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Summary

The development of realistic neuroanatomical models of pe-
ripheral nerves for simulation purposes requires the recon-
struction of the morphology of the myelinated fibres in the
nerve, including their nodes of Ranvier. Currently, this infor-
mation has to be extracted by semimanual procedures, which
severely limit the scalability of the experiments.
In this contribution, we propose a supervised machine learn-
ing approach for the detailed reconstruction of the geometry of
fibres inside a peripheral nerve based on its high-resolution se-
rial section images. Learning from sparse expert annotations,
the algorithm traces myelinated axons, even across the nodes
of Ranvier. The latter are detected automatically.
The approach is based on classifying the myelinated mem-
branes in a supervised fashion, closing the membrane gaps
by solving an assignment problem, and classifying the closed
gaps for the nodes of Ranvier detection.
The algorithm has been validated on two very different
datasets: (i) rat vagus nerve subvolume, SBFSEM microscope,
200 × 200 × 200 nm resolution, (ii) rat sensory branch
subvolume, confocal microscope, 384 × 384 × 800 nm
resolution. For the first dataset, the algorithm correctly recon-
structed 88% of the axons (241 out of 273) and achieved 92%
accuracy on the task of Ranvier node detection. For the second
dataset, the gap closing algorithm correctly closed 96.2% of the
gaps, and 55% of axons were reconstructed correctly through
the whole volume. On both datasets, training the algorithm
on a small data subset and applying it to the full dataset takes
a fraction of the time required by the currently used semiau-
tomated protocols. Our software, raw data and ground truth
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annotations are available at http://hci.iwr.uni-heidelberg.
de/Benchmarks/. The development version of the code can be
found at https://github.com/RWalecki/ATMA.

Introduction

The main application target of our work is the development of
pattern recognition techniques to build realistic neural simu-
lation models for the engineering of neural electrodes. Neural
cuff electrodes are widely used in research and clinical prac-
tice as bipolar devices e.g. for vagal nerve stimulation, as they
allow for chronic implantation without damaging the nerve’s
integrity. One disadvantage of these electrodes is that they can
only record surface compound potentials, further localization
of the signal source inside the nerve is not easily achievable.
The same is true for the case of stimulation: a selective elec-
trical stimulation of localized areas inside the nerve is not
possible with simple bipolar stimuli. This lack of selectivity has
recently been addressed by the introduction of a multichannel
cuff electrode with 24 contacts, which allows for differentiated
registration of the surface compound potential in order to lo-
calize the signal source and stimulate specific nerve areas and
fascicles (Plachta et al., 2013). Such selective registration and
stimulation might for instance hold the key for selective vagal
nerve stimulation against high blood pressure (Plachta et al.,
2014).

However, the more sophisticated nature of these electrodes
requires much more detailed knowledge of the nerve anatomy.
Usually, several cycles of in vivo experiments are required in
order to adapt the electrode to the geometry of its target nerve.

A computer simulation of the nerve would greatly improve
animal protection as well as allow for faster feedback cycles in
the experiments. Such ‘virtualization’ of the nerve requires
precise knowledge of the positions and morphology of the
nerve fibres as well as the locations of the nodes of Ranvier
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Fig. 1. Project pipeline. First, prediction maps are computed for three classes: myelinated membranes, axon interior and background (A). Parts of axons
are then extracted by connected component analysis (B). Additional gap features are computed and used for the nodes of Ranvier detection (C). The gaps
in the membranes are closed (D) and the axon tracing is completed.

Fig. 2. (A) one slice of the raw data in the x-z projection. (B) Side view of the reconstructed axons. Only axons, which pass through at least 700 slices are
shown for clarity.

– those parts of the fibre, where it is not covered by a myelin
sheath. Gierthmuehlen et al. (2013) demonstrate that this in-
formation can be extracted from high-resolution volumetric
images of the nerve, such as the ones shown in Figures 1 and
2(A). In Gierthmuehlen et al. (2013) a small cutaneous nerve
was virtualized by semimanual analysis of a serial light mi-
croscopy image stack. The analysis included tracing 300 ax-
ons over a distance of 500 μm (625 images), which required
60 h of manual processing. Analysis of larger, more interesting
nerves, such as the rat’s vagus with hundreds or thousands of
axons, would be almost infeasible by such semimanual means.

This is exactly the problem we aim to solve with this contri-
bution. Our goals are (i) to provide the exact positions and tra-
jectories of the myelinated axons in the nerve for the analysis
of surface potentials and (ii) to localize the nodes of Ranvier for
the selective stimulation of the nerve fibres by cuff electrodes.

Both are very important for realistic simulation of signal prop-
agation: myelin sheaths serve as insulators, whereas nodes of
Ranvier accelerate signal transmission by enabling saltatory
conduction. Besides neural modelling, this work could also
be useful for posttraumatic nerve regeneration studies, which
need to differentiate between regrowing axons and axons with
Ranvier nodes, which have already reconnected to the target
tissue, but are not yet fully myelinated.

Over the last two decades, various methods have been pro-
posed for semi- and fully-automated segmentation of myelin
sheaths in two-dimensional (2D), in the context of neuromor-
phometry studies. Most of these methods start from threshold-
ing the image by a global threshold (Vita et al., 1992; Auer,
1994; Hunter et al., 2007) and proceed to remove false posi-
tive detections by application of semantic rules on axon shape
and size. Mathematical morphology operations are used to
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Fig. 3. (A) user annotations for three classes: myelinated membrane (red), axon interior (green) and background (yellow). (B) Probability map produced
by the Random Forest classifier.

Table 1. 3D pixel features, used for the first step of the pipeline: pixelwise
classification of the images into myelinated membranes, axon interior and
background classes.

Feature Gaussian σ Channels

Gaussian smoothing 0, 1, 2, 3 1
Difference of Gaussians 1, 4, 6, 7 1
Eigenvalues of Hessian matrix 1, 2 3
Eigenvalues of structure tensor 1, 3 3
Total number of features 20

separate touching axons. Romero et al. (2000) use more sen-
sitive locally adaptive thresholding as the first step. A compre-
hensive comparison of manual and semiautomated methods,
developed up to 2007, has been performed by da Silva et al.
(2007), which confirmed sufficient accuracy and reproducibil-
ity of semiautomated approaches.

A more recent contribution by Novas et al. (2013) pro-
poses Arbib’s colour space clustering for the initial segmenta-
tion, followed by Kumar’s clump splitting for the separation
of close axons. Although the methods above are applicable
to stained tissue, Li et al. (2012) developed a protocol and a
corresponding segmentation algorithm for unstained nerves,
using molecular hyperspectral imaging. Use of scanning elec-
tron microscopy has been explored by More et al. (2011), who
also propose a method for automated image stitching and seg-
mentation, based on mathematical morphology.

Although the above-mentioned methods achieve fairly high
accuracy and provide very significant speedups compared to
purely manual axon segmentation, they work on individual
2D slices and, considering the necessary amount of user inter-
vention, would not scale to the large three-dimensional (3D)
datasets of our application domain.

Datasets of similar and much larger volume have been
tackled as a part of automated neuron reconstruction efforts
of recent years, aiming to segment all neurons in very high-
resolution EM images of the brain (Jain et al., 2011; Vazquez-
Reina et al., 2011; Andres et al., 2012; Nunez-Iglesias et al.,
2013; Liu et al., 2014; Funke et al., 2014). Most of these meth-
ods use supervised machine learning to detect neural mem-
branes and only require a small manually segmented dataset
for training. The user is thus freed from the very nontrivial task
of finding the right combination of thresholds and algorithm
parameters, which would perform equally well throughout
the volume. This feature makes such methods quite appealing
also for our use case. On the other hand, all these methods
have been developed to work on neuropil – volume of neural
tissue, very densely packed with neurons and glia cells.
Besides, they are tailored to images with specific staining,
which gives contrast to all neural membranes, not only the
myelinated ones. Consequently, these methods assume conti-
nuity of axons in the volume and cannot handle the gaps that
are characteristic of the nodes of Ranvier in our target data.

We propose to base the myelinated axon segmentation on
supervised pixel classification with 3D image features and
sparse user labels, followed by the closing of gaps, which is
formulated as a 2D assignment problem. The overall pipeline
is summarized in Figure 1. The cost function of the assignment
problem is learned from user annotations in the form of axon
skeletons.

Assignment with a learned cost function has been intro-
duced for multiple domains and applications, offline and on-
line, with flat and structured learning (e.g. Li et al., 2009;
Lou & Hamprecht, 2011; Kim et al., 2012; Yang & Nevatia,
2012). Specifically for neural data, it has been used by Funke
et al. (2012) for connecting segmentations of individual se-
rial sections into 3D objects. The general problem of multiple
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object tracking has previously been formulated in the integer
linear programming (ILP) framework by, for example Jiang
et al. (2007), Zhang et al. (2008), Andriyenko & Schindler
(2010), Berclaz et al. (2011). Our application is, however,
considerably simpler, as we work with volumetric 3D data
with appearances and disappearances, but no occlusions or
divisions, where tracking reduces to a one-to-one assignment
problem.

After solving the assignment problem and thus closing the
axon gaps, we use the features of the closed gaps to detect
the nodes of Ranvier by a Random Forest classifier (Breiman,
2001). Although we use machine learning for myelin
segmentation, the gap closing procedure is agnostic to the
segmentation method, and could also be used together with
semiautomated neuromorphometry methods. Detection of the
nodes of Ranvier partially relies on the probability map of axon
interior. It could, however, be modified not to use this feature,
if a nonprobabilistic method is used for axon segmentation.

The algorithm implementation is based on the ilastik learn-
ing and segmentation toolkit (Sommer et al., 2011), the vi-
gra image processing library (Koethe, 2008), the Gurobi
solver (Gurobi Optimization, 2013) and the Mayavi data
visualization toolkit (Ramachandran and Varoquaux, 2011).
Apart from the Gurobi solver, all these tools are free and
open source. The solver is free for academic use and for
other uses it can simply be replaced by a different ILP solver
or an efficient implementation of the Hungarian matching
algorithm. Our software, along with the test dataset and
the ground truth data, are freely available on our Web-
site (https://github.com/Rwalecki/ATMA, http://hci.iwr.
uni-heidelberg.de/Benchmarks/).

Methods

Our approach is comprised of pixel classification, followed by
connected components analysis and reconnection of the re-
maining axon gaps, posed as an assignment problem. Pixel
classification is based on very sparse user labelling and 3D pixel
features. The costs in the assignment problem are learned from
user annotations in the form of axon skeletons. Finally, the
nodes of Ranvier are localized by another classification step.

Pixel classification

Volume pixels are classified into three classes: myelinated
membranes, axon interiors and background. Very sparse user
annotation of the images suffices for this step (see Fig. 3A for
an example of user annotations). As a rule of thumb, users of
ilastik usually continue to label until the interactive predic-
tion no longer improves visually. Previous studies, performed
on similar data with similar interactive classification methods
(Kreshuk et al., 2011; Kaynig et al., 2013), have shown that
the segmentation result is fairly stable to variations in user
annotation.

Classification is performed based on pixel features, which
represent intensity, edge and texture properties of the 3D pixel
neighbourhood. The feature scales have been selected accord-
ing to the variable importance of the features, computed as
the Gini importance by the Random Forest classifier Breiman
(2001). Variable importance computation, not yet present in
ilastik version 1.1, has been performed in a script, using the
vigra Random Forest library directly. The final list of features
is summarized in Table 1. If the method is applied to data with
different resolution, the scale of features has to be adjusted ac-
cordingly. Figure 3(B) shows the results of pixel classification.

Myelinated processes are large and smooth; neighbouring
pixels of the volume are therefore likely to have the same
label. We introduce the spatial regularization by filtering the
myelin probability map with a 3D Gaussian filter (Hosni et al.,
2013). The smoothed probability map is then thresholded and
connected component analysis is performed in each 2D binary
image independently, assigning the interior of each connected
myelin membrane to a connected component (axon slice).
Axon slices larger than the user-defined maximum (see section
3.1c) are removed. The remaining axon slices are stacked in
3D to obtain a preliminary 3D axon reconstruction.

There are two ways to select the best values for the smooth-
ing and thresholding parameters: interactively by visual in-
spection in a tool like ilastik (Sommer et al., 2011) or by
an optimization procedure on the user-provided ground-truth
segmentation. In our experiments we used gradient descent
optimization, maximizing the pixelwise segmentation F-score.
More details on the parameter choice and the algorithm sen-
sitivity can be found in section 3.2. An example slice with the
resulting segmentation is shown in Figure 4.

In general, the aim of the pixel classification step is to pro-
duce a segmentation with as few erroneous axon merges as
possible. The resulting gaps in the axons are reconnected in
the next steps.

Assignment problem with a learned cost function

The segmentation obtained in the previous step does not fully
reconstruct the axons. A single pixel error in the segmenta-
tion of a myelinated membrane can open its contour, which
leads to its interior not being recognized as part of an axon.
Besides, myelin sheaths are interrupted by nodes of Ranvier,
which, since the nonmyelinated membranes are not stained,
also introduce gaps into our segmentation (Fig. 5B). In this
section, we propose to treat the problem of gap closing as a
generalized assignment problem, both for gaps caused by pixel
classification errors and by nodes of Ranvier. As a result of this
step we expect to get fully reconstructed axons, whereas in the
next section we introduce a method to distinguish between
the erroneous gaps and the relevant gaps caused by nodes of
Ranvier. We start by computing the skeletons from the cen-
tre points of each axon slice. Since our goal is reconstruction
of fairly short pieces of peripheral nerves, we assume that
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Fig. 4. Axon segmentation on a random image in the stack. In total, the
algorithm segmented 2081 objects in this image, with 51 false positive
detections (nonaxon objects) and 32 weakly stained axons missing. White
arrows point to false positives, caused by stained structures other than
myelinated axons.

axons in our target data do not branch, and the skeletons are
represented by simple lines.

Closing the gaps in the axons can thus be formulated as
pairwise matching of endpoints. To calculate the cost of pair-
wise assignments, we start by computing three attributes of
the endpoints: position x, normalized orientation o and aver-
age axon thickness t. The position is the centre of mass of the
end of the axon segment, defined as the last seven slices before
the endpoint. Orientation is computed as the normalized shift
over the last seven points of the axon segment skeleton. The
axon segment thickness is obtained by calculating the average
area of the last seven axon 2D slices. Although this feature is
not rotation invariant, we do not expect the orientation of the
axon to change significantly over the gap region, so our esti-
mates of the axon areas at the two endpoints should match.
After the endpoint attributes are computed, we use them to
calculate the features of endpoint pairs (Fig. 5A), namely:

Displacement : (x1i − x1 j ), (x2i − x2 j )(x3i − x3 j ),
Distance : (x1i − x1 j )2 + (x2i − x2 j )2 + (x3i − x3 j )2,

Shape : ti /tj ,

Alignment : �oi · �o j and(�r · �oi ) + (�r · �o j ), where �r = �xi −�xj

‖�xi −�xj ‖ .

These features were used to train a Random Forest classi-
fier to separate correct connections from incorrect ones. The
training data for this step needs to be provided as a set of
axon skeletons (see 3.1 for more details). Given this set, we
introduce random gaps in the skeletons and treat the connec-

tions between pieces of the same skeleton as positive examples
and the connections between pieces of different skeletons as
negative examples.

The Random Forest produces an estimate of the probability p
that two given endpoints should be connected. We then use C=
1 − p as the cost of this connection in the assignment problem.
We compute the full cost matrix of connections between the
endpoints Cij = c(ei, ej), and solve the one-to-one assignment
problem by the following integer linear program:

minimize
n∑

i=1

n∑

j=1
ci j xi j , subject to

n∑

i=1
xi j = 1, 1 ≤ j ≤ n,

n∑

i=1
xi j = 1, 1 ≤ i ≤ n,

xi j ∈ {0, 1} .

In the above formulation, we assume a perfect matching
problem, where each endpoint should be connected with an-
other one. Additionally, after the minimal cost solution of the
linear program is computed, we remove matches over dis-
tances larger than a user-defined threshold (twice the length
of an average Ranvier node, see section 3.1c). The above ILP
can be solved by using the Hungarian method (Kuhn, 1955);
however, in practice we found the Gurobi ILP solver to be faster
than experimental code for the Hungarian method. Besides the
speed issue, which probably results from a suboptimal Hungar-
ian method implementation we used, the ILP solver and the
Hungarian method give exactly the same results. A union-
find algorithm is used to reconstruct full axons from pairwise
endpoint matches.

Compensating for poor segmentation quality. In the experi-
ments, where slices in the stack are imaged independently,
artefacts cannot always be avoided, and some images may
look significantly different from the rest of the stack. Auto-
mated algorithms, which rely on intensity-related features, are
much more vulnerable to contrast fluctuations and histogram
shifts than human experts, who segment based on higher
level information. In our experiments with such nonhomo-
geneous image stacks, we observed a decrease in the quality of
automated segmentation and an increase in the number of
false merges. Unlike the false splits, this error cannot be cor-
rected at the assignment stage. To compensate for this effect,
we developed the following strategy:

� Run the segmentation and assignment steps of the algo-
rithm once. Perform connected components analysis in the
first and last image of the stack: collect all components that
were separate in 2D, but received the same label in the
assignment step. These are the potential false merges.

� Randomly select a merge and find the exact slices, where
the two axons were segmented as one.

C© 2015 The Authors
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Fig. 5. (A) Gap closing costs. Blue tubes represent axons with endpoints EP 1–EP 6. Red lines are the cheapest connections according to our cost function.
Black dotted lines show other connection candidates. A connection between EP 3 and EP 6 is not possible, since the distance is larger than the allowed
threshold (twice the maximal expected length of a Ranvier node, section 3.1c). (B) Closed gaps: nodes of Ranvier and segmentation errors. First two
images (left to right) show the nodes of Ranvier, whereas the last two images illustrate segmentation errors. The gaps are shown as thick red lines. Note
the absence of a membrane around the gaps caused by the nodes of Ranvier.

� Remove these slices, rerun the assignment step of the algo-
rithm and check how many axons can now be traced all the
way through the stack. If more axons can be traced than
before, keep the slices out of the stack, if not, put them back.

� Rerun the merge analysis and repeat the procedure until
there are no merges left or no improvement in the number
of fully traced axons can be reached by removing slices with
merges.

Gap classification

Another classification step is used to separate the true
axon gaps (nodes of Ranvier) from the segmentation errors
(Fig. 5B).

For all gaps, closed in the previous step, i.e. for all the
matched endpoint pairs, we look at the set of pixels Xij on
the straight line between the endpoints i and j. As the first fea-
ture, we compute for each point in Xij its distance to the next
myelinated membrane along the coordinate axes. This feature
is similar to Ray features introduced in Smith et al. (2009), but
much simpler and faster to compute. Briefly, we shoot six rays
from each pixel along all coordinate axes and count the num-
ber of rays that reach a membrane within the average diameter
of an axon, as predefined by the user (see section 3.1). The rea-
soning behind this feature is that true nodes of Ranvier are not
surrounded by myelinated membranes, whereas gaps caused
by segmentation errors usually have some pieces of membrane
around them, not forming a closed contour. Besides Ray-like
features, we compute the response of the Laplacian of Gaus-
sian filter on the myelin probability map. This filter is widely
used for detection of blobs and tubular structures (Lindeberg,
1993). Additionally, we use the axon interior probability map,
produced at the pixel classification step. The following features
are used for classification:

Gap length :(x1i − x1j)
2 + (x2i − x2j)

2 + (x3i − x3j)
2,

Axon thickness :(ti + tj )/2,

Alignment : (�r · �oi ) + (�r · �o j ), where r = �xi − �xj

((�xi − �xj ))
,

Ray features : min (Ry[Xi j ]), max (Ry[Xi j ]), mean (Ry[Xi j ]),

LoG : min (L G [Xi j ]), max (L G [Xi j ]), mean (L G [Xi j ]),

Axon probability : min (AP [Xi j ]), max (AP [Xi j ]),

mean (AP [Xi j ]).

The Random Forest classifier is then trained using labels
from the third ground-truth dataset (section 3.1c). As the final
result, we return a labelled volume, where a unique label is
assigned to each axon, and a list of the locations of the nodes
of Ranvier. The volumetric measurements of the segmented
axons can then be analysed by FiJi (Schindelin et al., 2012)
or other image processing toolkits. Optionally, a list of the
remaining nonmatched endpoints can also be returned for
proofreading.

Results

In all of the following, we define an axon as fully traced through
the volume if both of its endpoints are located within 50 slices
of the first and last volume slice, respectively.

Data acquisition and ground truth annotation

Test datasets. The algorithm validation has been performed
on two serial stacks of peripheral nerve images.

The first stack depicts the vagal nerve of an adult male
rat. The resected nerves were fixed according to the proce-
dure also used in Gierthmuehlen et al. (2013). Briefly, fixa-
tion in Karnovsky fixans (Karnovsky, 1965; Feria-Velasco &
Karnovsky, 1970; 2% PFA, 2.5% glutaraldehyde in 0.2 M
sodium cacodylate buffer, pH 7.3 for 24 h) prior to rinsing
three times with 0.1 M sodium cacodylate buffer containing
7.5% sucrose. Postfixation was performed in 1% OsO4 for
1.5 h and myelin staining was performed for 24 h in 1% potas-
sium dichromate, followed by 24 h in 25% ethanol and for

C© 2015 The Authors
Journal of Microscopy C© 2015 Royal Microscopical Society, 259, 143–154



A U T O M A T E D T R A C I N G O F M Y E L I N A T E D A X O N S A N D D E T E C T I O N O F T H E N O D E S O F R A N V I E R 1 4 9

another 24 h in haematoxylin (0.5% in 70% ethanol) accord-
ing to a modified Schultze protocol (Schultze, 1910). Finally,
the samples were dehydrated and embedded in EPON (SERVA
Electrophoresis GmbH, Heidelberg, Germany). Semithin
(1 μm) cross-sections were cut with glass knives (Ultramikro-
tome System, 2128 Ultrotome R©, LKB, Bromma, Sweden) and
mounted on uncoated glass slides followed by toluidine blue
staining to further enhance the myelin staining (Huelsenbeck
et al., 2012).

The images were acquired on a serial block face scanning
electron microscope Denk & Horstmann (2004), using the
3View microtome (GATAN) mounted on a QUANTA 200 VP-
FEG (FEI). This technique was chosen for its high isotropic
resolution and good intrinsic stack alignment. The block con-
taining the vagal nerve perpendicular to the surface was cut
out of the block and mounted on aluminium stubs for the
sample holder of the 3View. The block was then trimmed on
pyramidal shape and sputter-coated with gold. The surface of
the block was imaged (6 kV beam, spot size 3, low vacuum
mode with 0.25 Torr of water pressure in the chamber). The
field of view was chosen to image the entire section of the vagal
nerve. Each field of view represents a surface of 471 × 471 μm
(3500 × 3500 pixels, 134 nm pixel size, 5 ms per pixel). After
imaging of the block face using the backscattered electron de-
tector of 3View (GATAN), a diamond knife removed 200 nm
from the surface of the block and the new surface was imaged
using the same parameters. This cycle was repeated 7000
times. Images were then preprocessed to equalize the contrast
and to be registered by TrakEM2 (Cardona et al., 2012). The
total size of the dataset measured 12 Gigabytes.

Since the images represent a peripheral nerve rather than
a piece of brain tissue, all myelinated axons in the stack fol-
low approximately the same direction (along the z-axis of the
stack, see Fig. 2B). The study was conducted in strict accor-
dance with the recommendations in the Guide for the Care and
Use of Laboratory Animals of the National Institutes of Health.
The protocol was approved through the Regierungspraesid-
ium Freiburg (G13/44). The voxel size was set to 133 × 133 ×
200 nm3, with the total size of the dataset at 3995 × 3995 ×
1000 voxels.

To evaluate the generalizability of our approach to im-
age stacks of lower resolution and quality, we also validated
the algorithm on a cutaneous nerve branch dataset from
Gierthmuehlen et al. (2013). The slices for this image stack
were cut on an ultramicrotome at 0.8 μm thickness and im-
aged individually on a confocal microscope at 384 × 384
nm resolution [see Gierthmuehlen et al. (2013) for more de-
tails]. The total size of this image stack is 1569 × 1550 ×
625 voxels. The dataset contains 338 myelinated axons. Be-
sides the anisotropy of the resolution along the z-axis, there is
also a strong fluctuation of contrast (see Fig. 8A). To partially
compensate for these fluctuations, we have applied histogram
homogenization from TrakEM2 (Cardona et al., 2012) as pre-
processing.

Ground truth. Out of the first image stack (the vagal nerve),
we prepared three ground truth datasets for training and val-
idation of the different parts of the algorithm. The first set
consists of five fully labelled images, approximately 200 ×
300 pixels each. In these images, we manually annotated
axon membranes, axon interior and background. This dataset
is used to study the sensitivity of the parameters of the pixel
classification step.

The second ground truth dataset contains tracings of 166
axons in a 400 × 400 × 250 data subvolume. The tracings
have been obtained by skeletonization – the centres of each
axon have been annotated in every tenth slice. This dataset is
used for training the Random Forest to predict the likelihood
of a connection between axon pieces.

The third ground truth dataset contains the locations of the
nodes of Ranvier in a 700 × 700 × 700 data subvolume.
The following procedure has been used to create the dataset:
first, the axons in the subvolume were segmented by the al-
gorithm and the axon gaps were localized. Images of the gaps
in three coordinate projections have been presented to a user,
who classified them into nodes of Ranvier (208 cases) or seg-
mentation errors (282 cases). Since all the gaps in this dataset
have been re-examined by a human user, they can be closed
correctly and the overall 700 × 700 × 700 cube can serve for
the validation of the gap-closing part of the pipeline.

For the second image stack, we prepared two more ground
truth datasets, which consisted of 30 axons. First, the 30 ax-
ons were segmented in one image to create a dataset for the
optimization of pixel classification parameters. Then, the same
30 axons were traced (by skeletons) through all images of the
stack. Like the second vagus nerve ground truth dataset de-
scribed above, this dataset has been used to train the Random
Forest of the assignment cost function. Node of Ranvier de-
tection has not been performed for the sciatic nerve dataset
due to the difficulty of obtaining the training examples at this
resolution.

To apply the algorithm to a new dataset, the user would have
to provide a reasonable number of axon skeletons for train-
ing. Various tools, such as TrakEM2 (Cardona et al., 2012) or
Knossos (Helmstaedter et al., 2013), have already been devel-
oped for this task. Pixel classification parameters, which we
currently derive from the ground truth, can also be selected
interactively in a tool like ilastik (Sommer et al., 2011). Based
on the skeleton training set, the algorithm will automatically
choose images of axon gaps, which the user will have to classify
into erroneous gaps and nodes of Ranvier. In our experience,
the total training annotation time amounts to approximately
5 h.

User-defined parameters. Besides user annotations of the
ground truth datasets, three parameters of the pipeline have
to be defined in advance: the maximal axon cross-section area,
the maximal connection distance (twice the maximal expected
length of a Ranvier node) and the average axon diameter.
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Fig. 6. Sensitivity of the algorithm to the selection of segmentation pa-
rameters. The colour bar shows the number of axons which could be
traced continuously through an 800 × 800 × 800 pixel subvolume.

These parameters depend on the resolution of the data and
morphology of the nerve and are generally known ahead of
time from neuroanatomy. For our test dataset the maximal
axon cross-section area was set to 2000 pixels (�35 μm2),
the maximal connection distance to 30 pixels (�4 μm), and
average axon diameter to 8 pixels (�1 μm). For the second,
lower resolution, image stack we changed the maximal con-
nection distance parameter to 100 pixels, as we expected many
more segmentation errors caused by lower image quality.

Segmentation

The first ground truth dataset (see 3.1.2) has been used to find
the optimal values of the smoothing and thresholding param-
eters. Smoothing and thresholding are necessary to transfer
from the pixel probability maps, produced by the Random
Forest, to segmentations, used by the later steps of the algo-
rithm. The maximum F-Score was 0.72 with th = 0.5677 and
the smoothing sigma σ = 1 for the vagus nerve dataset. The
corresponding values for sciatic nerve were estimated at σ =
0.7, th = 0.31. The sensitivity of the algorithm to these two
parameters is illustrated in Figure 6, which shows the num-
ber of axons, traced fully through an 800 × 800 × 800 pixel
subvolume.

Full evaluation of the segmentation step would require pix-
elwise manual annotation of the volume. To avoid this ex-
tremely time-consuming step, we evaluated the segmentation
on one slice and then counted the number of axons detected
at other slices. Figure 4 shows all axons, detected in a random
slice of the stack. This segmentation contains 2081 objects,
with 51 false positive detections. Some of the false positives
are located outside the nerve (lower right corner) and can be
removed if a preprocessing step is used to localize the region

of interest. Some of the false positives inside the nerve belong
to structures other than myelinated axons, shown by white
arrows in Figure 4. Concerning false negative detections, we
counted 32 axons which were missed by the algorithm on this
slice.

Figure 7(A) shows the number of axons detected in each
of the 1000 slices of the vagus nerve stack. The dips at both
ends of the curve are expected, since we compute isotropic
pixel features in 3D and at the ends of the stack the features do
not see enough context along the z-axis. Otherwise, the num-
ber of axons segmented per slice stays fairly constant with a
slight downward trend. This trend can at least partially be ex-
plained by the fact, that the myelin sheaths of some axons are
truly not visible all the way through the volume. We found 10
such cases (myelinated axons ending inside the volume instead
of continuously extending through it) by manual inspection
of a random 100 axon endpoints that were left unmatched
by our algorithm in the full 3995 × 3995 × 1000 pixel
dataset.

The lower curve in Figure 7(A) shows the number of axons
detected in each of the 600 slices of the sciatic nerve dataset.
Larger fluctuations in the segmentation quality are expected
for this dataset, since the slices were imaged independently
and the training annotation was kept very sparse (see also
Fig. 8A for a side view of the image stack). Still, the majority
of axons could be recovered in each slice (Fig. 8B displays
the segmentation on a random slice inside the volume). The
next section shows that, with the help of the compensation
procedure, described in section 2.2.1, the tracing algorithm
can successfully deal with lower quality segmentations of some
slices.

Tracing

Vagus nerve dataset. The second ground truth dataset (axon
skeletons, section 3.1.2) was used to train a Random Forest to
predict which endpoints belong to the same axon. These pre-
dictions are used in the assignment cost function. We create
artificial random gaps of variable length in the user-provided
axon skeletons to obtain more training data. The maximum
gap length was set to the value of the maximal possible con-
nection distance (twice the maximal length of a Ranvier node),
specified by the user. In total, we use 5100 pairs of endpoints
for training: with 698 positive and 4402 negative connection
examples.

After training, the gap closing procedure has been applied
to a 700 × 700 × 700 subvolume, not overlapping with the
skeletonized second ground truth dataset. All gaps closed by
the algorithm have been checked manually. Out of 502 gaps
in total, 490 (97.6%) were closed correctly. The closed gaps
have been manually classified into nodes of Ranvier and seg-
mentation errors, thus creating the third ground truth dataset,
described in section 3.1b. In total, we obtained 208 nodes of
Ranvier and 294 segmentation error examples. In this dataset,
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Fig. 7. Segmentation and gap classification performance. (A) The number of axon slices segmented by the algorithm in each image of the stack. (B)
precision-recall curve for Ranvier node detection. The error estimates were obtained by 5-fold cross-validation on the third ground truth dataset (section
3.1c).

Fig. 8. From left to right: one slice of the rat sciatic nerve in the x-z projection, axon segmentation in a random image in the stack and a 3D rendering of
the reconstructed axons.

241 out of 273 axons were traced through the whole volume
(Fig. 9).

We compared the gap closing accuracy of our algorithm to
greedily connecting the endpoints with the highest matching
probability. Figure 10(A) shows this comparison, along with
the baseline, obtained by connecting the endpoints based only
on Euclidean distance between them. Figure 10(B) demon-
strates an example of a connection, which was solved correctly
by our algorithm and incorrectly by the greedy procedure.
Such cases mostly occur in the ‘crowded’ regions of the vol-
ume, where many connections are possible and close in costs.

Cutaneous nerve branch dataset. First, we applied the slice
removing procedure, described in section 2.2.1. In total, 17
slices of lower quality were removed and the performance of
the assignment step improved significantly.

We traced 30 axons through the full volume to create
the training set for the cost function Random Forest. The
gap closing accuracy has been estimated by leave-one-out

cross-validation on the training set. Note that 96.2% of all
gaps were closed correctly. Out of remaining 308 axons, we
chose 100 of different sizes to cover all parts of the dataset.
Fifty-five out of the 100 axons were traced correctly through
the full volume (625 layers). A 3D rendering of all axons,
reconstructed in this dataset, is shown in Figure 8(C).

Ranvier node detection

The closed gaps of the vagus nerve dataset were used to train
another Random Forest to classify Ranvier nodes versus other
membrane gaps. The 208 Ranvier nodes in the ground truth
dataset have been labelled as positive and the 294 segmenta-
tion errors plus 12 wrong connections as negative. The result-
ing precision-recall curve for 5-fold cross validation is shown
in Figure 7(B). The maximum F-Score (harmonic mean of pre-
cision and recall) is reached at the probability threshold level
of 0.42, which corresponds to a true positive rate of 90.9%
and a false negative rate of 6.9%.
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Fig. 9. Results on a randomly chosen subvolume. Axons which are fully traced through the dataset are shown in green. Those that have at least one
open gap are shown in red.

Fig. 10. (A) Accuracy of gap closing as a function of the maximal connec-
tion distance parameter. Accuracy is defined as the number of correctly
closed gaps divided by the total number of gaps. Two methods are com-
pared: globally optimal ILP solution and greedy connection based on the
best matching score. The baseline corresponds to simply connecting the
nearest neighbours by Euclidean distance. (B) An example of a gap, cor-
rectly connected in the ILP solution (right, the lower and upper part of the
axon are purple), but incorrect in the greedy procedure results (left, the
upper part of the red axon is connected to a segmentation error, also red).

Performance

On a 4-Core 2.80 Ghz machine, processing of the 700 × 700 ×
700 pixel dataset takes 99 min, with 24 min spent in seg-
mentation. The most expensive step is the integer linear pro-
gram used for the assignment problem. Seventy-one minutes
were required to evaluate the assignment cost matrix. For
comparison, we also solved this problem with the Hungar-
ian Algorithm (Kuhn, 1955; experimental implementation,
104 min) and with simple greedy nearest neighbour assign-
ment (6 min). Although faster, nearest neighbour assignment
has lower precision than the proposed method due to its greedy
nature.

The manual annotation of the training data from the
sciatic nerve dataset took 5 h. For comparison, full manual

segmentation of this dataset in Gierthmuehlen et al. (2013)
took 60 h, which corresponds to a 12-fold speedup for the
automated method.

Since the maximal possible length of a gap in our algorithm is
limited, the algorithm can easily be parallelized by cutting the
dataset into blocks with a margin larger than the connection
length limit (30 pixels in our case). Assuming uniform distri-
bution of gaps in the volume, such parallelization can bring
very considerable speedup to the solution of the matching
problem. To obtain Figure 7(A), we processed the full 3995 ×
3995 × 1000 pixel dataset in 5003 blocks with 30 pixel
halo, which took less than 6 h on the desktop machine
described above.

Discussion

We have presented a method for automated tracing of myeli-
nated axons and detection of the nodes of Ranvier in serial
stacks of peripheral nerve images. After the training set is an-
notated, which, in our experience, takes 5 h, the algorithm
works completely independently and can process very large
stacks without any user involvement. Besides the training an-
notations, the algorithm is controlled by three user-defined
parameters. These parameters are based on the biological
properties of the studied nerve, so setting them does not re-
quire any image processing expertise.

The algorithm performance has been evaluated on two very
different datasets: a high resolution, isotropic SBFSEM image
volume and a lower resolution confocal microscope image
stack. As expected, high and isotropic resolution, as well as
intrinsic alignment of the SBFSEM images, allow for much bet-
ter automated reconstruction. For this stack, 241 out of 273
axons could be traced through the 700 images of the test sub-
volume, which corresponds to a tremendous reduction of the
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Fig. 11. Left: axon skeletons, as provided by the algorithm in a subvolume of the data. Right: nerve reconstruction, based on the skeletons and axon
diameter values. Nodes of Ranvier are not shown.

manual annotation load. Even for the lower quality confocal
stack, 55 out of 100 axons were traced fully. The algorithm
also achieves very high accuracy in gap closing (97.6% for
the SBFSEM stack, 96.2% for the confocal microscope stack),
which implies, that even for the axons that were not fully
traced, most ‘tracklets’ are correct and the human expert only
needs to reconnect a few loose ends, as opposed to performing
a full manual segmentation.

Figure 11 shows a part of the final algorithm results [skele-
ton traces through the volume, Fig. 11 (left)], which, combined
with axon diameter and nodes of Ranvier positions, also pro-
vided by the algorithm, can be used to build a model of the
nerve [Fig. 11 (right)].

It was only possible to evaluate the performance of the nodes
of Ranvier detection on the high-resolution dataset. A fairly
high accuracy (92.1%) has been achieved, however, we be-
lieve it can be further improved by, for example, incorpora-
tion of ‘Multiscale vessel enhancement’ features (Frangi et al.,
1998; Sato et al., 1998). Another option would be to reformu-
late the problem in the framework of probabilistic graphical
models and thus incorporate more prior information, such as
the average expected distance between the nodes.

Next, we are planning to extend our algorithm to segment
myelinated membranes in brain images, where the axons do
not follow the same direction and the staining is not limited
to myelin sheaths. By making both our algorithm and our
test data with ground truth annotations publicly available,
we hope to give a big boost to peripheral nerve simulation
experiments and to bring the attention of the image processing
community to this interesting data.
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