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ABSTRACT

Active Appearance Models (AAMs) are statistical models
of shape and appearance widely used in computer vision to
detect landmarks on objects like faces. Fitting an AAM to
a new image can be formulated as a non-linear least-squares
problem which is typically solved using iterative methods.
Owing to its efficiency, Gauss-Newton optimization has been
the standard choice over more sophisticated approaches like
Newton. In this paper, we show that the AAM problem has
structure which can be used to solve efficiently the origi-
nal Newton problem without any approximations. We then
make connections to the original Gauss-Newton algorithm
and study experimentally the effect of the additional terms in-
troduced by the Newton formulation on both fitting accuracy
and convergence. Based on our derivations, we also propose a
combined Newton and Gauss-Newton method which achieves
promising fitting and convergence performance. Our findings
are validated on two challenging in-the-wild data sets.

Index Terms— Active Appearance Models, Newton
method, LevenbergMarquardt, inverse compositional image
alignment.

1. INTRODUCTION

Introduced in [1], Active Appearance Models (AAMs) are
generative models of shape and appearance widely used in
face and medical image modelling and landmark detection.
As such, they have been extensively studied in computer vi-
sion research. Fitting an AAM to a new image can be formu-
lated as a non-linear least-squares problem which is typically
solved using iterative methods. There are mainly two lines
of research for solving this problem: approximate methods
like regression [2] or analytic gradient descent [2]. In this pa-
per, we focus on the latter approach and the different ways of
solving it.

Following the seminal work of [2], Gauss-Newton opti-
mization has been the standard choice for optimizing AAMs.
In [2], the authors proposed the so-called Project-Out Inverse
Compositional algorithm (POIC). POIC decouples shape
from appearance by projecting out appearance variation and
computes a warp update in the model coordinate frame which

Fig. 1. Fitting examples taken from the LFPW dataset.
Red: Gauss-Newton. Green: Pure Newton. Blue: Modified
Levenberg-Marquardt.

is then composed to the current warp estimate. This results in
a very fast algorithm which is the standard choice for fitting
person specific AAMs. Its main disadvantage, though, is its
limited generalization capability. In contrast to POIC, the
Simultaneous Inverse Compositional (SIC) algorithm, pro-
posed in [3], has been shown to perform robustly for the case
of unseen variations [4]. However, the computational cost of
the algorithm is almost prohibitive for most applications.

Because of the increased computational complexity, to
the best of our knowledge, no further attempts to study the
performance of more sophisticated optimization techniques
like Newton within AAMs have been made. However, as
recently shown in [5], the cost of SIC can be significantly
reduced without resorting to any approximations at all. Mo-
tivated by [5], we show that the Newton problem for the
case of AAMs has structure and can be efficiently solved via
block elimination which results in significant computational
savings. Based on this observation and for the first time (to
the best of our knowledge) in AAM literature, we derive the
necessary equations for solving it. Additionally, we compare
the derived equations to the ones derived from Gauss-Newton
and illustrate which new terms are introduced by the Newton
formulation. Then, we study their effect on fitting accuracy
and speed of convergence. Finally, based on our findings, and



inspired by the Levenberg-Marquardt algorithm [6], we pro-
pose a combined Newton and Gauss-Newton method, which
achieves promising fitting and convergence performance.
Our findings are validated on two challenging in-the-wild
data sets, namely LFPW [7] and Helen [8]. Illustrative exam-
ples for the methods presented in this paper are shown in Fig.
1.

2. ACTIVE APPEARANCE MODELS

AAMs are characterized by shape, appearance and motion
models. The shape model is obtained by firstly annotating
the location of u landmarks across a training set of objects
belonging to the same class (e.g. faces in our case). The
annotated shapes are then normalized using Procrustes Anal-
ysis. This step removes variations due to translation, scal-
ing and rotation. PCA is then applied to these normalized
shapes and the first n shape eigenvectors {si, · · · , sn} are
kept to define the shape model along with the mean shape
s0. This model can be used to generate a shape s ∈ R2u us-
ing s = s0 +

∑n
i=1 siqi, where q ∈ Rn is the vector of the

shape parameters.
The appearance model is obtained from the texture of the

training images, after appearance variation due to shape de-
formation is removed. This is achieved by warping each tex-
ture from its original shape into the mean shape s0 using mo-
tion model W, which in this work is assumed to be a piece-
wise affine warp. Each shape-free texture is represented as
a column vector of RN . Finally PCA is applied to all train-
ing shape-free textures to obtain the appearance model. This
model can be used to generate a texture a ∈ RN using a =
A0 +

∑m
i=1 ciAi, where c ∈ Rm is the vector of texture pa-

rameters. Finally, a model instance is synthesized to represent
a test object by warping the texture instance a from the mean
shape s0 to the shape instance s using the piecewise affine
warp W defined by s0 and s. Please see [2] for more details
on AAMs.

Localizing the landmarks of a face in a new image can be
formulated as finding the shape and appearance parameters
such that a model instance is “close” to the given image usu-
ally in a least-squares sense. This is equivalent to iteratively
solving the following non-linear least-squares problem over
all the pixels inside the mean shape (denoted by v ∈ s0):

arg min
q,c

1

2

∑
v∈s0

f(v, q, c) = arg min
q,c

1

2

∑
v∈s0

g(v, q, c)2, (1)

where

g(v, q, c) = [A0(v) +

m∑
i=1

ciAi(v)− I(W (v, q))].

Prior work on AAM fitting has mainly focused on solv-
ing the above problem using Gauss-Newton optimization. In

particular, one can linearize the above cost function with re-
spect to c and q, and then seek for updates, ∆q and ∆c, us-
ing least-squares. Notably, within the inverse compositional
framework, the linearization with respect to q is performed on
the model. To do so, we firstly write Ai(v) = Ai(W (v, q =
0), i ∈ {0, · · · ,m}. Then, to find an update, one proceeds as
follows:

1. Linearize with respect to c. Also linearize the model
{A0, A} around q = 0.

2. Compute updates, ∆q and ∆c, using least-squares.

3. Update c in an additive fashion, c ← c + ∆c, and q in
a compositional fashion q ← q ◦ ∆q−1, where ◦ de-
notes the composition of two warps. Please see [2] for
a principled way of applying the inverse composition to
AAMs.

The above algorithm is known as the Simultaneous In-
verse Compositional (SIC)[3], and it is the most popular exact
Gauss-Newton algorithm for solving problem (1). One can
show that the cost per iteration for SIC isO((n+m)2N), and
hence this algorithm is very slow [3]. Recently, the optimiza-
tion problem for a fast but exact version of SIC was derived
in [5]. The complexity of this algorithm is O(nmN + n2N),
only. Motivated by [5], in the next section, we develop a fast
Newton algorithm for the efficient fitting of AAMs.

3. FAST NEWTON AAMS

The Newton method is an iterative method that works by ap-
proximating the objective function f with a quadratic function
obtained from Taylor expansion. An update for the parame-
ters is analytically found by setting the derivative of this ap-
proximation to zero. Newton’s method writes Hf∆r = −J t

f ,
where Hf and Jf are the Hessian and Jacobian matrices of
f respectively, and ∆r = {∆q,∆c} is the update of the pa-
rameters. Although the cost of calculating the Hessian usu-
ally renders the Newton’s algorithm computationally heavy
and results in slow algorithms [6], in many cases, the prob-
lem at hand has structure which in turn can be used to provide
computationally efficient solutions [9]. Fortunately, this is the
case for the problem of AAM fitting. We take advantage of
this structure to propose a computationally efficient Newton
algorithm for fitting AAMs. To do so, let us decompose the
problem as follows:[

Hqq Hqc

Hcq Hcc

](
∆q
∆c

)
=

(
−J t

q

−J t
c

)
, (2)

with Hcc = d2f
dc2 ∈ Rm,m, Hcq = d2f

dcdq ∈ Rm,n, Hqc =

Ht
cq ∈ Rn,m, Hqq = d2f

dq2 ∈ Rm,m, Jq = df
dq ∈ R1,n and

Jc = df
dc ∈ R1,m.



As we show below Hcc is the identity matrix, which in
turn allows to efficiently update ∆q and ∆c in an alternat-
ing fashion by applying Schur’s complement. In particular,
by writing (A1(v), . . . , Am(v)) = A ∈ R1,m with AtA =
Identity of Rm,m, and T = A0 +

∑m
i=1Aici, we have:

Jq =
∑
v

∇T (W (v, q))
dW

dq
g(v, q, c)

Jc =
∑
v

Ag(v, q, c)

Hcc =
∑
v

AtA = Identity of Rm,m

HNewton
qq =

∑
v

(
dW
dq

)t(
∇2T (W (v, q))

)(
dW
dq

)
g(v, q, c)

+∇T (W (v, q))

(
d2W

d2q

)
g(v, q, c)

HGN
qq =

∑
v

(
∇T (W (v, q))

dW

dq

)t(
∇T (W (v, q))

dW

dq

)
Hqq =HNewton

qq +HGN
qq

HNewton
qc =

∑
v

(
dW
dq

)t
∇A(W (v, q))g(v, q, c)

HGN
qc =

∑
v

(
∇T (W (v, q))

(
dW
dq

))t

A

Hqc =HNewton
qc +HGN

qc .

In the case of a piecewise affine warp, d2W
d2q = 0, hence

the expression of HNewton
qq simplifies to

HNewton
qq =

∑
v∈s0

(
dW
dq

)t(
∇2T (W (v, q))

)(
dW
dq

)
g(v, q, c).

Using Schur’s complement the following update rules are
obtained:

∆q =
(
Hqq −HqcH

−1
cc Hcq

)−1 (−J t
q +HqcH

−1
cc J

t
c

)
,

∆c = H−1cc

(
−J t

c −Hcq∆q
)
.

Finally, after simplification, we derive the following up-
date rules:

∆q =
(
Hqq −HqcH

t
qc

)−1 (−J t
q +HqcJ

t
c

)
,

∆c =
(
−J t

c −Hcq∆q
)
.

Note that if we set Hqq = HGN
qq and Hqc = HGN

qc ,
then we obtain the fast Gauss-Newton algorithm used in
[5]. Hence, our main aim hereafter is to study the effect
of the additional terms introduced by the Newton formula-
tion on both fitting accuracy and convergence. Finally, we
note that the cost of computing HNewton

qc is O(mnN) as(
dW
dq

)
∇A(W (v, q)) can be pre-computed leaving only a dot

product to do at each iteration while the computational cost
of HNewton

qq is simply O(n2N).

4. COMBINING NEWTON AND GAUSS-NEWTON

As mentioned above, the main aim of our experiments was to
investigate the performance of the additional terms (with re-
spect to Gauss-Newton) introduced by the Newton formula-
tion on both fitting accuracy and speed of convergence. In par-
ticular, the full Newton method usesHqq = HNewton

qq +HGN
qq

and Hqc = HNewton
qc +HGN

qc , and hence the additional terms
introduced by Newton’s method are HNewton

qq and HNewton
qc .

To investigate the performance of each additional term in-
troduced by the Newton method, we set Hqq = HGN

qq and
Hqc = HNewton

qc + HGN
qc , which we coin “Newton without

Hqq”. Similarly, we investigated the performance of the set-
ting Hqq = HNewton

qq + HGN
qq and Hqc = HGN

qc , which we
coin “Newton without Hqc”.

Additionally, as we show below, the terms introduced by
the Newton method, although in some cases add information,
in some other cases, they tend to decrease performance. To
prevent such cases, one can employ a Levenberg-Marquardt
modification which puts more weight on the diagonal terms of
the Hessian. We experimented with such an approach; how-
ever our experiments have shown that such a modification
performed very similar to the original full Newton method.
Hence, inspired by Levenberg-Marquardt’s method [6], we
opted to get the most of both methods by ”adding only the
required quantity of Newton”. In particular, we set Hqq =
HGN

qq + γHNewton
qq and Hqc = HGN

qc + γHNewton
qc and ini-

tialise γ = 1. At each step, if the error (please see next sec-
tion for the definition of the error employed) decreases, we set
γ = γ × 2 if γ < 1, while if the error increases, we go back
to the previous step and set γ = γ/2. Clearly, when γ = 1
the method reduces to pure Newton, whereas when γ = 0 the
method reduces to Gauss-Newton. In the general case, our
formulation incorporates the additional terms introduced by
Newton’s method only when necessary.

5. EXPERIMENTS

We tested the proposed algorithms on two very challenging
data sets. For training, we used the training set of LFPW data
set [7]. For testing, we used the test set of LFPW and also ver-
ified our findings on Helen [8]. For both data sets, we used the
68-point landmark annotations provided in [10]. In all cases,
fitting was initialized by the face detector recently proposed
in [11]. Finally, we fitted AAMs in two scales with 7 and
14 shape eigenvectors, and 50 and 400 texture eigenvectors,
respectively.

We measured fitting accuracy by producing the famil-
iar cumulative curve corresponding to the percentage of test
images for which the error between the ground truth land-
marks and the fitted shape was less than a specific value.
As error metric, we used the point-to-point error normal-
ized by the face size [11]. To measure speed of conver-
gence, we considered that an algorithm converged when



Fig. 2. Results on the LFPW dataset. Top: Average pt-pt
Euclidean error (normalized by the face size) Vs fraction of
images. Bottom: Convergence rate Vs fraction of images.

abs( errork−errork+1

errork
) < ε, with errork being the value of the

objective function (A0 +
∑m

i=1 ciAi − I)2 at iteration k and
ε being equal to 10e−5.

Fig. 2 shows the obtained results on LFPW. As we may
observe the additional terms introduced by Newton have
mixed positive and negative impact on performance. From
Fig. 2 (a), we conclude that the full Newton method is not
as accurate as Gauss-Newton in fitting performance; how-
ever Fig. 2 (b) shows that when converging to the “correct”
solution, the Hqc term makes convergence faster. “Newton
without Hqq” performs the worst in both fitting accuracy
and convergence, and this result apparently comes from the
term HNewton

qc which makes the results worse when initial-
isation is bad. On the other hand, “Newton without Hqc”
performs comparably to Gauss-Newton on fitting accuracy
and slightly better on the speed of convergence, illustrat-
ing the importance of the HNewton

qq term. Additionally, our
Combined-Gauss-Newton method was able to perform the
best among all Newton methods. Finally, from Fig. 3, we can
draw similar conclusions for the Helen data set.

6. CONCLUSION AND FUTURE WORK

In this paper, we showed that the problem of AAM fitting
via Newton method has structure that can be used to derive

Fig. 3. Results on the Helen dataset. Top: Average pt-pt
Euclidean error (normalized by the face size) Vs fraction of
images. Bottom: Convergence rate Vs fraction of images.

a computationally efficient solution. We then compared the
derived solution to standard Gauss-Newton fitting. Overall,
we found that the additional terms introduced by the Newton
formulation have mixed positive and negative impact on per-
formance. Finally, we showed that some of the negative sides
can be remedied by combining Newton and Gauss-Newton in
a Levenberg-Marquardt fashion.

It seems that the main problem with the Newton approach
comes from the accumulated errors due to the piecewise
affine warp and the second order gradients of the recon-
structed appearance. We are therefore currently investigating
a similar Newton method for the Gauss-Newton Deformable
Part Model which by-passes the complicated motion model
of AAMs [12]. Another future direction is to investigate
performance for the case of robust features as in [13].
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