−4 23.2% 1 7.3 0.16 0.28
w/o Lsync

adv 27.548 0.829 0.263 1.19 ·10−4 27.8% 1 7.2 0.21 0.32
w/o Lseq

adv 27.590 0.829 0.259 1.13 ·10−4 27.0% 1 7.4 0.03 0.16
Full Model 27.100 0.818 0.268 1.47 ·10−4 23.1% 1 7.4 0.45 0.36

Table 5: Ablation study performed on the GRID dataset. In every experiment we train the model by removing a single term
from eq. (7).

(a) Full model (b) w/o Lseq
adv

(c) Full model (d) w/o Lseq
adv

Figure 12: The distribution of blinks for videos generated
by (a) our proposed model and (b) a model without the Se-
quence Discriminator. When the Sequence Discriminator is
used (c) the distribution of blink duration closely resembles
that of the real videos. The same does not hold when (d) the
Sequence Discriminator is omitted.

in Fig. 13. From visual inspection it is evident that the lips
are consistently moving similarly to the ground truth video.

Our method not only produces accurate lip movements
but also natural videos that display characteristic human ex-
pressions such as frowns, blinks and angry expressions, ex-
amples of which are shown in Fig. 14. In these examples
we highlight the regions of the frames that exhibit the most
movement using motion maps. These maps are obtained by
calculating the optical flow between consecutive frames, re-
flecting the angle of movement in the hue and assigning the
magnitude of the motion to the value component in the Hue
Saturation Value (HSV) color-space.

The amount and variety of expressions generated is de-
pendent on the amount of expressions present in the data-
set used for training and hence faces generated by mod-
els trained on expressive datasets such as CREMA-D will
exhibit a wider range of expressions. This is illustrated in

Fig. 15, where the facial expressions reflect the emotion of
the speaker.

The works that are closest to ours are those proposed
in [34] and [10]. The former method is subject dependent
and requires a large amount of data for a specific person to
generate videos. There is no publicly available implementa-
tion for the Speech2Vid method proposed in [10] but a pre-
trained model is provided, which we can use for compar-
ison. For completeness we also compare against a GAN-
based method that uses a combination of an L1 loss and
an adversarial loss on individual frames. We consider this
approach as the baseline GAN-based approach. Finally, we
also compare with the ATVGNet model proposed in [21],
which is pretrained on the LRW dataset.

Since the baseline and the Speech2Vid model are static
methods they produce less coherent sequences, character-
ized by jitter, which becomes worse in cases where the au-
dio is silent (e.g. pauses between words). This is likely due
to the fact that there are multiple mouth shapes that corres-
pond to silence and since the model has no knowledge of
its past state it generates them at random. Fig. 18 highlights
such failures of static models and compares it to our method.

When silent audio is provided as input to our model the
lips do not form words. However, in the case where the ini-
tial frame exhibits a facial expression (i.e. smile) it is sup-
pressed gradually over a sequence of frames. We verify this
by using silent audio with a small additive pink noise to
drive the generation process. The results in Fig. 17 show
how smiles naturally transform to more neutral expressions.
If the initial expression is neutral it is unaltered. It is im-
portant to note that videos will continue to exhibit spontan-
eous facial movements such as blinks even when the audio
is completely silent.

The Speech2Vid model only uses an L1 reconstruction
loss during training. This loss penalizes spontaneous expres-
sions which mostly occur on the upper part of the face and
is therefore likely to discourage their generation. In order
to examine the movement we use optical flow and create
a heatmap for the average magnitude of movement over a
set of 20 videos of the same subject from the LRW test set.
The heatmaps shown in Fig. 21 reveal the areas of the face
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Figure 13: Animation of different faces using the same audio. The movement of the mouth is similar for both faces as well as
for the ground truth sequence. Both audio and still image are taken from the TIMIT dataset and are unseen during training.

(a) Movement direction map

(b) Generated blink using audio from LRW and image from CelebA

(c) Generated frown on GRID dataset

(d) Angry expression from shouting audio on CREMA-D dataset

Figure 14: Facial expressions generated using our frame-
work include (b) blinks, (c) frowns and (d) shouting expres-
sions. The corresponding optical flow motion map is shown
above each sequence. A reference diagram for the direction
of the movement is shown in (a).

that are most often animated. Videos generated using our
approach have heatmaps that more closely resemble those
of real videos. The static baseline is characterized by con-
siderably more motion on the face which likely corresponds
to jitter. The Speech2Vid and ATVGNet models do not an-
imate the upper part of the face. This means that that these
methods do not capture speaker’s tone and cannot therefore
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Figure 15: Videos produced by the proposed method us-
ing the same image taken from the CREMA-D test set and
driven by the sentence “its eleven o’clock” spoken with a
female voice with multiple emotions.

generate matching facial expressions. An example of this
shortcoming is shown in Fig. 20 where we compare a video
generated from the CREMA-D dataset using the Speech2Vid
model and our proposed method.

6.3 Quantitative Results

We measure the performance of our model on the GRID,
TCD TIMIT, CREMA-D and LRW datasets using the met-
rics proposed in section 5 and compare it to the baseline
and the Speech2Vid model. For the LRW dataset we also
compare with the ATVGNet GAN-based method proposed in
[21], for which we use the provided pretrained model. The
preprocessing procedure for ATVGNet is only provided for
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Figure 16: Videos produced using model trained on LRW for unseen faces taken from the CelebA dataset. The speech clip
is taken from the test set of the LRW dataset and corresponds to the word “stand”. Frames which contain blinking eyes are
highlighted.

the LRW dataset hence we do not compare with this model
on other datasets.

The results in Table 6 show that our method outperforms
other approaches in both frame quality and content accuracy.
For the LRW dataset our model is better not only from the
static approaches but also from ATVGNet. Our model per-
forms similarly or better than static methods when in terms
of frame-based measures (PSNR, SSIM, CBPD, ACD). How-
ever, the difference is substantial in terms of metrics that
measure content such as lipreading WER. Also our method
achieves a higher AV confidence, although it must be noted
that based on the offset estimated using the SyncNet model
our videos generated for the CREMA-D dataset exhibit a
slight lag of 1 frame compared to the Speech2Vid method.
Finally, we emphasize that our model is capable of gener-
ating natural expressions, which is reflected in the amount
and duration of blinks (Table 6), closely matching those of
the real videos, shown in Table 4.

We note that the Speech2Vid and ATVGNet methods are
not capable of generating any blinks. For the Speech2Vid

model this due to using only an L1 loss and for the ATVGNet
this is likely due to the attention mechanism which focuses
only on the mouth since it is the region that correlates with
speech. The static baseline is capable of producing frames
with closed eyes but these exhibit no continuity and are char-
acterised by very short duration as shown in Table 6.

We further note the differences in the performance of
our method for different datasets. In particular we note that
the reconstruction metrics are better for the GRID dataset.
In this dataset subjects are recorded under controlled con-
ditions and faces are not characterised by much movement.
Synthesized faces will mimic the motion that is present in
the training videos, generating emotions and head move-
ments. However since these movements cause deviation from
the ground truth videos and therefore will be penalized by
reference metrics such as PSNR and SSIM. Performance
based on reconstuction metrics becomes worse as datasets
become less controlled and exhibit more expressions. An-
other noteworthy phenomenon is the drop in audio-visual
correlation, indicated by the lower AV confidence for the
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Method PSNR SSIM CPBD ACD WER AV Offset AV Confidence blinks/sec blink dur. (sec)

G
R

ID

Proposed Model 27.100 0.818 0.268 1.47 ·10−4 23.1% 1 7.4 0.45 0.36
Baseline 27.023 0.811 0.249 1.42 ·10−4 36.4% 2 6.5 0.04 0.29
Speech2Vid 22.662 0.720 0.255 1.48 ·10−4 58.2% 1 5.3 0.00 0.00

T
C

D

Proposed Model 24.243 0.730 0.308 1.76 ·10−4 N/A 1 5.5 0.19 0.33
Baseline 24.187 0.711 0.231 1.77 ·10−4 N/A 8 1.4 0.08 0.13
Speech2Vid 20.305 0.658 0.211 1.81 ·10−4 N/A 1 4.6 0.00 0.00

C
R

E
M

A Proposed Model 23.565 0.700 0.216 1.40 ·10−4 N/A 2 5.5 0.25 0.26
Baseline 22.933 0.685 0.212 1.65 ·10−4 N/A 2 5.2 0.11 0.13
Speech2Vid 22.190 0.700 0.217 1.73 ·10−4 N/A 1 4.7 0.00 0.00

L
R

W

Proposed Model 23.077 0.757 0.260 1.53 ·10−4 N/A 1 7.4 0.52 0.28
Baseline 22.884 0.746 0.218 1.02 ·10−4 N/A 2 6.0 0.42 0.13
Speech2Vid 22.302 0.709 0.199 2.61 ·10−4 N/A 2 6.2 0.00 0.00
ATVGNet 20.107 0.743 0.189 2.14 ·10−4 N/A 2 7.0 0.00 0.00

Table 6: Performance comparison of the proposed method against the static baseline and Speech2Vid [10]. A pretrained
LipNet model is only available for the GRID dataset so the WER metric is omitted on other datasets. The LRW datasets
contains only one word so calculating WER is not possible

0.00 -

0.05 -

0.05 -

Figure 17: Example of frames generated when silent audio, with additive pink noise, is used to drive the generation. Images
are taken from the CelebA dataset. The model is capable of suppressing any expression present in the initial frame through
a smooth frame transition.

TCD TIMIT and CREMA-D datasets compared to GRID
and LRW. We attribute to this drop in performance to the
fact that the TCD TIMIT and CREMA-D are smaller data-
sets. It is therefore likely that the datasets do not have the
sufficient data for the models to capture the articulation as
well as for larger datasets.

6.4 User Study

Human perception of synthesized videos is hard to quantify
using objective measures. Therefore, we further evaluate the

realism of generated videos through an online Turing test 2.
In this test users are shown 24 videos (12 real - 12 synthes-
ized), which were chosen at random from the GRID, TIMIT
and CREMA datasets. We have not included videos from the
LRW since uploading them publicly is not permitted. Users
are asked to label each video as real or fake. Responses from
750 users were collected with the average user labeling cor-
rectly 52% of the videos. The distribution of user scores is
shown in Fig. 19.

2 Test available https://forms.gle/XDcZm8q5zbWmH7bD9
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Figure 18: Example of consecutive frames showcasing the
failure of static methods to produce a coherent motion. Dur-
ing silent periods static approaches exhibit jittery motion in
the mouth.

Figure 19: Distribution of correct responses of users in the
online Turing test. The red line symbolizes the a Gaussian
distribution with the same mean and std. dev. as the data.

7 Conclusion and Future Work

In this work we have presented an end-to-end model us-
ing temporal GANs for speech-driven facial animation. Our
model produces highly detailed frames scoring high in terms
of PSNR, SSIM and in terms of the sharpness on multiple
datasets. According to our ablation study this can be mainly
attributed to the use of a Frame Discriminator.

Furthermore, our method produces more coherent se-
quences and more accurate mouth movements compared to
the GAN-based static baseline and the Speech2Vid method.
This is demonstrated by a resounding difference in the WER.
We believe that these improvements are not only a result of
using a temporal generator but also due to the use of the
Synchronization Discriminator.

Unlike the Speech2Vid and ATVGNet that prohibit the
generation of facial expressions, the adversarial loss on the

(a) Speech2Vid

(b) Proposed Model

Figure 20: Comparison of the proposed model with
Speech2Vid. It is obvious that Speech2Vid can only generate
mouth movements and cannot generate any facial expres-
sion.

Average 
Motion Map
(20 videos)

R
e
a
l

P
ro

p
o
s
e
d

S
p
e
e
c
h
2

V
id

A
T
V

G
N

e
t

B
a
s
e
li
n
e

Example Sequence

Figure 21: Average motion heatmaps showing which areas
of the face exhibit the most movement. The heatmaps are
an average of the magnitude of the optical flow taken for 20
videos of the same subject of the LRW dataset. An example
sequence is shown next to the heatmap of each model.

entire sequence encourages spontaneous facial gestures. This
has been demonstrated with examples of blinks, head and
brow movements. Furthermore, our model is capable of cap-
turing the emotion of the speaker and reflecting it in the gen-
erated face.

This model has shown promising results in generating
lifelike videos, which produce facial expressions that reflect
the speakers tone. The inability of users to distinguish the
synthesized videos from the real ones in the Turing test veri-
fies that the videos produced look natural. The current lim-
itation of our method is that it only works for well-aligned
frontal faces. Therefore, the natural progression of this work
will be to produce videos that simulate in the wild condi-
tions. Finally, future work should also focus on extending
the network architecture to produce high definition video.
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