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Abstract. Slow Feature Analysis (SFA) is a subspace learning method
inspired by the human visual system, however, it is seldom seen in com-
puter vision. Motivated by its application for unsupervised activity anal-
ysis, we develop SFA’s first implementation of online temporal video
segmentation to detect episodes of motion changes. We utilize a domain-
specific indefinite kernel which takes the data representation into account
to introduce robustness. As our kernel is indefinite (i.e. defines instead of
a Hilbert, a Krein space), we formulate SFA in Krein space. We propose
an incremental kernel SFA framework which utilizes the special proper-
ties of our kernel. Finally, we employ our framework to online temporal
video segmentation and perform qualitative and quantitative evaluation.

1 Introduction

Slow Feature Analysis (SFA) is an unsupervised technique for dimensionality
reduction, which extracts slowly varying features from rapidly changing raw
input signals [1]. The intuition behind SFA is linked to the assumption that the
information (e.g. activities or actions) contained in a signal (e.g. a video) do
not change suddenly, but slowly over time. While the input signal has generally
high variation (e.g. due to noise) the separation between informative changes is
usually hidden in the seldom varying features of the sequence. SFA extracts such
features, as it selects the attributes of the video which change least over time.

Although SFA only recently found its way into the computer vision commu-
nity [2–5], it is commonly linked to the visual cortex [6, 1]. In [2], its properties
are exploited to segment videos temporally. The individual segments are thought
to be the activities in the video. After performing SFA on the complete video,
they determine whether a split of the sequence is required. The decision is based
on the median of change in the slow features. For the separation, the frame
with the largest change is utilized as split position. Another set of SFA is per-
formed on the resulting videos, and the process is repeated until no further split
is necessary. For this, however, the complete video must be known a priori.

When the images are from a live camera stream, however, the complete video
is unknown. If SFA is used for each time-step, an incremental learning algorithm
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is required. Closely related to incremental SFA is incremental Principal Compo-
nent Analysis (PCA) [7, 8], as SFA can be solved via PCA and Minor Compo-
nents Analysis (MCA). One incremental version of SFA (IncSFA), which utilizes
Candid Covariance-Free Incremental PCA (CCIPCA) [9], and MCA is proposed
in [3]. Due to the nature of CCIPCA, IncSFA only learns an estimation of the
real features, and it requires many training examples (epochs) to converge to
the real solution. Thus it is fast, but not exact.

Another important aspect of SFA is the choice of data representation. Orig-
inally, SFA was designed for linear data sets which also allow for non-linear
expansions, such as a quadratic expansion [1]. More recently, [5] introduce Ker-
nel SFA (KSFA) with kernels in Hilbert space. Often, the computation of a
kernel is more efficient than non-linear expansions. A typical choice, also taken
in [5], is the selection of standard kernels, such as Gaussian RBFs (GRBFs).
However, such kernels have drawbacks: (1) standard kernels seldom utilize the
domain dependent property of the data, and (2) common problems exist when an
incremental learning method is required (e.g. the construction of a reduced set
representation). Typically, the online classification of an online kernel learning
method is written as a weighted sum of kernel combination of samples from a set
of stored instances, usually referred to as support or reduced set. At each step
a new instance is fed to the algorithm and depending on the update criterion
the algorithm adds the instance to the support set. A major challenge in online
learning is that the support set may grow arbitrarily large over time [10].

An incremental kernel PCA (KPCA) algorithm which kernelizes the exact al-
gorithm for incremental PCA in [7, 8] (IPCA) is proposed in [10]. In this method,
in order to maintain constant update speed the authors construct a reduced set
expansion, by means of pre-images. The main drawbacks of this method are that
(1) the reduced set representation provides only an approximation to the exact
solution and (2) the proposed optimization problem for finding the expansion
inevitably increases the complexity of the algorithm.

Some related works in the broader area of unsupervised video segmentation
are [11–13]. In [11] a method for clustering facial events is proposed. Their work is
only suitable for offline processing and requires the number of clusters a priori.
This is also the case for the clustering algorithm in [12]. A method for joint
segmentation and classification of human actions in video is proposed in [13].
Their method is supervised, i.e. a model for human actions is learned from a set
of labeled training samples. Then, given a testing video with a continuous stream
of human activities, the algorithm in [13] finds the globally optimal temporal
segmentation (i.e the change points between actions) and class labels.

Our methodology takes a different direction. In particular, we detect the
temporal changes in video streams online. We do not require the number of
clusters, nor train to a predefine set of examples. Thus, the methods in [11–13]
constitute excellent post-processing tools for clustering or classifying the events.

In this paper, we propose an online algorithm for incremental SFA which
builds on a special kernelized version of IPCA. The original KSFA [5], described
above, only supports arbitrarily chosen positive definite kernels. We take a differ-
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ent route. Rather than using off-the-shelf kernels which do not incorporate any
problem-specific prior knowledge, we utilize our kernel presented in [14] which is
based on a modification of a gradient-based correlation [15]. In [14], we analyze
this kernel and show superior performance for object tracking and recognition.
Finally, rather than using CCIPCA for online SFA, we utilize IPCA to produce
an exact incremental update of SFA at each time-step.

An important aspect of our framework is that our kernel is not positive def-
inite and, thus, the appropriate space in which our kernel can represent a dot-
product is a Krein space. Therefore, we start by formulating KSFA in a Krein
space. We then show that our kernel has a very special form which enables us to
formulate a direct version of our KSFA which does not require the computation
of a reduced set expansion. We capitalize on this property and propose an effi-
cient and exact incremental KSFA with our indefinite kernel. Finally, we develop
SFA’s first real-time temporal video segmentation algorithm. In summary, our
contributions are: (1) We propose KSFA in Krein space as our kernel is indefi-
nite. (2) We formulate incremental SFA using the exact IPCA which produces
a close approximation of SFA after each time-step. (3) We propose an accurate
incremental KSFA in Krein space which exploits the properties of our kernel and
does not require a reduced set expansion. (4) We use our learning framework to
implement the first online temporal video segmentation with SFA and validate
its performance on several video sequences.

The remainder of this paper is as follows. In Section 2, we describe standard
batch SFA for training data known a priori. In Section 3, we present our utilized
kernel and introduce incremental KSFA in Krein space. The framework for our
temporal video segmentation is proposed in Section 4, and our experiments are
shown in Section 5. Section 6 concludes our paper.

2 Slow Feature Analysis

Given n sequential observation vectors X = [x1 · · · xn], SFA finds an output
signal O = [o1 · · · on] for which the features change slowest over time [1].

The output of each individual sample is formed as the concatenation of k
mappings yj , j = 1, . . . , k, such that oi = [y1(xi) · · · yk(xi)]

T
, where (.)T com-

putes the transpose. SFA minimizes the slowness for these values, defined as

∆(yj) =
1

n
ẏT
j ẏj (1)

where ẏj = [ẏj(x1) · · · ẏj(xn)]
T is the sequentially concatenated vector contain-

ing the derivatives of yj for the sequence. Generally, ẏj is represented as the
difference between consecutive time steps, ẏj(xt) = yj(xt)− yj(xt−1) [5, 4, 2].

Additional constrains are introduced to avoid the trivial solution and prevent
information redundancy. The output signals of each yj = [yj(x1) · · · yj(xn)]

T

are required to have zero mean, and unit variance. Moreover, all yj are con-
strained to be uncorrelated. Finally, a useful additional constraint is the ordering
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of the components. We summarize the constrains in the following

∀i yT
i 1n×1 = 0 ∀i yT

i yi = 1
∀i 6= j yT

i yj = 0 ∀i < j ∆(yi) < ∆(yj)
(2)

where 1a×b is an a× b matrix with all elements set to 1.
Often, the input features xi are assumed to be linear, zi = xi, or a result of

a nonlinear expansion, zi = h(xi) (e.g. a quadratic expansion). Then, SFA can
be solved by means of the generalized eigenvalue problem [1]:

min
B

tr
(

(

BTZZTB
)−1

BT ŻŻTB
)

(3)

where Z = [z1 · · · zn] and Ż contain the input features and their time derivative
respectively, and tr(.) computes the trace of a matrix. As in [1], after finding the
whitening matrix W, such that WTZZTW = I, eq. (3) can be simplified to

min
A

tr
(

ATWT ŻŻTWA
)

, s.t. ATWTZZTWA = ATA = I. (4)

Note, for simplicity, we compute the matrix of derivations from Z [5, 4, 2],

Ż = [z2 · · · zn]− [z1 · · · zn−1] = ZPn (5)

wherePn is an n×(n−1) matrix with elementsPn(i, i) = −1 andPn(i+1, i) = 1.
We now briefly outline a batch algorithm which solves SFA when the data is

known a priori. Given a p1-dimensional sequential input signal of n samples X =
[x1 · · · xn] ∈ R

p1×n, its p2-dimensional expansion is given by Z = [z1 · · · zn] ∈
Rp2×n, where zi = h(xi) is build using the non-linear mapping h : Rp1 → Rp2 .

Generally, the data in Z may not have zero mean, however, a centered data
matrix can be easily computed. We find the centralized data matrix Z̄ = Z −
1n×1µZ, where µZ is the mean of the samples. In the first step, the matrix W

which whitens the signal is calculated, such that WHZ̄Z̄HW = I. For this, we
require a singular value decomposition (SVD) of Z̄. For high-dimensional data
we find the eigenvalue decomposition (ED) of Z̄T Z̄ = ΩΛΩT and get [16]

Z̄ =
[

Z̄ΩΛ− 1
2

] [

Λ
1
2

]

[Ω]
T
= UDVT . (6)

The projection which whitens the the scatter matrix is provided by W = UD−1.
An optional dimensionality reduction of the input data may be introduced for

the whitening projection and the eigenspace, such that Wk1 = Uk1D
−1
k1

where
Uk1 and Dk1 correspond to the k1 largest eigenvalues in D. In the following, we
generally omit the subscript which indicates this reduced space.

SFA’s second step solves eq. (4). First, the mean µŻ and the centered data

matrix ˙̄Z = Ż−1n×1µŻ are computed. To find the final output functions of the

SFA, the ED of WT ˙̄Z ˙̄Z
T
W = AHAT is used [1]. The projection which solves

eq. (4) is given by B = WA. Thus the output signal of a sample xi is given by

oi = AT
(

WT (zi − µZ)−WTµŻ

)

= BT
(

zi − µZ − µŻ

)

. (7)
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The ordering, in terms of slowness, of the functions yj, which construct oi,
is provided by the order of the components in A which is governed by the
eigenvalues in H. The slowest function is related to the smallest eigenvalue and
the next larger eigenvalue gives the second slowest function, etc.

3 Incremental Slow Feature Analysis in Krein Space

In this section we present our incremental KSFA in Krein space which is designed
to exploit the special properties of our kernel. First, we introduce our kernel. We
then present a brief introduction to Krein spaces. The development of KSFA in
Krein spaces and the exploitation of the special form of our kernel to formulate
a direct version of KSFA for our kernel is then shown. Finally, we propose our
incremental KSFA with our indefinite kernel.

3.1 The Robust Gradient-based Kernel

Assume that we are given two images Ii ∈ Rn×m, i = 1, 2, with normalized pixel
values in range [0, 1]. The gradient-based representation of Ii is defined as

Gi = Fx ⋆ Ii + jFy ⋆ Ii (8)

where Fx and Fy are linear filters which approximate the ideal differentiator in
the image’s horizontal and vertical axis. Let xi ∈ Cd be the d-dimensional vector
obtained from Gi in lexicographical order. The gradient correlation is given by

s1(xi,xj) = R
{

xH
i xj

}

=

d
∑

c=1

Ri(c)Rj(c) cos (∆θ(c)) (9)

where R{.} extracts the real value of a complex number,Ri is a vector containing
the magnitudes of xi, ∆θ(c) = θi(c)−θj(c) is the difference in the orientations,

Ri(c)e
jθi(c) is the polar form of xi(c), and (.)H is the complex conjugate trans-

position. The correlation in eq. (9) was proposed for robust scale-invariant image
matching under the presence of occlusions and large non-overlapping regions [15].
Its robustness stems from the choice of features, but also the utilized correlation.

In [14], we propose a modification of this measure, so that k(xi,xj) can
be expressed as the dot-product of two explicit mappings, a : Cd → C2d and
b : Cd → C2d, such that k(xi,xj) = a(xi)

Hb(xj) = b(xi)
Ha(xj), and

a(xi) =









Rie
jθi

2

√

d
∑

c=1
R2

i (c)d

ejθi









b(xi) =









ejθj

Rje
jθj

2

√

d
∑

c=1
R2

j (c)d









, where ejθ =









ejθ(1)

...

ejθ(d)









. (10)

The kernel’s robust properties derive from (1) the use of gradient orientations,
(2) the addition of magnitudes, (3) the use of the cosine on the difference of
gradient orientations (more details in [14]). Thus, this kernel is suitable for robust
image processing. Finally, we emphasize that our kernel is non-positive definite.
Consequently, we cannot define an implicit Hilbert feature space. In this case,
the space where the kernel represents a dot-product is a Krein space [17].
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3.2 Krein Spaces

Krein spaces are important as they produce feature-space representations of
dissimilarities and provide us with insights on the geometry of classifiers defined
with non-positive kernels [17]. An abstract space K is a Krein space if there
exists an (indefinite) inner product 〈., .〉K : K ×K → C such that [18]:

∀x, y ∈ K 〈x,y〉K = 〈y,x〉CK (11)

∀x, y, z ∈ K, c1, c2 ∈ R 〈c1x+ c2z,y〉K = c1〈x,y〉K + c2〈z,y〉K (12)

where (.)C computes the complex conjugate. K is composed of two vector spaces,
K = K+ ⊕ K−, where K+ and K− describe two Hilbert spaces, for which we
denote their corresponding positive definite inner products as 〈., .〉K+ and 〈., .〉K−

respectively. Note here, all Hilbert spaces are also Krein spaces, as K− may be
empty. The decomposition of K into its two subspaces defines two orthogonal
projections: P+ onto K+ and P− onto K−, known as fundamental projections
of K. Using these projections, x ∈ K can be represented as x = P+x+P−x.

Let x+ ∈ K+ and x− ∈ K− be the projections onto the subspaces P+x and
P−x respectively. Then, 〈x+,y−〉K = 0 for all x,y ∈ K. Moreover, 〈x+,y+〉K >
0 and 〈x−,y−〉K < 0 for any non-zero vectors x,y ∈ K. Hence, K+ is a positive
subspace, while K− is a negative subspace. The inner product of K is defined as

∀x,y ∈ K 〈x,y〉K = 〈x+,y+〉K+ − 〈x−,y−〉K−
. (13)

K has an associated Hilbert space |K| which can be found via the linear op-
erator J = P+−P−, called the fundamental symmetry. This symmetry satisfies
J = J−1 = JT and describes a Krein space’s basic properties. By using eq. (13)
and J the connection between |K| and K can be written as a “conjugate”:

x∗y , 〈x,y〉K = xHJy = 〈Jx,y〉|K| (14)

That is, K can be turned into its associated Hilbert space |K| by using the positive
definite inner product of the Hilbert space,〈., .〉|K|, as 〈x,y〉|K| = 〈x,Jy〉K.

We are particularly interested in finite dimensional Krein spaces where K+

is isomorphic to Cp and K− is isomorphic to Cq. Such a Krein space describes
a pseudo-Euclidean space [17]. In particular, the symmetry J ∈ R(p+q)×(p+q) is
given by ∀i ≤ p,J(i, i) = 1, ∀p < i ≤ (p+ q),J(i, i) = −1 and ∀i 6= j,J(i, j) = 0.

Our kernel (Section 3.1) is indefinite, and defines an implicit mapping φ :
Cd → K into a finite Krein space. Analogously to Hilbert space, our kernel is
equivalent to the dot-product in feature space, i.e. k(xi,xj) = 〈φ(xi), φ(xj)〉K.

3.3 Indefinite Kernel Slow Feature Analysis in Krein Space

Let us assume a signal Z = [φ(x1) · · ·φ(xn)] is given, where φ(.) is an implicit
mapping into Krein space K. We find its derivative as Ż = ZPn. Let us define

the total scatter matrices SK , Z̄Z̄∗ = Z̄Z̄HJ = S|K| and ṠK , ˙̄Z ˙̄Z
∗
= Ṡ|K|,

where S|K| and Ṡ|K| are the scatter matrices of the associated Hilbert space |K|.
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Analogously to KSFA in Hilbert space [5] and KPCA with indefinite kernels
[14], we formulate the optimization in eq. (3) for Krein spaces as follows3

min
B

tr
(

(B∗SKB)
−1

B∗ṠKB
)

(15)

By formulating the projection as a linear combinationB = Z̄B̃, eq. (15) becomes

min
B̃

tr

(

(

B̃HZ̄HJZ̄Z̄HJZ̄B̃
)−1

S̃HZ̄HJ ˙̄Z ˙̄Z
H
JZ̄B̃

)

= min
B̃

tr

(

(

B̃HK̄K̄B̃
)−1

B̃HK̄PnM
T
n−1P

T
n K̄B̃

)

(16)

where K̄ is the centralized kernel matrix of the signal, and Mn = In − 1
n1n×n.

We need to find a solution B̃ such that B̃HK̄2B̃ = I. We compute the ED
K̄2 = ΩΛ2ΩH , and define B̃ = W̃A = Ω|Λ|−1A, then

B̃HK̄2B̃ = AH |Λ|−1ΩHΩΛ2ΩHΩ|Λ|−1A = AHA = I (17)

where Λ has p positive and q negative eigenvalues. Its reduced set is obtained by
keeping the k1 eigenvalues with the largest magnitude. Now, eq. (16) becomes

min
A

tr

(

AHW̃H ˙̄K ˙̄K
H
W̃A

)

, s.t. AHW∗Z̄Z̄∗WA = AHA = I (18)

where ˙̄K = K̄PnMn−1 – i.e. the centered derivative of the kernel matrix. The
final projection becomes B = Z̄B̃ = Z̄W̃A = WA.

We have shown how SFA is formulated with a general kernel in Krein space.
Let us now conclude with a special formulation which allows direct computation
using the mappings a(.) and b(.) of our kernel in eq. (10). Similar to [14], we
substitute the kernel by utilizing a(.) and b(.) (which are not equivalent to the
implicit mapping φ(.)). Our projection for our special case is therefore given by
Ba = Z̄aB̃ and Bb = Z̄bB̃, where Z̄a and Z̄b are the centered data matrices of
Za = [a(x1) · · · a(xn)] and Zb = [b(x1) · · · b(xn)] respectively. In the following,
we denote the two cases for a and b as short hand a/b (e.g. Za/b). We substitute
the unknown Z with Za/b wherever possible. Algorithm 1 shows our direct KSFA
approach. The embedding (or testing) of a new sample is given in Algorithm 2.

3.4 Incremental Slow Feature Analysis with Indefinite Kernel

In this section, we introduce our incremental SFA which holds and updates
the feature representation in constant time and memory space. We base our
mechanism on the mathematically exact IPCA [7].

As seen in Section 2, SFA depends on two major parts, i.e. the whitening of
the input data and the feature optimization. In the following, we describe how
we perform both steps incrementally. Fig. 1 illustrates our setup. We utilize the
same notation as in Section 3.3, and indicate time steps by subscripts (e.g. Xt

is the signal at time t).

3 Although SFA [1] is originally defined in R, its complex equivalent in C is found by
substituting (.)T with (.)H .
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Algorithm 1 Batch Slow Feature Analysis with Kernel

Input: The two mapping of the training data Za/b ∈ C
2p×nZ , the time derivatives Ża/b =

Za/bPn ∈ C
2p×n

Ż and the maximum number of components k1 for the data whitening.
Output: The data projections Ba/b with sorted components according to slowness, and the data

means µ
Za/b

and µ
Ża/b

of the mapped signal and its derivative.

1: Compute µ
Za/b

= Za/b
1

nZ
1nZ×1 and Z̄a/b = Za/b − µ

Za/b
11×nZ

.

2: Find Z̄H
a Z̄b = ΩΛΩH and the reduced set Ωk1

∈ C
nZ×k1 and Λk1

∈ R
k1×k1 which is related

to the k1 eigenvalues with largest magnitude in |Λ|.

3: Set W̃k1
= Ũk1

D
−1
k1

= Ωk1
|Λk1

|−
1
2 |Λk1

|−
1
2 = Ωk1

|Λk1
|−1.

4: Calculate µ
Ża/b

= Ża/b
1

n
Ż

1n
Ż

×1 and ˙̄Za/b = Ża/b − µ
Ża/b

11×n
Ż
.

5: Compute W̃H
k1

Z̄H
a

˙̄Zb
˙̄Z
H

a Z̄bW̃k1
= AHAH .

6: Reorganize A’s components in relation to the ascending eigenvalues in H, set Ba/b = Z̄a/bW̃A.

Algorithm 2 Testing with Kernel

Input: The mapping of the to-be-tested sample za ∈ C
2p, the data projection Bb with sorted

components, the number k2 of slow features to be used, and the data means µ
Za

and µ
Ża

of

the mapping of the original signal and its derivative.
Output: The output signal o ∈ C

k2 .
1: Compute z̄a = za − µ

Za
− µ

Ża
.

2: Find o = BH
bk2

z̄a where Bbk2
∈ C

2p×k2 consists of the first k2 rows of Bb.

Incremental Whitening. Let us assume we are given an eigenspaceUat−1/bt−1

and Dt−1 of the input data Zat−1/bt−1
either from the previous time t − 1, or

computed by a batch algorithm at time 0. We want to update our whitening
projections Wat−1/bt−1

= Z̄at−1/bt−1
W̃t−1 to additionally incorporate a new

set of data samples Xδ, such that all the information in Xt = [Xt−1 Xδ] is
represented. First, we compute the mappings Zaδ/bδ . Then we calculate the
means µZaδ/bδ

and center matrices Z̄aδ/bδ . The data means µZat−1/bt−1
and the

SVD of the centered data Z̄at−1/bt−1
are updated via IPCA in Krein space [14]

(we assume SVD with positive and negative eigenvalues).

Let Xt−1 contain nZt−1 samples, and the new data Xδ consists of nZδ
input

vectors. Then we find the new means as

µZat/bt
=

nZt−1µZat−1/bt−1
+ nZδ

µZaδ/bδ

nZt−1 + nZδ

. (19)

We want to compute the SVD of the new data matrix Z̄at/bt to find Wat/bt .
For the sake of simplicity, let µZat/bt

= µZat−1/bt−1
. The principle components

of Z̄aδ/bδ which are not represented in Uat−1/bt−1
can be derived by subtracting

the projected data from the original. Analogously to [10], we find the ED of

(

Z̄aδ
−Uat−1U

∗
at−1

Z̄bδ

)∗ (

Z̄bδ −Ubt−1U
∗
at−1

Z̄bδ

)

= Θ∆ΘH (20)

and set Kδ = |∆
1
2 |ΘH and Uaδ/bδ =

(

Z̄aδ/bδ −Uat−1/bt−1
U∗

at−1
Z̄bδ

)

Θ|∆|−
1
2 .
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Fig. 1. Illustration of the work flow for our incremental KSFA algorithm.

Then, as shown in [14], the new SVD of the centered data is given by

Z̄at/bt =
[

Uat−1/bt−1
Uaδ/bδ

]

[

Dt−1 U∗
at−1

Z̄bδ

0 K

] [

Vt−1 0

0 I

]H

(21)

which is solved by SVD of the middle matrix, as eq. (21) becomes

Z̄at/bt =
[

[

Uat−1/bt−1
Uaδ/bδ

]

Ũ
] [

D̃
]

[

ṼH

[

Vt−1 0

0 I

]H
]

= Uat/btDtV
H
t (22)

Thus, the corresponding update of the eigenspectrum is then provided byUat/bt =
[

Uat−1/bt−1
Uaδ/bδ

]

Ũ and Dt = |D̃|, and the whitening projection is computed

as Wat/bt = Uat/btD
−1
t . An optional dimensionality reduction may be applied

as in Section 3.3. Note, Vt is not required to be known or stored in memory.
In general, to allow for the case in which the mean has changed, we introduce

a correcting term into the matrix of the new data, to form [8]

Ẑaδ/bδ =

[

Z̄aδ/bδ

√

nm

n+m

(

µZat−1/bt−1
− µZaδ/bδ

)

]

. (23)

Equations (20) and (21) are then computed with Ẑaδ/bδ instead of Z̄aδ/bδ .

Slow Feature Update. When given a new set of nŻδ
time derivatives Żaδ/bδ ,

we need to update the slow features. For this, we initially propose an update of

the scatter matrix ˙̄Zt−1
˙̄Z
T

t−1 and the means µŻat−1/bt−1
.

Let us assume nŻt−1
samples are represented in Żat−1/bt−1

. We first find the

means µŻaδ/bδ

and centered data matrices ˙̄Zaδ/bδ of the new elements. Then, we

update the scatter matrix as [8]

˙̄Zbt
˙̄Z
H

at
= ˙̄Zbt−1

˙̄Z
H

at−1
+ ˙̄Zbδ

˙̄Z
H

aδ
+

nm

n+m

(

µŻbt−1
− µŻaδ

)(

µŻat−1
− µŻbδ

)H

(24)
and the new means are found analogously to eq. (19). Finally, we calculate the

new feature functions by an ED of WH
at

˙̄Zbt
˙̄Z
H

at
Wbt ∈ Ck1×k1 as in Section 3.3

before. Note, again, the unknown mapping φ(.) is not required.
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Forgetting Factor. We utilize a forgetting factor f which acts as weight for
old data (usually 0 ≪ f < 1) as introduced in [7, 8]. First, we adjust the update
of the mean and the mean correction term in eq. (23). As in [8], we set

µZat/bt
=

fnZt−1

fnZt−1 + nZδ

µZat−1/bt−1
+

nZδ

fnZt−1 + nZδ

µZaδ/bδ
. (25)

Analogously to [8], the correction in Ẑaδ/bδ is given by4

Ẑaδ/bδ =



Z̄aδ/bδ

√

f2nZδ
nZt−1

(

nZδ
+ nZt−1

)

fnZt−1 + nZδ

(

µZat−1/bt−1
− µZaδ/bδ

)





(26)
The update of the whitening is then computed with Ẑaδ/bδ . Note, similar to [8],
we apply f to the previous eigenvalues, i.e. we set Dt−1 = fDt−1. Finally, we
incorporate f in the total number of samples nZt = fnZt−1 + nZδ

.
To introduce a forgetting factor into the update of the scatter matrix in

eq. (24) a similarly modification is required. Analogously to [8] we find

˙̄Zbt
˙̄Z
H

at
=

f2nZδ
nZt−1

(

nZδ
+ nZt−1

)

(

fnZt−1 + nZδ

)2

(

µŻbt−1
− µŻbδ

)(

µŻat−1
− µŻbδ

)H

+ f2 ˙̄Zbt−1

˙̄Z
H

at−1
+ ˙̄Zbδ

˙̄Z
H

aδ
(27)

Finally, the number of elements is adjusted to nŻt
= fnŻt−1

+ nŻδ
.

4 Real-time Temporal Video Segmentation

In this section, we employ our incremental KSFA with indefinite kernel to the
problem of temporal video segmentation. The segmentation of a video sequence
in time is closely related to finding consecutive frames which have large differ-
ences in their slow features [2].

SFA minimizes the slowness of a signal, eq. (1), which is the squared sum
of Euclidian distances of the slow features between consecutive samples of the
complete signal. Analogously, we define the change of signal zi, after time t, as
the squared Euclidian difference in slow features towards its previous signal

ckt(zi) = BH
kt
(zi − zi−1)(zi − zi−1)

HBkt (28)

where ckt(.) depends on the number of utilized slow features k. When a new
activity has started, the change is expected to be unusually large. To compare the
current change ckt−1(zt) to previous data we utilize the average of all ckt−1(zi),
i = 1, . . . , t− 1. However, a trivial update of the mean is not possible, as ckt−1(.)
changes with each time interval. We want to compute the average change of
previous time-steps without keeping the whole signal in memory.

4 The correction with f is not in [8], but is trivial to find, following their derivation.
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Considering our update, for eq. (18), we found the ED ofW∗
t−1

˙̄Zt−1
˙̄Z
∗

t−1Wt−1

as At−1Ht−1A
H
t−1. As

˙̄Zt−1 = [z2 · · · zt−1] − [z1 · · · zt−2] − µŻt−1
11×n

Żt−1
, the

sum of the k largest eigenvalues in Ht−1 is nearly equivalent to
∑t−1

1 ckt−1(zi).
The difference is caused by µŻt−1

, and thus we compute the average as

µkt−1 =
tr

(

Hkt−1

)

nŻt−1

+ µ∗
Żt−1

Wt−1Akt−1A
H
kt−1

W∗
t−1µŻt−1

. (29)

We utilize the ratio between ckt−1(zt) and µkt−1 to judge how significant the
change at the current time-step is. The frames with unusually large variations in
slow features (according to a threshold), are then used to segment the different
parts of the video stream. For each time-step, we first analyze the significance
of variation, and then update the SFA with the new data.

An optional median filter of size n (n = 8 for our system) may be applied to
smoothen the change detection. Although, this introduces a delay of n

2 frames,
as the results of the surrounding data is needed, we found it to be beneficial, as
outliers are suppressed. If immediate output is required, we skip this part.

5 Evaluation

In this section, we evaluate our system in a number of setups. First, we provide
a proof of concept, which shows that our incremental SFA can be used for iden-
tifying change. Second, we compare the utilization of our kernel quantitatively
to SFA with linear and quadratic features, using samples of the MMI Facial Ex-
pression Database (MMI) [19] for the detection of onset and offset. Finally, we
test qualitatively on videos from YouTube and the Ballet data set in [20].

5.1 Proof of Concept

We test our incremental SFA on the input signal given by xi = [sin(mi) +
cos(11mi)

2, cos(11mi)]
T (Fig. 2). A quadratic expansion is used (a(xi) = b(xi) =

[

xi(1),xi(2),xi(1)xi(2),xi(1)
2,xi(2)

2
]T

). We use 500 equally distributed sam-
ples in the range [0, 4π]. Add each time-step, we feed another input vector into
our system. The estimated change ratio of each sample, based on 1 slow feature,
is computed as soon as it became available (no filter is applied). The ground
truth is the change ratio of the whole sequence when known a priori.

Fig. 2 visualizes the results. With more data, the incremental SFA becomes
increasingly accurate. At first, the trend of the signal is unknown, and thus most
variations in the features are large. As the incremental SFA learns the behavior
of the input sequence, it can better estimate the significance of the change.

5.2 Quantitative Evaluation

In our second experiment, we compare incremental SFA using our input features
(K-SFA), given by the mappings in eq. (10), with the quadratic expansion (Q-
SFA) and linear features (L-SFA) (when a(xi) = b(xi) = xi). The MMI data set
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Fig. 2. The results of our incremental change detection algorithm (right) compared to
ground truth for which the input signal (left) is known completely a priori.
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Fig. 3. The false positive over false negative rate of our Online K-SFA in comparison to
other versions (left), the 3 slowest projections for L-SFA after 900 frames (top-right),
and the output of our online change detection with Online K-SFA (bottom-right).

[19] is used. We utilize the first 60 expressions of the first subject. Each action
in MMI is labeled by onset, apex and offset. The onset and offset indicate the
start and end of the expression respectively. We utilize these labels as ground
truth as they mark the frames in which the activity in the video changes.

Initially we concatenate all videos and employ our tracker in [14] to extract
aligned images (50×50 pixel) of several activities. Then we optimize both setups
with respect to the number of components used for the whitening k1, the for-
getting factor f and the number of slow features k2. All methods perform best
with f = 0.996 (≈ 250 frames), and k2 = 3. However, K-SFA performed best for
k1 = 10, which is much less than needed for L-SFA, which required k1 = 80, and
Q-SFA for which k1 = 20. Additionally, we include the batch version of K-SFA
(Batch K-SFA), for which we compute the change ratio with all samples known a

priori. We plot the false positive over the false negative rate (Fig. 3). The equal
error rate is best for Online K-SFA. Batch K-SFA is inherently non-adaptive
and, thus, performs worse. The spectrums of Online K-SFA is given in Fig. 3.

Fig. 3 also shows the top 3 projections after frame 900 for L-SKA5 as (i) batch
setup, (ii) with f = 1 (no forgetting), and (iii) with f = 0.996. We compare (i)
with (ii). The resulting projections are virtually equivalent, which validates our
update procedure. Notice, how the slowest projection relates to the smile around

5 L-SFA is chosen to aid visualization, as the projections remain in the original space.
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Fig. 4. Frames of the segmentation for yoga (top) and ballet (bottom) scenes.

frame 530. For (iii) the effect of f becomes apparent, as the projections for this
setup are most relevant to later expressions. Here, the smile is no longer visible.

Finally, we emphasize the advantage of our domain-specific kernel in Krein
space. Although our kernel utilizes a small reduced set (k1 = 10), it yields
the best performance. The second best online approach is Q-SFA which needs
k1 = 20 components for the whitening. Note, if fewer components are used
eq. (21) is faster to compute. Furthermore, a(.) and b(.) can be computed in
linear time and memory. The quadratic expansion is polynomial.

5.3 Qualitative Evaluation

We conclude our experiments with a selection of video sequences from different
scenarios. Fig. 4 shows the extracted spectrums of a yoga sequence6 and an
example of segmented ballet videos [20]. We use the same parameters as in the
previous section. The temporal video segments are clearly visible. Please visit
http://www.doc.ic.ac.uk/~sl609/sfa/ for videos and source code.

6 Conclusion

We utilize a domain-specific robust indefinite kernel for measuring visual simi-
larity. We then developed slow feature analysis for our indefinite kernel in Krein
space. Additionally, we proposed a direct incremental KSFA which does not rely
on a reduced set, as we utilizes the special two mappings which equal our kernel.
Finally, we employ our learning framework in SFA’s first online temporal video
segmentation algorithm, and perform qualitative and quantitative evaluation.

6 Taken from http://www.youtube.com/watch?v=ziVctQnyvwE
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