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Abstract. Component Analysis (CA) consists of a set of statistical tech-
niques that decompose data to appropriate latent components that are
relevant to the task-at-hand (e.g., clustering, segmentation, classifica-
tion). During the past years, an explosion of research in probabilistic CA
has been witnessed, with the introduction of several novel methods (e.g.,
Probabilistic Principal Component Analysis, Probabilistic Linear Dis-
criminant Analysis (PLDA), Probabilistic Canonical Correlation Anal-
ysis). A particular subset of CA methods such as PLDA, inspired by
the classical Linear Discriminant Analysis, incorporate the knowledge
of data labeled in terms of an attribute in order to extract a suitable
discriminative subspace. Nevertheless, while many modern datasets in-
corporate labels with regards to multiple attributes (e.g., age, ethnicity,
weight), existing CA methods can exploit at most a single attribute (i.e.,
one set of labels) per model. That is, in case multiple attributes are
available, one needs to train a separate model per attribute, in effect
not exploiting knowledge of other attributes for the task-at-hand. In this
light, we propose the first, to the best of our knowledge, Multi-Attribute
Probabilistic LDA (MAPLDA), that is able to jointly handle data anno-
tated with multiple attributes. We demonstrate the performance of the
proposed method on the analysis of 3D facial shapes, a task with increas-
ing value due to the rising popularity of consumer-grade 3D sensors, on
problems such as ethnicity, age, and weight identification, as well as 3D
facial shape generation.

Keywords: Multi-Attribute · PLDA · Component Analysis · 3D shapes.

1 Introduction

Component Analysis (CA) techniques such as Principal Component Analysis
(PCA) [10], Linear Discriminant Analysis (LDA) [23] and Canonical Correlation
Analysis (CCA) [8] are among the most popular methods for feature extraction
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2 S. Moschoglou et al.

µ +   F[:,1] µ +   F[:,2] µ +   F[:,3]

PL
D

A
M

A
PL

D
A

White Black Chinese

Fig. 1. Visualization of recovered components by MAPLDA as compared to PLDA,
highlighting the improvement induced by explicitly accounting for multiple attributes.
We denote with µ the global mean, and with F the learned subspace of the ethnicity
attribute where α ≥ 1 is used to accentuate the component visualization. MAPLDA is
trained by jointly taking into account the ethnicity and age-group attributes. As can
be clearly seen, this leads to a more accurate representation of the ethnicity attribute
in MAPLDA, which is more prominent for the Black class.

and dimensionality reduction, typically utilized in a wide range of applications
in computer vision and machine learning. While CA methods such as PCA have
been introduced in the literature more than a century ago, it was only during
the last two decades that probabilistic interpretations of CA techniques have
been introduced in the literature, with examples of such efforts including Prob-
abilistic PCA (PPCA) [18, 22, 25], Probabilistic LDA (PLDA) [19, 28, 30, 29, 9,
20] and Probabilistic CCA (PCCA) [12, 3]. The rise in popularity of probabilistic
CA methods can be attributed to several appealing properties, such as explicit
variance modeling and inherent handling of missing data [2]. Furthermore, prob-
abilistic CA models may be easily extended to mixture models [24] and Bayesian
methodologies [13], while they can also be utilized as general density models [25].

While many CA methods such as PCA and CCA are typically considered
to be unsupervised, methods such as LDA assume knowledge of labeled data
in order to derive a discriminative subspace based on attribute values (labels),
that can subsequently be utilized for predictive analysis e.g., classification of
unlabeled data. Probabilistic LDA (PLDA) [20, 14] constitutes one of the first
attempts towards formulating a probabilistic generative CA model that incor-
porates information regarding data labels (e.g., the identity of a person in an
image). In more detail, each datum is generated by two distinct subspaces: a
subspace that incorporates information among instances belonging to the same
class, and a subspace that models information that is unique to each datum. Put
simply in the context of face recognition, all images of a specific subject share



Multi-Attribute PLDA for 3D Facial Shapes 3

the same identity, while each image may carry its own particular variations (e.g.,
in terms of illumination, pose and so on).

Nevertheless, a feature of PLDA and other probabilistic LDA variants that
can be disadvantageous is the single-attribute assumption. In other words, PLDA
is limited to the knowledge of one attribute, effectively disregarding knowledge of
any other attributes available for the data-at-hand that may prove beneficial for
a given task. For example, it is reasonable to assume that knowledge of attributes
such as pose, expression and age may be deemed beneficial in terms of deter-
mining the identity of a person in a facial image. By incorporating knowledge
of multiple attributes, we would expect a generative model to better explain
the observation variance, by decomposing the observation space into multiple
components conditioned on the attributes at-hand. Fig. 1 illustrates the more
accurate representations we can obtain in this way.

In the past, PLDA was successfully applied to tasks such as face recognition
and speaker verification [20, 11]. The advent of Deep Convolutional Neural Net-
works (DCNNs) provided models that overperformed linear CA techniques with
respect to feature extraction in computer vision applications that involve inten-
sity images and video, mainly due to the complex variations introduced by the
texture and the geometric transformations. Nevertheless, linear CA techniques
remain prominent and powerful techniques for tasks related to the analysis of
3D shapes, especially in case that dense correspondences have been established
among them. Recently, very powerful frameworks have been proposed for es-
tablishing dense correspondences in large scale databases of 3D faces [16, 6], 3D
bodies [15] and 3D hands [21].

Given that several modern databases of 3D shapes are annotated in terms of
multiple attributes, and further motivated by the aforementioned shortcomings
of single-attribute methods, in this paper we propose a Multi-Attribute gener-
ative probabilistic variant of LDA, dubbed Multi-Attribute Probabilistic LDA
(MAPLDA). The proposed MAPLDA is able to jointly model the influence of
multiple attributes on observed data, thus effectively decomposing the observa-
tion space into a set of subspaces depending on multiple attribute instantiations.
As shown via a set of experiments on age, ethnicity and age group identifica-
tion, the joint multi-attribute modeling embedded in MAPLDA appears highly
beneficial, outperforming other single-attribute approaches in an elegant prob-
abilistic framework. In what follows, we briefly summarize the contributions of
our paper.

– We present MAPLDA, the first, to the best of our knowledge, probabilistic
variant of LDA that is inherently able to jointly model multiple attributes.

– We provide a probabilistic formulation and optimization procedure for train-
ing, as well as a flexible framework for performing inference on any subset
of the multiple attributes available during training.

– We demonstrate the advantages of joint-attribute modelling by a set of ex-
periments on the MeIn3D dataset [6], in terms of ethnicity, age and weight
group identification, as well as facial shape generation.
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The rest of the paper is organized as follows. In Section 2, we briefly introduce
PLDA, a generative counterpart to LDA. MAPLDA is introduced in Section 3,
along with details on optimization and inference. Finally, experimental evalua-
tion is detailed in Section 4.

2 Probabilistic Linear Discriminant Analysis

In this section, we briefly review the PLDA model introduced in [20, 14]. As
aforementioned, PLDA carries the assumption that data are generated by two
different subspaces: one that depends on the class and one that depends on the
sample. That is, assuming we have a total of I classes, with each class i containing
a total of J samples, then the j-th datum of the i-th class is defined as:

xi,j = µ+ Fhi + Gwi,j + εi,j (1)

where µ denotes the global mean of the training set, F defines the subspace cap-
turing the identity of every subject, with hi being the latent identity variable rep-
resenting the position in the particular subspace. Furthermore, G defines the sub-
space modeling variations among data, with wi,j being the associated latent vari-
able. Finally, εi,j is a residual noise term which is Gaussian with diagonal covari-
ance Σ. Assuming zero-mean observations, the model in (1) can be described as:

P (xi,j |hi,wi,j ,θ) = Nx (Fhi + Gwi,j ,Σ) (2)

P (hi) = Nh (0, I) (3)

P (wi,j) = Nw (0, I) (4)

where the set of parameters θ = {F,G,Σ} is optimized during training via EM
[7]. In the training process, EM is applied and the optimal set of parameters,
θ = {F,G,Σ}, is recovered.

3 Multi-Attribute PLDA (MAPLDA)

Let us consider a generalization of the single-attribute setting, as described in
Section 2. In particular, let us assume that the data at-hand is labeled in terms
of a total of N attributes, where each attribute may take Ki discrete instan-
tiations (labels/classes), that is ai ∈ {1, · · · ,Ki}3. We further assume that a
set of J data available during training for any distinct combination of attribute
instantiations. The generative model for MAPLDA corresponding to the j-th
observation (datum) can then be described as:

xa1:N ,j = µ+

N∑
i=1

Fihi,ai
+ Gwa1:N ,j + εa1:N ,j (5)

3 For brevity of notation, we denote a1, . . . , aN as a1:N .
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where µ denotes the training set global mean, F1, . . . ,FN are loadings that de-
fine the subspace bases for each particular attribute (e.g., F1 may be the basis
for the attribute age-group, F2 the basis for the attribute ethnicity, etc.) and
h1,a1 , . . . ,hN,aN

are selectors that define the position in each subspace, respec-
tively (e.g., selector h1,a1

will render the distinct age-group instantiation with
which each datum is annotated). Furthermore, matrix G defines a basis for the
subspace that models the variations among the data and wa1:N ,j defines the
position in that subspace for the j-th datum. Finally, random noise is captured
through the term εa1:N,j which is specific for each datum and is set as a Gaussian
with diagonal covariance Σ. Note that from here on, to avoid cluttering the nota-
tion we omit dependence on attribute instantiations (unless specified otherwise),
that is we denote xa1:N ,j as xj , wa1:N ,j as wj and εa1:N ,j as εj . Moreover, by as-
suming zero-mean observations, the model in (5) can be written more clearly as:

xj =

N∑
i=1

Fihi,ai
+ Gwj + εj (6)

while the prior probabilities of (6) can be written as:

P (hi,ai) = Nh (0, I) , ∀i ∈ {1, . . . , N} (7)

P (wj) = Nw (0, I) (8)

and the posterior as:

P (xj |h1,a1
, . . . ,hN,aN

,wj ,θ) = Nx

(
N∑
i=1

Fihi,ai
+ Gwj ,Σ

)
(9)

where θ = {F1, . . . ,FN ,G,Σ} is the set of parameters. Having defined our
model, in the next subsections we detail both the training and inference proce-
dures of MAPLDA in the presence of multiple attributes. For further clarifica-
tion, we note that the graphical model of MAPLDA is illustrated in Fig. 2.

3.1 Training with Multiple Attributes

In this section, we detail the estimation of both the latent variables and pa-
rameters involved in MAPLDA. We assume that we are interested in making
predictions regarding a subset of available attributes. While any subset can be
chosen, for purposes of clarity and without loss of generality, we assume this set
consists of the first N − 1 attributes. That is, when given a test datum we can
assign any of the N − 1 attributes to classes ai, i ∈ {1, . . . ,Ki}, while exploiting
the knowledge of the remaining attributes (e.g., by marginalization during in-
ference). Furthermore, without loss of generality, assume that there is a total of
M data for each distinct combination of the N − 1 attributes instantiations. We

denote F
.
=
[
F1 F2 . . . FN−1

]
, and h

.
=
[
hT
1,a1

hT
2,a2

. . . hT
N−1,aN−1

]T
the block

matrices consisting of loadings and variables for the first N-1 attributes, and
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Fig. 2. Graphical model for J observed data of the training set (i.e., x1, . . . ,xJ) for a
distinct combination of attribute instantiations. The positions of the data in the sub-
spaces F1, . . . ,FN are given by the latent variables h1,a1 , . . . ,hN,aN , respectively, while
the position in subspace G is given by the latent variables w1, . . . ,wJ , respectively.

ĥN
.
=
[
hT
N,1 hT

N,2 . . . h
T
N,KN

]T
the latent variable block matrix for all attribute

values of the N -th attribute. Following a block matrix formulation, we group the
M data samples as follows,


x1

x2

...
xM

 =


F e1,aN

⊗ FN G 0 . . . 0
F e2,aN

⊗ FN 0 G . . . 0
...

...
...

. . .
. . .

...
F eM,aN

⊗ FN 0 0 . . . G




h

ĥN

w1

...
wM

+

 ε1...
εM

 (10)

where ⊗ denotes the Kronecker product, and ei,aN
∈ R1×KN is a one-hot embed-

ding of the value of attribute aN for datum xi (recall that aN ∈ {1, . . . ,KN}).
For example, assume that for x1, aN = KN . Then, e1,N = [0, . . . , 0, 1] ∈ R1×KN

and e1,N ⊗FN = [0, . . . ,0,FN ]. Furthermore, (10) can be written compactly as:

x′ = Ay + ε′ (11)

where the prior and conditional probabilities of (11) can now be written as:

P (x′|y,θ) = Nx′ (Ay,Σ′) (12)

P (y) = Ny (0, I) (13)

where:

Σ′ =


Σ 0 . . . 0
0 Σ . . . 0
...

...
. . .

...
0 0 . . . Σ

 (14)

Following EM and given an instantiation of the model parameters θ =
{F1, . . . ,FN ,G,Σ}, we need to estimate the sufficient statistics, that is the
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first and second moments of the posterior latent distribution P (y|x′,θ). Since
both (12) and (13) refer to Gaussian distributions, it can easily be shown [5]
that the posterior also follows a Gaussian distribution:

P (y|x′,θ) = Ny

(
ÂATΣ′−1x′, Â

)
(15)

where Â
.
=
(
ATΣ′−1A + I

)−1
, and thus:

E [y] = ÂATΣ′−1x′ (16)

E
[
yyT

]
= Â + E [y]E [y]

T
(17)

Having derived the sufficient statistics of MAPLDA, we carry on to the max-
imization step. In order to recover the parameter updates, we take the partial
derivatives of the conditional (on the posterior) expectation of the complete-data
log likelihood of MAPLDA with regards to parameters θ = {F1, . . . ,FN ,G,Σ}.
In order to do so, we firstly rewrite (6) as follows:

xj =
[
F1 . . . FN G

]


h1,a1

...
hN,aN

wj

+ εj (18)

where (18) can be compactly written as:

xj = Bzj + εj . (19)

By adopting the aforementioned grouping, our set of parameters is now denoted
as θ = {B,Σ}, and the complete-data log likelihood conditioned on the posterior
is formulated as:

Q
(
θ,θold

)
=
∑
Z

P
(
Z|X,θold

)
ln [P (X,Z|θ)] (20)

where the joint can be decomposed as:

P (X,Z|θ) =

K1∏
a1=1

· · ·
KN∏

aN=1

J∏
j=1

P (xa1:N ,j |za1:N ,j)P (za1:N ,j) (21)

It can be easily shown [5] that the updates are as follows:

B =

 K1∑
a1=1

· · ·
KN∑

aN=1

J∑
j=1

xa1:N ,jE [za1:N
]
T

( K1∑
a1=1

· · ·
KN∑

aN=1

E
[
za1:N

zTa1:N

])−1
(22)

Σ =
1

KJ
Diag

(
St −B

K1∑
a1=1

· · ·
KN∑

aN=1

J∑
j=1

E [za1:N
] xT

a1:N ,j

)
, (23)
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with St =

K1∑
a1=1

· · ·
KN∑

aN=1

J∑
j=1

xa1:N ,jx
T
a1:N ,j being the total covariance matrix and

K =

N∏
i=1

Ki.

3.2 Inference

Having completed the training process and derived the optimal MAPLDA pa-
rameters, we can proceed with inferences on unseen data on the first N − 1
attributes. That is, given a datum (probe) from a test set, we aim to classify the
datum into the appropriate classes for each of the corresponding N−1 attributes.

Since we do not have any prior knowledge of the conditions under which the
data that belong to the test set may have been captured, it is very likely that the
data may be perturbed by noise. Therefore, in order to determine the appropriate
class, we compare the probe (xp) with a number of different data from a gallery
in order to find the most likely match, in a similar manner to [20]. In essence, this
boils down to maximum likelihood estimation under M (i.e., the total number of
data in the gallery) different models. That is, for every modelm,m ∈ {1, . . . ,M},
we calculate the log likelihood that the datum xk in the gallery matches with
the probe xp and finally, we keep the pair that gives the largest log likelihood.
This process falls under the so-called closed-set identification task, where a probe
dataum has to be matched with a gallery datum. The algorithm can be extended
to cover other scenarios such as verification or open-set identification.

Without loss of generality, let us assume a gallery with M data, all of which
are labeled with different instantiations per attribute. Our aim is to find the pair
that produces the maximum likelihood between the probe datum and one of the
M gallery data. More formally, this corresponds to:

Mv ≡ argmax
m∈{1,...,M}

{lnP (Mm|X)} (24)

where X
.
=
[
xT
1 , . . . ,x

T
M ,x

T
p

]T
. The optimal set of instantiations is described by

the model Mv. If we consider a uniform prior for the selection of each model (i.e.,
P (Mm) is a constant for all m ∈ {1, . . . ,M}), then the actual log likelihood in
(24) can calculated using Bayes’ theorem as follows:

P (Mm|X) =
P (X|Mm)P (Mm)∑M

m=1 P (X|Mm)P (Mm)
(25)

where the denominator is simply a normalizing constant, ensuring the probabil-
ities sum to 1. Therefore, inference boils down to calculating:

lnP (X|Mm) =

M∑
q=1,q 6=m

lnP (xq) + lnP (xp,xm) (26)



Multi-Attribute PLDA for 3D Facial Shapes 9

where for each model m, the probe is paired with the m-th datum in the gallery
and an individual marginal is added for the rest of the gallery data.

As aforementioned, and without loss of generality, we assume that inference
is conducted for the first N − 1 attributes. In order to perform inference with-
out disregarding knowledge of attributes not required for inference, the sensible
approach is to marginalize out the remaining N -th attribute. Then, following
the process described above, we recover the optimal instantiations of attributes
explained by model Mv, utilizing (24), (25) and (26). The joint probabilities in
(26) are Gaussians, and therefore, they can be estimated as:

P (xq) ∼ Nxq

(
0,FFT + FNFT

N + GGT +Σ
)

(27)

where F
.
=
[
F1 F2 . . . FN−1

]
. By assigning x′

.
=
[
xT
p ,x

T
m

]T
and using the

“completing-the-square” method, the marginals can be estimated as:

P (x′) = Nx′
(
0,AAT +Σ′

)
(28)

where:

A =

[
F G 0
F 0 G

]
, Σ′ =

[
Σ + FNFT

N 0
0 Σ + FNFT

N

]
(29)

A graphical representation for this case can be found in Fig. 3.
Regarding the special case where inference about only one attribute is re-

quired, the marginals have the same form as in (27). The joint distribution, given
that the attribute of interest is denoted as i ∈ {1, . . . , N}, follows the form:

P (x′) ∼ Nx′
(
0,AAT +Σ′

)
(30)

where in this case:

A =

[
Fi G 0
Fi 0 G

]
, Σ′ =


Σ +

N∑
i=1,i6=n

FiF
T
i 0

0 Σ +

N∑
i=1,i6=n

FiF
T
i

 (31)

We finally note that MAPLDA is a generalization of PLDA; in the degenerate
case where only one attribute is available during training, MAPLDA reduces to
PLDA.

3.3 3D Facial Shape Generation

We can exploit the generative property of MAPLDA, alongside the multi-attribute
aspect of the model, to generate data with respect to different combinations of
attribute values. Data generation can be accomplished as follows:

– Firstly, without loss of generality, we train a MAPLDA model with regards
to two attributes we are interested in (e.g., attributes ethnicity and age,
weight and age, etc.). After the training process, we recover the optimal F1,
F2, G subspaces and noise diagonal covariance Σ.
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M1

x1 xp

w1 wp

h1,a1
hN−1,aN−1

. . .

x2

w2

h1,a′1
hN−1,a′

N−1
. . .

M2

x2 xp

w2 wp

h1,a′1
hN−1,a′

N−1
. . .

x1

w1

h1,a1
hN−1,aN−1

. . .

Fig. 3. Inference for some attributes (in this case, the first N − 1 attributes). For
this particular case, only two data exist in the gallery, so the probe datum xp can
be matched with either datum x1 or datum x2. In case it does match with datum
x1, then it is assigned labels {a1, . . . , aN−1} (modelM1). Otherwise, it receives labels
{a′1, . . . , a′N−1} (model M2).

– Secondly, we pick the distinct instantiations of attributes we are interested
in generating (e.g., Chinese ethnic group and 18-24 age group) and stack
row-wise all the training data pertaining to these instantiations, creating a
new vector x′.

– Thirdly, if hi,ai
and hj,aj

are the selectors corresponding to the particular
attributes, we stack them row-wise, i.e., hT .

=
[
hi,ai

hj,aj

]
, and calculate the

posterior E [P (h|x′)] as

E [P (h|x′)] = CATD−1x′, (32)

where A =
[
F1 F2

]
, C =

(
I + ATD−1A

)−1
and D =

(
Σ′ + G′G′T

)−1
,

where Σ′ is defined as in (14), and G′ is a block-diagonal matrix with copies
of G on the diagonal.

– Finally, for selector w, we choose a random vector from the multivariate
normal distribution and the generated datum will be rendered as

xg = AE [P (h|x′)] + Gw. (33)

Examples of generated shapes are provided in the next section.

4 Experiments

Having described the training and inference procedure for MAPLDA, in this
section we demonstrate the effectiveness of MAPLDA against PLDA [20], DS-
LDA [27], Ioffe’s PLDA variant [9], the Bayesian approach [17], LDA [4] and PCA
[26], by performing several experiments on facial shapes from MeIn3D dataset
[6]. In these experiments we only take into account the 3D shape of the human
face without any texture information.

MeIn3d Dataset

MeIn3D dataset [6] consists of 10, 000 raw facial scans that describe a large vari-
ation of the population. More specifically, MeIn3D dataset [6] consists of data
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Table 1. Ethnicity identification. Average identification rates ± standard deviations
per method. MAPLDA outperforms all of the compared methods.

Method Mean Std

MAPLDA 0.990 0.051

PLDA 0.927 0.084

DS-LDA 0.919 0.073

PLDA (Ioffe) 0.917 0.089

Bayesian 0.911 0.077

LDA 0.878 0.079

PCA 0.634 0.083

annotated with multiple attributes (i.e., ethnicity, age, weight), thus it is highly
appropriate for evaluating MAPLDA. Before performing any type of training or
inference the scans are consistently re-parametrized into a form where the num-
ber of vertices, the triangulation and the anatomical meaning of each vertex are
made consistent across all meshes. In this way all the training and the test meshes
are brought into dense correspondence. In order to achieve this task we employ an
optimal step non-rigid ICP algorithm [1]. We utilize the full spectrum of 10, 000
meshes where each mesh is labelled for a specific identity, age and ethnicity. The
training and the inference is performed directly on the vectorized re-parametrized
mesh of the form R3∗N×1, where N is the distinct number of vertices.

4.1 Ethnicity Identification

In this experiment we identify the ethnicity attribute for a given 3D shape based
on its shape features regardless of the age-group attribute (i.e., by marginal-
izing out the attribute age-group). We split the ethnicity attribute into three
groups consisting of White, Black and Asian ethnic groups. We used 85% of
the MeIn3D data for training and the rest for testing. Moreover, for each ex-
periment, we used three random test data, with each test datum belonging in
a different ethnic group. For the gallery we use the same set of distinct ethnic
groups used in test samples from three random identities. We execute a total of
100 random experiments (i.e., we repeat the aforementioned process 100 times
for randomly chosen test data and galleries in every experiment). Average iden-
tification rates along with the corresponding standard deviations per setting are
shown in Table 1. Confusion matrices for MAPLDA and PLDA are provided in
Table 2. As can be seen, MAPLDA outperforms all of the compared methods,
thus demonstrating the advantages of joint attribute modeling.

4.2 Age-group Identification

In this experiment we identify the age-group for a given datum regardless of
the ethnicity attribute (i.e., by marginalizing out the ethnicity attribute). We
split the age-group attribute into four groups consisting of under 18 years old
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Table 2. Confusion matrices of MAPLDA and PLDA for the ethnicity identification
experiment. By incorporating the knowledge of the age-group attribute in the training
phase, MAPLDA is able to better discriminate between the different ethnicities. In
particular, MAPLDA classifies correctly all of the Black people in contrast with PLDA.

Actual Predicted Acc

White Black Chinese

White 0.99 0.00 0.01 0.99
Black 0.00 1.00 0.00 1.00

Chinese 0.02 0.00 0.98 0.98

(a) MAPLDA

Actual Predicted Acc

White Black Chinese

White 0.97 0.01 0.02 0.97
Black 0.04 0.89 0.07 0.89

Chinese 0.05 0.02 0.93 0.93

(b) PLDA [20]

Table 3. Age-group identification. Average identification rates ± standard deviations
per method. MAPLDA outperforms all of the compared methods.

Method Mean Std

MAPLDA 0.695 0.063

PLDA [20] 0.540 0.079

PLDA (Ioffe) [9] 0.534 0.068

DS-LDA [27] 0.531 0.059

Bayesian [17] 0.529 0.071

LDA [4] 0.464 0.065

PCA [26] 0.327 0.074

(<18), 18-24, 24-31 and 31-60 years old groups. We used 85% of the MeIn3D
data for training and the rest for testing. Moreover, for each experiment we used
four different random test data, with each test datum belonging in a different
age group. For the gallery we use the same set of distinct age groups used in
the test data from four random identities. We execute 100 random experiments
per setting (i.e., we repeat the aforementioned process 100 times for randomly
chosen probes and galleries in every experiment). Average identification rates
along with the corresponding standard deviations per setting are shown in Table
3. Confusion matrices for MAPLDA and PLDA are provided in Table 4. The
identification rates are considerably lower compared to the ethnicity experiment
and that demonstrates that the task of inferring the age of a certain face by the
shape of it is a challenging one. Nevertheless, our proposed framework exhibits
performance that outperforms all of the compared methods by a large margin.

4.3 Weight-group Identification

In this experiment we identify the weight-group attribute for a given datum
regardless of age-group attribute (i.e., by marginalizing out the attribute age-
group). We split the weight attribute into five groups consisting of 30-45 kg,
45-55 kg, 55-62 kg, 62-70 kg and 70-80 kg groups. We used 85% of the MeIn3D
data for training and the rest for testing. Similarly to our previous experiments,



Multi-Attribute PLDA for 3D Facial Shapes 13

Table 4. Confusion matrices of MAPLDA and PLDA for the age-group identification
experiment. By incorporating the knowledge of the ethnicity attribute in the training
phase, MAPLDA is able to better discriminate between the different age-groups.

Actual Predicted Acc

< 18 18-24 24-31 31-60

< 18 0.77 0.18 0.05 0 0.77
18-24 0.14 0.62 0.23 0.01 0.62
24-31 0.02 0.20 0.66 0.12 0.66
31-60 0 0.06 0.19 0.75 0.75

(a) MAPLDA

Actual Predicted Acc

< 18 18-24 24-31 31-60

< 18 0.59 0.27 0.13 0.01 0.59
18-24 0.17 0.48 0.31 0.04 0.48
24-31 0.02 0.24 0.52 0.22 0.52
31-60 0.02 0.13 0.28 0.57 0.57

(b) PLDA [20]

(a) Black, 31-60 (b) Chinese, 24-31 (c) White, 31-60 (d) White, <18 (e) White, 70-80kg

(f) White, 31-60 (g) White, 31-60 (h) Chinese, 24-31 (i) Black, <18 (j) White, 70-80kg

Fig. 4. 3D facial shapes generated via MAPLDA for different attribute combinations.
Figures (a-d) and (f-i) visualize different instantiations of attributes ethnicity and age
group, while Figures (e,j) of attributes ethnicity and weight group.

we use five different random test data, with each test datum belonging in a
different weight group. For the gallery we use the same set of distinct weight
groups used in the test samples from five random identities. We execute 100
random experiments per setting (i.e., we repeat the aforementioned process 100
times for randomly chosen test data and galleries in every experiment). Average
identification rates along with the corresponding standard deviations per setting
are shown in Table 5. Confusion matrices for MAPLDA and PLDA are provided
in Table 6. Weight identification is considered to be the most challenging exper-
iment of all three, as predicting the correct weight group solely from 3D facial
shapes without considering the scaling factor is a very difficult problem. Never-
theless, as it can be seen in Table 5, the top performance is given by MAPLDA
which is 51.6%, outperforming the other methods by a large margin.
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Table 5. Weight-group identification. Average identification rates ± standard devia-
tions per method. MAPLDA outperforms all of the compared methods.

Method Mean Std

MAPLDA 0.516 0.051

PLDA [20] 0.380 0.084

PLDA (Ioffe) [9] 0.373 0.049

DS-LDA [27] 0.368 0.054

Bayesian [17] 0.364 0.071

LDA [4] 0.346 0.059

PCA [26] 0.197 0.062

Table 6. Confusion matrices of MAPLDA and PLDA for the weight-group identifi-
cation experiment. By incorporating the knowledge of the age-group attribute in the
training phase, MAPLDA is able to better discriminate between the different weight-
groups.

Actual Predicted Acc
30-45 45-55 55-62 62-70 70-80

30-45 0.55 0.26 0.14 0.04 0.01 0.55
45-55 0.23 0.58 0.11 0.05 0.03 0.58
55-62 0.09 0.15 0.46 0.23 0.07 0.46
62-70 0.02 0.10 0.19 0.53 0.16 0.53
70-80 0.02 0.08 0.17 0.24 0.49 0.49

(a) MAPLDA

Actual Predicted Acc
30-45 45-55 55-62 62-70 70-80

30-45 0.41 0.31 0.19 0.06 0.03 0.41
45-55 0.26 0.44 0.20 0.07 0.03 0.44
55-62 0.10 0.22 0.32 0.28 0.08 0.32
62-70 0.04 0.12 0.25 0.38 0.21 0.38
70-80 0.06 0.11 0.18 0.30 0.35 0.35

(b) PLDA [20]

4.4 Generating data

As thoroughly described in Section 3.3, the novel, multi-attribute nature of
MAPLDA can be exploited to generate data with regards to a particular com-
bination of attributes. By utilizing MeIn3D [6] dataset, we can train a multi-
attribute model with regards to e.g., the ethnicity and age-group attributes and
thus generate bespoke shapes that belong in a specific combination of attribute
instantiations (e.g., ethnic group Asian and age group 24-31). In Fig. 4, we vi-
sualize some examples of generated shapes belonging to a distinct combination
of attributes such as ethnicity and age-group and ethnicity and weight-group.

5 Conclusions

In this paper, we introduced Multi-Attribute PLDA (MAPLDA), a novel com-
ponent analysis method that is able to jointly model observations enriched with
labels in terms of multiple attributes. We provide a probabilistic formulation and
optimization procedure for training, as well as a flexible and efficient framework
for inference on any subset of the attributes available during training. Evaluation
is performed via several experiments on 3D facial shapes, namely ethnicity, age,
and weight identification as well as 3D face generation under arbitrary instan-
tiations of attributes. Results show that MAPLDA outperforms all compared
methods, deeming the advantages of joint attribute modelling apparent.
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