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Abstract— Recently developed appearance descriptors offer
the opportunity for efficient and robust facial expression
recognition. In this paper we investigate the merits of the
family of local binary pattern descriptors for FACS Action-
Unit (AU) detection. We compare Local Binary Patterns (LBP)
and Local Phase Quantisation (LPQ) for static AU analysis. To
encode facial expression dynamics, we extend the purely spatial
representation LPQ to a dynamic texture descriptor which we
call Local Phase Quantisation from Three Orthogonal Planes
(LPQ-TOP), and compare this with the Local Binary Patterns
from Three Orthogonal Planes (LBP-TOP). The efficiency of
these descriptors is evaluated by a fully automatic AU detection
system and tested on posed and spontaneous expression data
collected from the MMI and SEMAINE databases. Results
show that the systems based on LPQ achieve higher accuracy
rate than those using LBP, and that the systems that utilise
dynamic appearance descriptors outperform those that use
static appearance descriptors. Overall, our proposed LPQ-TOP
method outperformed all other tested methods.

I. INTRODUCTION
Automated analysis of non-verbal behaviour, and espe-

cially of expressive facial behaviour, has attracted increasing
attention during the past decades. Current human-computer
interaction (HCI) designs usually involve traditional interface
devices such as the keyboard and mouse and are constructed
to emphasise the transmission of explicit messages whilst
ignoring implicit information about the user, such as changes
in the affective state [21]. However, many facial expressions
play important roles in our daily communication. For exam-
ple, we raise our eye brows to stress the importance of a
spoken message. Leveraging these social signals would have
many practical applications. For instance, it would open up
new possibilities for interacting with computers, and in the
field of psychology, this technology could provide a more
efficient and objective log of a subject’s facial expressions
than the psychologists could create unaided.

Deriving an effective facial representation from images is
an essential step for successful facial expression recognition
[12]. Traditionally the feature extraction approaches may be
divided into two streams: geometric feature-based methods
and appearance-based methods. Geometric feature based
methods employ the geometrical properties of a face such
as the positions of facial points relative to each other, the
distances between pairs of points or the velocities of separate
facial points. For a method using appearance features, the
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changes in image texture such as those created by wrinkles,
bulges, and changes in feature shapes are captured. In [22],
a comparison of recognition performance with different
types of features shows that the appearance-based features
Gabor wavelet coefficients are more powerful than geometric
positions. However, this has been disputed by Valstar and
Pantic [19]. They have demonstrated that geometric feature-
based methods provide similar or better performance than
appearance-based approaches in AU recognition. Thus, it
is unclear whether an appearance-based or geometric-based
feature extraction method is better, or, as seems more likely,
each has its own complementary quality, and the two would
be best used together.

One limitation of the majority of existing facial expression
recognition methods is that they focus on a small set of
prototypic emotional facial expressions, specifically fear,
sadness, happiness, anger, disgust, and surprise (e.g.,[12],
[23], [22]). Yet, these six basic emotion categories form
only a subset of the total range of possible facial displays
and the categorisation of facial expressions can therefore be
forced and unnatural [5]. This should be apparent if one
considers which categories boredom and confusion should
be placed into, for instance. Moreover, a purely emotion-
oriented system would miss other signals sent by the face;
for example it would be unable to lip-read. Therefore, we
advocate to use the Facial Action Coding System (FACS)
[4] instead.

FACS is best known and most commonly used in psy-
chological studies. The coding system defines atomic facial
muscle actions called Action Units (AUs). With FACS, every
possible facial expression, emotional or otherwise, can be
described as a combination of AUs. Currently FACS coding,
i.e. applying FACS to videos, is done manually by experts. It
takes one hour or more to manually code 100 still images or
one minute of videotape in terms of AUs and their temporal
segments. An automatic, accurate FACS coding system could
vastly increase the amount of data a psychologist could
analyse, which would be a breakthrough in the field of
psychology. It is therefore no surprise that more and more
effort is made to develop a robust real-time AU analysis
system. Though much progress has been made, robust real-
time facial expression analysis remains difficult due to its
subtlety, complexity, and variability [12].

A number of works were reported towards AU detection
from image sequences or videos. Tian et al. [13] developed
a system to automatically detect 16 AUs from face image
sequences using lip tracking, template matching and neural
networks. Bartlett et al. [2] employed a user independent



fully automatic system for real time recognition of facial
actions from the FACS. The system automatically detects
frontal faces in the video stream and codes each frame with
respect to 20 Action units. Valstar and Pantic [16] presented
a system that enables fully automated recognition of 15 AUs
from face video based on tracking 20 facial fiducial points.
They also proposed a method to fully automatically recognise
the four temporal phases – neutral, onset, apex and offset –
of facial muscle actions for the first time in the literature
[16]. Koelstra et al. [5] proposed a method that detects AUs
and their temporal models using Free-Form Deformations
and Motion History Images. Motion History Images are a
type of dynamic appearance descriptors first used for AU
detection by Valstar et al. [19]. A work that utilises the
temporal relations between AUs in a facial expression is
that by Tong et al. [14]. However, they do not encode an
expression’s dynamics in the appearance description.

Recently a new group of appearance descriptors has been
proposed and sucessfully applied to face recognition, and
six basic emotional facial expression recognition. The family
of LBP-based detectors (i.e. LBP, LPQ and LBP-TOP)
have been reported to attain a better performance in such
problems than most existing methods in various comparative
studies, with respect to both performance and computational
efficiency (e.g.,[12], [23], [10]). Shan et al. [12] recognised
seven expressions (including neutral) from different publicly
available databases based on the LBP features. In [1], LPQ
was applied to face recognition and they reported that the
classification accuracy was higher with the new method than
with the well-known LBP or Gabor filter bank methods.
Zhao et al. [23] applied LBP-TOP to the six basic emotional
expressions recognition. It is reported that LBP-TOP clearly
outperformed the earlier approaches such as LBP, Gabor
and so on. Recently, LBP-TOP has also successfully been
applied to human action recognition by Mattivi and Shao
[6]. However, as far as we are aware, no work has been
done using these features.

This paper investigates the merits of the family of local
binary pattern descriptors for FACS Action Unit detection.
We compare LBP and LPQ for static AU analysis. For
spatio-temporal AU analysis we extend the purely spatial
representation of LPQ to a dynamic texture descriptor which
is called LPQ-TOP, and compare this with LBP-TOP. Fig. 1
shows an overview of the proposed system.

In order to detect the upper face AUs, we use 9 SVM
classifiers, one for each AU, which are trained on a subset
of the most informative spatiotemporal features selected by
GentleBoost. To extract these appearance features, we first
find the face in the input static image or all frames in an
image sequence using an adapted version of the Viola and
Jones face detector [20]. Next the first frames in image
sequences or static face images are registered to remove head
rotations and scale variations. Then for the image sequences,
a robust automatic image alignment scheme introduced by
Tzimiropoulos et al. [15] is employed to align the frames
within the sequence. After that, the static image or image
sequence is divided into small blocks, and the LBP and

LPQ features are extracted from the static image, or if the
input is an image sequence the LBP-TOP and LPQ-TOP
features are obtained from small space-time video volumes.
The histograms from all space-time video volumes are con-
catenated as a feature vector to represent the corresponding
face image or image sequence. The fastest of the systems
described in this work, to wit the LBP-based AU detector, is
freely available as part of the SEMAINE framework, which
can be downloaded from http://semaine.opendfki.de/.

The efficiency of these descriptors is evaluated by an
automatic AU detection system and tested on the posed and
spontaneous expression data which are collected from the
MMI and SEMAINE databases, respectively [18], [7]. Re-
sults show that the systems based on LPQ generally achieve
higher accuracy rate than LBP system, and that the systems
that utilise dynamic appearance descriptors outperform those
that use static appearance descriptors. Although the family
of LPQ descriptors are more computationally expensive than
the LBP’s, they attain a higher recognition performance.
All in all, the experimental results clearly show that our
proposed spatio-temporal descriptor, LPQ-TOP, outperforms
all other tested methods for the problem of FACS Action
Unit analysis. Finally, we propose a novel way to generate
sparse yet complete appearance training data for both static
and dynamic AU detection approaches.

Our key contributions are four fold. First, we propose
a novel way to generate sparse yet complete appearance
training data for both static and dynamic AU detection
approaches. Secondly, the well-performing static appearance
descriptor LBP is applied to AU detection for the first time in
the literature. Third, the LPQ descriptor is employed for the
first time to facial expression problems, specifically FACS
AU detection. Finally, a novel spatio-temporal appearance
descriptor LPQ-TOP is proposed. The experimental results
show that our novel descriptor outperforms the three other
methods for FACS AU analysis in terms of recognition
accuracy.

The remainder of this paper is organised as follows.
Section II briefly describes the basic principle of static
appearance descriptors LBP and LPQ. LBP-TOP as well as
our proposed LPQ-TOP are presented in Section III. The
static and dynamic datasets used in our experiments are
described in Section IV, while the evaluation procedures
and test results are given in Section V. Finally, Section VI
provides the conclusions of our research.

II. STATIC LOCAL APPEARANCE DESCRIPTORS

Recognising facial expressions from static images is a
more challenging problem than from image sequences, as
less information about expressive actions is available. For
example, without a neutral reference frame, it is impossible
to tell from a still image whether the appearance of the
eyebrows indicates a neutral expression, or that the brows are
slightly raised. Still, often a single image can provide enough
information for AU detection. The static local appearance
descriptors LBP and LPQ offer a promising solution to such
problems given their proven applicability to face recognition.



Fig. 1. The outline of our proposed system

In this section, we briefly explain the static appearance
descriptors used in this work.

A. Local Binary Patterns

Local Binary Patterns (LBP) were first introduced by Ojala
et al. in [8], and proved to be a powerful means of texture
description. By thresholding a 3× 3 neighbourhood of each
pixel with respect to the centre value, the operator labels
each pixel. Considering the 8-bit result to be the binary
representation of a decimal number, a 256-bin histogram of
the LBP labels computed over a region is used as a texture
descriptor.

Ojala et al. [9] later extended the basic LBP to a gray-
scale and rotation invariant texture operator. They derived an
operator for a general case based on a circularly symmetric
neighbour set of P members on a circle of radius R, denoted
as LBPriu2

P,R. Superscript ′′riu2′′ reflects the use of rotation
invariant uniform patterns (see [9] for details). Parameter
P controls the quantisation of the angular space and R
determines the spatial resolution of the operator. Bilinear
interpolation is used to allow any radius and number of pixels
in the neighbourhoods. The rotation invariance is achieved
by assigning a unique identifier to each pattern, which is
the minimum among the results obtained from performing
all the possible circular bit-wise right shifts. A local binary
pattern is called uniform if it contains at most two bitwise
transitions from 0 to 1 or vice versa when the binary string is
considered circular [9]. Using only rotation invariant uniform
Local Binary Patterns greatly reduce the length of the feature
vector. For example, the number of possible patterns for
a neighbourhood of 8 pixels is 256 for the basic LBP
while only 59 for LBPu2 and 10 for LBP riu2. An early
stage experiment was conducted to find the best descriptor
and optimal parameters for it. Hence, we adopt the LBPu2

8,1

descriptor in our experiments.
The occurrence of the uniform patterns over a region is

recorded by a histogram. After applying the LBP operator

Fig. 2. The concatenated feature vector that extracted from each face block

to an image, a histogram of the labelled image f(x, y) can
be defined as

Hi =
∑
x,y

I(f(x, y) = i), i = 0, ..., n− 1 (1)

where n is the maximum label number produced by the LBP
operator and I(A) is the indicator function, which returns 1
if A is true, and 0 otherwise.

An LBP histogram computed over the whole face image
represents only the global distribution of the patterns. To
include shape information, the images were divided into
regions from which we extract LBP histograms. The LBP
features extracted from each region are concatenated into a
single, spatially enhanced feature histogram (see Fig.2). The
final histogram is used as a feature vector to represent face
image. In our experiments, a region size of 20× 20 is used.
That is, the face image is divided into 10 × 10 blocks. In
our experiments, only the top half of the face is used, as we
only detect the upper face AUs.

B. Local Phase Quantisation
The Local Phase Quantisation (LPQ) operator was orig-

inally proposed by Ojansivu and Heikkila as a texture de-
scriptor that is robust to image blurring [10]. The descriptor
uses local phase information extracted using the 2-D DFT
or, more precisely, a short-term Fourier transform (STFT)
computed over a rectangular M-by-M neighbourhood Nx at
each pixel position x of the image f(x) defined by

F (u, x) =
∑

y∈Nx

f(x-y)e−j2πuT y = wTu fx (2)

where wu is the basis vector of the 2-D DFT at frequency
u, and fx is the vector containing all M2 samples from Nx.

The STFT is efficiently evaluated for all image positions
x ∈ {x1, ..., xN} using simply 1-D convolutions for the rows
and columns successively. The local Fourier coefficients are
computed at four frequency points: u1 = [a, 0]T , u2 =
[0, a]T , u3 = [a, a]T , and u4 = [a,−a]T , where a is
a sufficiently small scalar (a = 1 in our experiments).
For each pixel position this results in a vector Fx =
[F (u1, x), F (u2, x), F (u3, x), F (u4, x)]. The phase informa-
tion in the Fourier coefficients is recorded by examining the
signs of the real and imaginary parts of each component in
Fx. This is done by using a simple scalar quantiser

qj =

{
1 if gj ≥ 0 is true
0 otherwise (3)



where gj(x) is the jth component of the vector Gx =
[Re{Fx}, Im{Fx}]. The resulting eight bit binary coefficients
gj(x) are represented as integers using binary coding:

fLPQ(x) =

8∑
j=1

qj2
j−1. (4)

As a result, a histogram of these values from all positions
is composed and used as a 256-dimensional feature vector
in classification.

It can be shown that in quantisation the information is
maximally preserved if the samples to be quantised are
statistically independent [10]. In practice, the neighbouring
pixels are highly correlated in real images, which will lead
to dependency between the Fourier coefficients gj which are
quantized in LPQ. Therefore Ojansivu et al. [10] improve
LPQ by introducing a simple de-correlation mechanism.
Recently Ojansivu et al. [11] presented a rotation invariant
extension to the blur insensitive local phase quantisation
texture descriptor. For more details, please refer to [10].

Similar to the extraction of LBP histograms mentioned
above, the LPQ histograms were extracted independently
from non-overlapping rectangular regions and then concate-
nated to build a spatially enhanced description of the face.
For example, an image divided into m × n blocks will
produce a feature vector with dimension of 256 × m × n.
According to pilot experiments, a basic LPQ with M = 7
and an image grid size of 2×4 produces the best performance
in our application.

As a family of LBP-based detectors, LBP and LPQ share
some similar characteristics. For instance, both of them are
static local appearance descriptors. To be more specific, they
both compute the features on a very small neighbourhood
surrounding pixels, and a binary number is attained. Finally a
histogram is used to record the distribution of the occurrences
of the possible binary patterns.

III. DYNAMIC LOCAL APPEARANCE
DESCRIPTORS

Facial expressions are inherently dynamic processes. It has
been shown that human interpretation of facial expressions
depends heavily on the availability of the dynamics [3].
These cannot be described by the static appearance descrip-
tors described in Section II. Instead, we can use the temporal
extension of LBP, called LBP-TOP for this. Because LPQ
outperforms LBP, both for face recognition [1] and in our
own experiments (see Section V), we propose to extend LPQ
in a similar fashion, and name it LPQ-TOP. Both descriptors
result in a sparse encoding of appearance in small space-time
video volumes.

A. LBP-TOP

Local Binary Patterns from Three Orthogonal Planes
(LBP-TOP) was proposed by Zhao and Pietikainen [23].
Originally, the textures were modelled with volume local
binary patterns (VLBP), which are an extension of the LBP
operator widely used in ordinary texture analysis, combining
motion and appearance. Refering to the definition of LBP,

Fig. 3. Left: Three plane in spatio-temporal domain to extract neighbouring
points. Right: Concatenated histogram from three planes [23]

Fig. 4. The concatenated feature vector that extracted from each block to
represent the whole sequence [23]

they define a Dynamic Texture (DT) V in a local neighbour-
hood of a monochrome DT sequence as the joint distribution
v of the gray levels of 3P + 3(P > 1) image pixels, where
P is the number of neighbourhoods.

In the proposed VLBP, a P neighbourhoods VLBP oper-
ator will result in a 23P+2 dimension feature vector. When
the number of neighbouring points increases, the number of
patterns for basic VLBP will become very large. To make the
approach computationally simple and easy to extend, a sparse
space-time descriptor is proposed by computing LBP only on
three orthogonal planes: XY, XT, and YT, and concatenating
their results (shown in Fig.3).

The dynamic local appearance descriptor is denoted
as LBP-TOPPXY ,PXT ,PY T ,RXY ,RXT ,RY T

, where
PXY , PXT , PY T , RXY , RXT , RY T are the number of
neighbouring points in the XY, XT and YT planes and the
radii in axes X, Y, and T respectively.

As we mentioned before, the LBP features computed
over the whole face do not encode any spatial information.
Following the idea of LBP and LPQ implementations, the
image sequence is divided into several video volumes. The
LBP-TOP histogram is extracted in each video volumes and
concatenated into a single histogram (as shown in Fig.4). For
example, A division into 5×10 video volumes will result in
a feature vector of dimension 256 × 3 × 5 × 10 = 8850. A
LBP − TOP8,8,8,1,1,2 descriptor is adopted in this work.

B. LPQ-TOP

Following the idea of LBP-TOP, we extend LPQ to LPQ-
TOP. The basic LPQ features are extracted independently
from three orthogonal planes: XY, XT and YT, considering
only the co-occurrence statistics in these three directions. To



be more specific, the phase information is computed locally
in a window for every image position in three directions,
and the phase of the four low-frequency coefficients are de-
correlated and uniformly quantised in an eight-dimensional
space. The histogram is obtained by accumulating the occur-
rence of quantised phase code in each direction, denoted as
XY-LPQ, XT-LPQ and YT-LPQ. The histograms from the
three orthogonal planes are concatenated to form a single
histogram. Just as with LBP-TOP, the XY plane provides
the spatial domain information while the XT and YT planes
provide temporal information. Thus, by using this dynamic
texture descriptor, both appearance and motion in three
directions are considered. By using this method, the number
of bins becomes 256× 3 = 753 per space-time volume.

We recall that for the computation of LPQ, the phase
information is extracted by using the 2-D short-term Fourier
transform (STFT) computed over a rectangular neighbour-
hood Nx at each pixel position. One of the most important
parameters in LPQ is the window size. Similar to the LBP
operator, a smaller window captures more detailed facial fea-
ture information. Yet, possibly more unimportant information
could be involved such as effects produced by illumination,
personal characteristics and so on. It is not reasonable to
use the same size for the rectangular windows in each of
the three planes. Take an eleven frame image sequence with
a resolution of 200 × 200 as example, using a rectangular
size of 5 by 5, in the XY plane, the appearance might still
be kept; however, the motion along the time axis changes
dramatically in the XT and YT planes. Therefore, we set
different rectangular size Nx in Eq. 2 for different planes. In
other words, for the XY plane, the STFT is computed over a
Wx by Wy rectangular neighbourhood at each pixel position,
a Wx by Wt rectangular neighbourhood for XT and a Wy

by Wt rectangular neighbourhood YT plane. So the novel
descriptor is denoted as LPQ-TOPWx,Wy,Wt

.

Recall Eq. 2. Suppose the coordinates of the central pixel
x are given by (xc, yc, tc) and that Nx is a M by N window,
then y = (x, y, t). Hence, we obtain

for XY-LPQ
x ∈ {xc−(Wx−1)/2, . . . xc−1, xc+1, . . . xc+(Wx−1)/2},
y ∈ {yc−(Wy−1)/2, . . . yc−1, yc+1, . . . yc+(Wy−1)/2},
t = tc;

for XT-LPQ
x ∈ {xc−(Wx−1)/2, . . . xc−1, xc+1, . . . xc+(Wx−1)/2},
y = yc,

t ∈ {tc−(Wt−1)/2, . . . tc−1, tc+1, . . . tc+(Wt−1)/2};
for YT-TOP
x = xc,

y ∈ {yc−(Wy−1)/2, . . . yc−1, yc+1, . . . yc+(Wy−1)/2},
t ∈ {tc−(Wt−1)/2, . . . tc−1, tc+1, . . . tc+(Wt−1)/2}.

Now assume an X×Y ×T image sequence is given. Then
xc ∈ {0, ..., X − 1}, yc ∈ {0, ..., Y − 1}, tc ∈ {0, ..., T −
1}. Note that some pixels in the boundary are omitted as
their neighbourhood region is out of border. To calculate the
LPQ-TOP distribution for this sequence, a histogram Hi,j is

Fig. 5. The criterion of static data selection. The shaded areas are included
in the dataset.

defined as

Hi,j =
∑
x,y,t

I(f(x, y, t) = i), i = 0, 1, ..., 255, j = 0, 1, 2

(5)
where fi(x, y, t) presents the LPQ code of the central pixel
(x, y, t) in the jth plane which is computed by following the
processes described in Eq. 2.

Also, because the computed dynamic texture features are
of different spatial and temporal size, the histogram must be
normalised to get a consistent description, so we write

Ni,j =
Hi,j∑255
k=0 Hk,j

(6)

Hence, three 256 bin histograms, XY-LPQ, XT-LPQ and
YT-LPQ are effectively obtained and concatenated to build
the final LPQ-TOP feature vector. In our experiments,
LPQ-TOP7,7,3 is employed.

IV. DATA COLLECTION

In this work, the efficiency of the discussed descriptors is
tested based on datasets collected from the MMI Facial Ex-
pression Database (MMI database) [18], and the SEMAINE
database [7]. As LBP and LPQ deal with static images,
while LBP-TOP and LPQ-TOP process image sequences, a
separate dataset is collected for each.

The MMI database is a fully web-searchable collection
of visual and audio-visual recordings of subjects displaying
facial expressions which are FACS annotated. It includes
69 different subjects of both sexes (44 female), ranging
in age from 19 to 62, having either a European, African,
Asian, Caribbean or South American ethnic background. All
fully FACS-coded recordings show facial expressions that are
posed, and it is these data which will be used in this work.

To test our proposed AU detection methods on sponta-
neous facial expression data, we collect a dataset from the
SEMAINE database. The SEMAINE database consists of
a large number of emotionally coloured conversations. All
the expressions of users are naturally induced by operators
during the conversation. The dataset includes speech related
mouth and face movements, and significant amounts of both
in- and out-of-plane head rotations. All of these make the
work even more challenging. Recently a small portion of the
SEMAINE database has been FACS annotated by experts.



Fig. 6. The criterion of dynamic data selection. Each marked period results
in one data element. Dynamic appearance descriptors are extracted from
space-time volumes centered at salient moments indicated by the dots

A. STATIC DATASET

For the static dataset collection, we aim to collect a set of
frames that is as sparse as possible, yet spans the appearance
space of that AU completely. Note that when more than one
AU is activated, facial actions can appear very different from
when they occur in isolation. For example, AU1 and AU2
pull the brow up, whereas AU4 pulls the brows together and
down using primarily the corrugators muscle at the bridge
of the nose. The appearance of AU4 changes dramatically
depending on whether it occurs alone or in combination with
AU1 and AU2. In order to capture the appearance of each
action unit as fully as possible and thus build a richer data
space, we take in every video the first apex frames of each
target AU, and all the apex frames where any other upper
face AUs are in onset or offset (see Fig. 5). The shaded parts
are the frames selected. However, AU combinations are not
treated differently by the classifiers. In other words, each AU
is recognised independently from all the others.

B. DYNAMIC DATASET

The dynamic dataset consists of a set of image sequences,
which are extracted given a temporal window. Recall that
the aim of AU detection is to know at any time whether an
AU was present for that frame. This brings some difficult
questions such as how long the temporal window we use
should be and how to select the part of the video which best
captures the appearance changes etc. One way of generating
the training data is to first determine the window length, and
then generate features for every frame. However, this may
result in too many identical or at least very similar features.

Therefore, in our approach, we first define salient mo-
ments, namely the transition times between the different
temporal segments and the midpoint of every AU phase.
Secondly we generate an image sequence according to these
key points and a temporal window. The key moments define
where to apply our temporal window. As shown in Fig. 6, the
vertical stripes rectangle shows activated image sequences
and the diagonal stripes rectangle represents neutral image
sequences in a video. Notice that the transition points be-
tween neutral and onset are omitted as the image sequences
with half neutral and half apex frames may confuse whether
to be classified as having an active AU or not. For testing
a completely new video, we would generate the features for

Fig. 7. Average F1-measures over all subjects based on different split
approaches of parameter optimisation

each frame. Here the optimal length of the temporal window
is still an open question, and is of course a function at the
frame rate. We will experiment with a window length of
0.445 seconds, i.e 11 frames here.

V. EVALUATION

We evaluated the two static and dynamic appearance
descriptors on 442 videos taken from the MMI database,
and 8 videos of approximately 5 minute conversations each
from the SEMAINE database. As this is a user independent
system for FACS Action Unit detection, the evaluation is
done in a subject independent manner. Generalisation to new
subjects is tested using leave-one-subject-out cross validation
in which all images of the test subject were excluded from
training. Hence no data from one subject appears in both the
training and testing set.

A previous successful technique for facial expres-
sion classification is the Support Vector Machine (SVM)
(e.g.,[2],[12]). In this work, we adopted SVM as classifiers
for AU detection.

The evaluation is performed in three steps: feature normal-
isation, feature selection, and SVM classification. Firstly, the
obtained histograms are normalised so that all the features
lie in the range from −1 to 1. Next we use the GentleBoost
algorithm to select the most informative features from the
obtained histograms. So the problem space is reduced which
in turn increases the classification accuracy [2]. Finally SVM
classifiers are employed to perform AU activation detection.

When the GentleBoost algorithm is employed as a feature
selector preceding a SVM classifier, at each stage a weak
classifier is trained on a subset of the data consisting of a
single feature and iteratively boosted to a strong classifier
of higher accuracy. At each iteration, the weak classifier
which minimizes the weighted error rate is selected, and the
feature that this weak classifier represents is added to the list
of selected features. An updated strong classifier is used to
classify the training data, and the distribution is updated to
increase the weights of the misclassified examples and reduce
the importance of the others. This ensures that new features
are selected that are contingent on the features that have
already been selected, eliminating redundant information
with each training round.



The SVM classification is achieved by the following steps.
First, the instances with selected features are divided into two
groups: a training set and a testing set. The SVM classifiers
that we will use have a small number of parameters to
set while training the classifier. As we want to find the
optimal parameters for our problem in terms of classification
performance, we employ a separate 5-fold cross validation
loop each time we train a classifier in which we search for
the optimal parameters.

Thus, while evaluating each fold, the training data is split
into five subsets, four of which are used to train a classifier
and one of which is used for testing. The partitioning could
be done either randomly or in a subject-independent manner.
An early-stage empirical study was carried out which com-
pared the performance between random splits and subject
splits. Fig. 7 illustrates the average F1 measures over all
subjects obtained based on the different split approaches. It
is obvious that subject independently splitting data during
parameter optimisation generates much better SVM parame-
ters. After optimisation, the SVM is trained using all training
data and the optimal parameters. Separate binary classifiers,
one for each AU, were trained to detect the presence of the
AU regardless of co-occurring AUs.

Table I and Table II presents the AU recognision results
using LBP and LPQ based on posed and spontaneous data.
We can clearly see that LPQ outperforms LBP for most
AUs. The importance is even clearer in the spontaneous data.
The weighted average F1-measure from LPQ is 16% higer
than that for LBP. As limited spontaneous data has been
FACS-coded in the SEMAINE database, AU43 and AU46
are missing in Table II.

This difference between LBP and LPQ is even more
prominent for the dynamic appearance descriptors. Table III
shows the results obtained based on the LBP-TOP and LPQ-
TOP descriptors. As we can see, in general, the system based
on LPQ-TOP achieves a higher accuracy rate than LBP-TOP
system. For AU45, LBP-TOP significantly outperforms LPQ-
TOP. The reason for this is unknown, and this issue needs
further investigation. Not taking AU45 in account, LPQ-TOP
attained an average F1-measure of 82.9% and LBP-TOP an
average of 75.8%, when averaging over the total number of
positive examples.

Because different datasets were used for the static and
dynamic appearance descriptors, we cannot directly use the
results of tables I and III to make a comparison. Yet, since
both the static and dynamic datasets are extracted from the
same databases, we can compare all the tested descriptors
by thresholding our prediction and assigning an unique label
to a video. In other words, for each AU, if any frame or
image sequence is classified as positive, that AU is said to
be activated in the corresponding video. Note that this is
done only for comparison purposes, and the results may not
be optimal. Fig.8 presents the F1 measures over all videos
for each AU as classified by the different methods. As we can
see, the systems that utilise dynamic appearance descriptors
outperform those that use static appearance descriptors. Our
proposed spatio-temporal descriptor, LPQ-TOP, outperforms

TABLE I
AU DETECTION RESULTS USING LBP AND LPQ BASED ON POSED DATA

TAKEN FROM THE MMI DATABASE

LBP LPQ
AU n CR PR RC F1 CR PR RC F1
1 254 86.3 77.7 73.8 66.3 87.8 84.3 80.9 74.3
2 296 69.8 68.2 71.0 53.7 89.3 84.5 88.5 82.9
4 188 91.9 80.7 82.1 75.0 92.0 84.4 80.8 76.1
5 232 91.9 85.6 84.4 79.5 94.6 89.8 84.0 80.7
6 157 87.6 80.0 65.9 58.5 91.8 82.7 75.4 67.2
7 70 93.9 89.7 73.7 70.3 94.3 88.8 74.5 67.5
43 27 98.9 93.7 92.7 88.9 98.7 96.1 82.6 80.6
45 245 88.0 79.8 84.0 76.1 84.1 78.1 73.6 65.6
46 35 95.7 91.4 72.2 69.0 98.1 89.6 93.5 88.3

AVG 167 85.8 79.2 77.1 68.4 90.2 84.6 81.1 75.2

AU = Action Unit, CR = Classification Rate(%), PR = Precision(%), RC =
Recall(%), F1 = F1-measure(%), n = number of positive examples, AVG =
weighted average.

TABLE II
AU DETECTION RESULTS USING LBP AND LPQ BASED ON

SPONTANEOUS DATA TAKEN FROM THE SEMAINE DATABASE

LBP LPQ
AU n CR PR RC F1 CR PR RC F1
1 26 92.6 93.3 89.3 90.4 97.1 93.3 100 96.4
2 27 61.4 83.3 26.7 29.6 91.4 84.2 90.9 87.4
4 22 94.3 90.2 90.2 90.2 84.3 72.3 78.9 74.5
5 10 85.7 41.7 66.7 45.0 88.6 54.2 75.0 55.0
6 29 58.6 43.9 61.1 45.1 85.7 77.0 87.8 81.7
7 24 74.3 63.6 62.5 62.6 72.9 45.0 63.9 52.7
45 3 92.9 75.0 37.5 45.0 91.4 100 25.0 33.3

AVG 20 76.3 71.6 64.4 60.5 86.8 74.1 82.9 76.5

AU = Action Unit, CR = Classification Rate(%), PR = Precision(%), RC =
Recall(%), F1 = F1-measure(%), n = number of positive examples, AVG =
weighted average.

all other tested methods in terms of recognition accuracy
for all AUs but AU45. Although it is hard to compare our
results with those of others without controlled conditions, the
results are a significant improvement when compared with
[17], who tested on the same database.

VI. CONCLUSIONS

We successfully implemented a robust and real-time AU
detection system. We compared the static LBP and LPQ
appearance descriptors with dynamic appearance descriptors
LBP-TOP, and extend LPQ to LPQ-TOP. Results show
that the systems based on LPQ generally achieve higher

Fig. 8. The F1 measures (%) over all videos based on all tested descriptors



TABLE III
AU DETECTION RESULTS USING LBP-TOP AND LPQ-TOP BASED ON

POSED DATA TAKEN FROM THE MMI DATABASE

LBP-TOP LPQ-TOP
AU n CR PR RC F1 CR PR RC F1
1 148 91.0 83.5 83.1 77.5 90.5 86.9 90.0 85.6
2 138 88.8 81.1 77.7 73.6 87.8 84.5 85.1 79.4
4 129 89.2 82.8 75.6 72.2 88.3 85.7 84.4 81.2
5 50 92.3 89.0 85.7 79.5 94.0 89.6 87.1 83.2
6 58 95.6 85.4 86.4 82.6 97.2 88.9 93.4 87.2
7 48 90.7 93.4 73.1 73.8 94.1 89.8 80.2 80.9
43 61 96.6 85.0 87.9 79.2 97.7 89.1 92.3 86.3
45 664 86.4 83.1 78.6 75.3 76.1 63.4 63.2 48.1
46 98 92.7 89.5 77.0 73.6 92.8 89.9 88.4 82.4

AVG 103 89.0 84.1 79.4 75.5 84.2 75.9 75.9 66.3
AVG* 91 91.4 85.0 80.1 75.8 91.5 87.4 87.5 82.9

AU = Action Unit, CR = Classification Rate(%), PR = Precision(%), RC =
Recall(%), F1 = F1-measure(%), n = number of positive examples, AVG =
weighted average, AVG* = weighted average without considering AU45.

accuracy rate than LBP system, and that the systems that
utilise dynamic appearance descriptors outperform those that
use static appearance descriptors. Although the family of
LPQ descriptors are more computationally expensive than
the LBPs, they attain a higher recognition performance.
All in all, the experimental results clearly show that our
proposed spatio-temporal descriptor, LPQ-TOP, outperforms
all other tested methods for the problem of FACS Action Unit
analysis. Note that although we only applied the method to
upper face AUs, the method can be readily used for all other
AUs. The LBP-based version is freely available as part of
the SEMAINE framework.
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