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Abstract—Fusing multiple continuous expert annotations is a crucial problem in machine learning and computer vision, particularly
when dealing with uncertain and subjective tasks related to affective behavior. Inspired by the concept of inferring shared and
individual latent spaces in Probabilistic Canonical Correlation Analysis (PCCA), we propose a novel, generative model that discovers
temporal dependencies on the shared/individual spaces (Dynamic Probabilistic CCA, DPCCA). In order to accommodate for temporal
lags, which are prominent amongst continuous annotations, we further introduce a latent warping process, leading to the DPCCA with
Time Warpings (DPCTW) model. Finally, we propose two supervised variants of DPCCA/DPCTW which incorporate inputs (i.e. visual
or audio features), both in a generative (SG-DPCCA) and discriminative manner (SD-DPCCA). We show that the resulting family of
models (i) can be used as a unifying framework for solving the problems of temporal alignment and fusion of multiple annotations in
time, (ii) can automatically rank and filter annotations based on latent posteriors or other model statistics, and (iii) that by incorporating
dynamics, modeling annotation-specific biases, noise estimation, time warping and supervision, DPCTW outperforms state-of-the-art
methods for both the aggregation of multiple, yet imperfect expert annotations as well as the alignment of affective behavior.

Index Terms—Fusion of continuous annotations, component analysis, temporal alignment, dimensional emotion, affect analysis

1 INTRODUCTION

MOST supervised learning tasks in computer vision
and machine learning assume the existence of a

reliable, objective label that corresponds to a given train-
ing instance. Nevertheless, especially in problems related
to human behavior, the annotation process (typically per-
formed by multiple experts to reduce individual bias) can
lead to inaccurate, ambiguous and subjective labels which
in turn are used to train ill-generalisable models. Such prob-
lems arise not only due to human factors (such as the sub-
jectivity of annotators, their age, fatigue and stress) but also
due to the fuzziness of the meaning associated with various
labels related to human behavior. The issue becomes even
more prominent when the task is temporal, as it renders the
labeling procedure vulnerable to temporal lags caused by
varying response times of annotators. Considering that in
many of the aforementioned problems the annotation lies in
a continuous real space (as opposed to discrete labels), the
subjectivity of the annotators becomes much more difficult
to model and fuse into a single “ground truth”.
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A recent emerging trend in affective computing is the
adoption of real-valued, continuous dimensional emotion
descriptions for learning tasks [1]. The space consists of
various dimensions such as valence (ranging from unpleas-
ant to pleasant) and arousal (from relaxed to aroused). In
this description, each emotional state is mapped to a point
in the dimensional space, thus overcoming the limitation
of confining in a small set of discrete classes (such as the
typically used six basic emotion classes). In this way, the
expressiveness of the description is extended to non-basic
emotions, typically manifested in everyday life (e.g., bore-
dom). Nevertheless, the annotation of such data, although
performed by multiple trained experts, results in labels
which exhibit an amalgam of the aforementioned issues
([2], Fig. 1), leading researchers to adopt solutions based on
simple (or weighted) averaging, reliance on a single annota-
tor or quantising the continuous space and thus shifting the
problem to the discrete domain (see [3]–[5]), where several
solutions have been proposed (see [6]).

A state-of-the-art approach in fusing multiple continu-
ous annotations that can be applied to emotion descriptions
is proposed by Raykar et al. [7]. In this work, each noisy
annotation is considered to be generated by a Gaussian
distribution with the mean being the true label and the
variance representing the annotation noise.

A main drawback of [7] lies in the assumption that tempo-
ral correspondences of samples are known. One way to find
such arbitrary temporal correspondences is via time warp-
ing. A state-of-the-art approach for time warping, Canonical
Time Warping (CTW) [8], combines Dynamic Time Warping
(DTW) and Canonical Correlation Analysis (CCA) with the
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Fig. 1. Valence annotations along with video stills.

aim of aligning a pair of sequences of both different dura-
tion and different dimensionality. CTW accomplishes this
by simultaneously finding the most correlated features and
samples among the two sequences, both in feature space and
time. This task is reminiscent of the goal of fusing expert
annotations. However, CTW does not directly yield the
prototypical sequence, which is considered as a common,
denoised and fused version of multiple experts’ annota-
tions. As a consequence, this renders neither of the two
state-of-the-art methods applicable to our setting.

The latter observation precisely motivates our work;
inspired by Probabilistic Canonical Correlation Analysis
(PCCA) [9], we initially present the first generalisa-
tion of PCCA to learning temporal dependencies in the
shared/individual spaces (Dynamic PCCA, DPCCA). By
further augmenting DPCCA with time warping, the result-
ing model (Dynamic PCCA with Time Warpings, DPCTW)
can be seen as a unifying framework, concisely applied to
both problems. The individual contributions of this work
can be summarised as follows:

• In comparison to state-of-the-art approaches in both
fusion of multiple annotations and sequence align-
ment, our model bears several advantages. We
assume that the “true” annotation/sequence lies in
a shared latent space. E.g., in the problem of fus-
ing multiple emotion annotations, we know that
the experts have a common training in annota-
tion. Nevertheless, each carries a set of individual
factors which can be assumed to be uninteresting
(e.g., annotator/sequence specific bias). In the pro-
posed model, individual factors are accounted for
within an annotator-specific latent space, thus effec-
tively preventing the contamination of the shared
space by individual factors. Most importantly, we
introduce latent-space dynamics which model tem-
poral dependencies in both common and individ-
ual signals. Furthermore, due to the probabilistic
and dynamic nature of the model, each annota-
tor/sequence’s uncertainty can be estimated for each
sample, rather than for each sequence.

• In contrast to current work on fusing multiple anno-
tations, we propose a novel framework able to
handle temporal tasks. In addition to introducing
dynamics, we also employ temporal alignment in
order to eliminate temporal discrepancies amongst
the annotations.

• We present an elegant extension of DTW-based
sequence alignment techniques (e.g., Canonical Time
Warping, CTW) to a probabilistic multiple-sequence
setting. We accomplish this by treating the problem
in a generative probabilistic setting, both in the static
(multiset PCCA) and dynamic case (Dynamic PCCA).

The rest of the paper is organised as follows. In Section 2,
we describe PCCA and present our extension to multi-
ple sequences. In Section 3, we introduce our proposed
Dynamic PCCA, which we subsequently extend with latent
space time-warping (DPCTW) as described in Section 4. In
Section 5, we introduce two supervised variants of DPCTW
which incorporate inputs in a generative (Section 5.1) and
discriminative (Section 5.2) manner, while in Section 6 we
present an algorithm based on the proposed family of mod-
els which ranks and filters annotators. In Section 7, we
present various experiments on both synthetic (Section 7.1)
and real (Sections 7.2 and 7.3) experimental data, empha-
sising the advantages of the proposed methods on both the
fusion of multiple annotations and sequence alignment.

2 MULTISET PROBABILISTIC CCA
We consider the probabilistic interpretation of CCA, intro-
duced by Bach & Jordan [10] and generalised by Klami
& Kaski [9]1. In this section, we present an extended ver-
sion of PCCA [9] (multiset PCCA2) which is able to handle
any arbitrary number of sets. We consider a collection of
datasets D = {X1, X2, . . . , XN}, with each Xi ∈ R

Di×T where
Di is the dimensionality and T the number of instances. By
adopting the generative model for PCCA, the observation
sample n of set Xi ∈ D is assumed to be generated as

xi,n = f (zn|Wi)+ g(zi,n|Bi)+ εi, (1)

where Zi = [zi,1, . . . , zi,T] ∈ R
di×T and Z = [z1, . . . , zT] ∈

R
d×T are the independent latent variables that capture the

set-specific individual characteristics and the shared signal
amongst all observation sets, respectively. f (.) and g(.) are
functions that transform each of the latent signals Z and
Zi into the observation space. They are parametrised by Wi
and Bi, while the noise for each set is represented by εi, with
εi⊥εj, i �= j. Similarly to [9], zn, zi,n and εi are considered to
be independent (both over the set and the sequence) and
normally distributed:

zn, zi,n ∼ N (0, I), εi ∼ N (0, σ 2
n I). (2)

By considering f and g to be linear functions we have
f (zn|Wi) = Wizn and g(zi,n|Bi) = Bizi,n, transforming the
model presented in Eq. 1, to

xi,n =Wizn + Bizi,n + εi. (3)

Learning the multiset PCCA can be accomplished by gener-
alising the EM algorithm presented in [9], applied to two or
more sets. Firstly, P(D|Z, Z1, . . . , ZN) is marginalised over
set-specific factors Z1, . . . , ZN and optimised on each Wi.
This leads to the generative model P(xi,n|zn) ∼ N (Wizn, �i),
where �i = BiBT

i + σ 2
i I. Subsequently, P(D|Z, Z1, . . . , ZN)

is marginalised over the common factor Z and then opti-
mised on each Bi and σi. When generalising the algorithm
for more than two sets, we also have to consider how to
(i) obtain the expectation of the latent space and (ii) provide
stable variance updates for all sets.

1. [9] is also related to Tucker’s inter-battery factor analysis
[11], [12]

2. In what follows we refer to multiset PCCA as PCCA.
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Two quantities are of interest regarding the latent space
estimation. The first is the common latent space given one
set, Z|Xi. In the classical CCA this is analogous to finding
the canonical variables [9]. We estimate the posterior of the
shared latent variable Z as follows:

P(zn|xi,n) ∼ N (γ ixi,n, I− γiWi),

γ i =WT
i (WiWT

i +�i)
−1. (4)

The latent space given the n-th sample from all sets in
D, which provides a better estimate of the shared signal
manifested in all observation sets is estimated as

P(zn|x1:N,n) ∼ N (γ x1:N,n, I− γ W),

γ =WT(WWT +�)−1, (5)

while the matrices W, � and Xn are defined as WT =
[WT

1 , WT
2 , . . . , WT

n ], � as the block diagonal matrix of
�i=1:N

3 and xT
1:N,n = [xT

1,n, xT
2,n, . . . , xT

1:N,n]. Finally, the vari-
ance is recovered on the full model, xi,n ∼ N (Wizn +
Bizi,n, σ 2

i I), as

σ 2
i = tr(S− XE[ZT|X]CT

− CE[Z|X]XT − CE[ZZT|X]CT)i
T
Di

, (6)

where S is the sample covariance matrix, B is the block
diagonal matrix of Bi=1:N, C = [W, B], while the subscript
i in Eq. 6 refers to the i-th block of the full covariance
matrix. Finally, we note that the computational complex-
ity of PCCA for each iteration is similar to deterministic
CCA (cubic in the dimensionalities of the datasets and lin-
ear in the number of samples). PCCA though also recovers
the private space.

3 DYNAMIC PCCA (DPCCA)
The PCCA model described in Section 2 exhibits several
advantages when compared to the classical formulation of
CCA, mainly by providing a probabilistic estimation of a
latent space shared by an arbitrary collection of datasets
along with explicit noise and private space estimation.
Nevertheless, static models are unable to learn temporal
dependencies which are very likely to exist when deal-
ing with real-life problems. In fact, dynamics are deemed
essential for successfully performing tasks such as emotion
recognition, AU detection etc. [13].

Motivated by the former observation, we propose a
dynamic generalisation of the static PCCA model intro-
duced in the previous section, where we now treat each Xi
as a temporal sequence. For simplicity of presentation, we
introduce a linear model4 where Markovian dependencies
are learnt in the latent spaces Z and Zi. In other words,
the variable Z models the temporal, shared signal amongst
all observation sequences, while Zi captures the temporal,
individual characteristics of each sequence. It is easy to
observe that such a model fits perfectly with the problem of
fusing multiple annotations, as it does not only capture the
temporal shared signal of all annotations, but also models the
unwanted, annotator-specific factors over time. Essentially,

3. For brevity of notation, we use 1:N to indicate elements
[1, . . . , N], e.g., X1:N ≡ [X1, X2, . . . , XN]

4. A non-linear DPCCA model can be derived as in [14], [15].

instead of directly applying the doubly independent priors
to Z as in Eq. 2, we now use the following:

p(zt|zt−1) ∼ N (Azzt−1, VZ), (7)
p(zi,t|zi,t−1) ∼ N (Azi zi,t−1, VZi), n = 1, . . . , N, (8)

where the transition matrices Az and Azi model the latent
space dynamics for the shared and sequence-specific space
respectively. Thus, idiosyncratic characteristics of dynamic
nature appearing in a single sequence can be accurately esti-
mated and prevented from contaminating the estimation of
the shared signal.

The resulting model bears similarities with traditional
Linear Dynamic System (LDS) models (e.g. [16]) and the
so-called Factorial Dynamic Models, see [17]. Along with
Eq. 7,8 and noting Eq. 3, the dynamic, generative model
for DPCCA5 can be described as

xi,t =Wi,tzt + Bizi,t + εi, εi ∼ N (0, σ 2
i I), (9)

where the subscripts i and t refer to the i-th observation
sequence timestep t respectively.

3.1 Inference
To perform inference, we reduce the DPCCA model to a
LDS6. This can be accomplished by defining a joint space
ẐT = [ZT, ZT

1 , . . . , ZT
N], Ẑ ∈ R

d̂×T where d̂ = d+∑N
i di with

parameters θ = {A, W, B, Vẑ, �̂}. Dynamics in this joint
space are described as Xt = [W, B]Ẑt + ε, Ẑt = AẐt−1 + u,
where the noise processes ε and u are defined as

ε ∼ N

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0,

⎡

⎢
⎣

σ 2
1 I

. . .

σ 2
NI

⎤

⎥
⎦

︸ ︷︷ ︸
�̂

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (10)

u ∼ N

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0,

⎡

⎢
⎢
⎢
⎣

Vz
Vz1

. . .

VzN

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Vẑ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (11)

where Vz ∈ R
d×T and Vzi ∈ R

di×T. The other matri-
ces used above are defined as XT = [XT

1 , . . . , XT
N],

WT = [WT
1 , . . . , WT

N], B as the block diagonal matrix
of [B1, . . . , BN] and A as the block diagonal matrix of
[Az, Az1 , . . . , AzN ]. Similarly to LDS, the joint log-likelihood
function of DPCCA is defined as

lnP(X, Z|θ) = lnP(ẑ1|μ, V)+
T∑

t=2

lnP(ẑt|ẑt−1, A, Vẑ)

+
T∑

t=1

lnP(xt|ẑt, W, B, �̂). (12)

5. The model of Raykar et al. [7] can be considered as a special case
of (D)PCCA by setting W = I, B = 0 (and disregarding dynamics).

6. For more details on LDS, please see [16] and [18], Chapter 13.
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In order estimate the latent spaces, we apply the Rauch-
Tung-Striebel (RTS) smoother on Ẑ (the algorithm can be
found in [16], A.3). In this way, we obtain E[ẑt|XT], V[ẑt|XT]
and V[ẑtẑt−1|XT]7.

3.2 Parameter Estimation
The parameter estimation of the M-step has to be derived
specifically for this factorised model. We consider the
expectation of the joint model log-likelihood (Eq. 12) wrt.
posterior and obtain the partial derivatives of each param-
eter for finding the stationary points. Note the W and B
matrices appear in the likelihood as:

Eẑ[lnP(X, Ẑ)] = −T
2 ln|�̂| − Eẑ

[
∑T

t=1
(
xt − [W, B]ẑt

)T

�̂−1 (xt − [W, B]ẑt
)
]

+ . . . . (13)

Since they are composed of individual Wi and Bi matrices
(which are parameters for each sequence i), we calculate
the partial derivatives ∂Wi and ∂Bi in Eq. 13. Subsequently,
by setting to zero and re-arranging, we obtain the update
equations for each W∗i and B∗i :

W∗i =
( T∑

t=1

xi,tE[zi,t]− B∗i E[zi,tzT
t ]

)( T∑

t=1

E[ztzT
t ]

)−1

(14)

B∗i =
( T∑

t=1

xi,tE[zT
t ]−W∗i E[ztzT

i,t]

)( T∑

t=1

E[zi,tzT
i,t]

)−1

(15)

Note that the weights are coupled and thus the optimal solu-
tion should be found iteratively. As can be seen, in contrast
to PCCA, in DPCCA the individual factors of each sequence
are explicitly estimated instead of being marginalised out.
Similarly, the transition weight updates for the individual
factors Zi are as follows:

A∗z,i =
( T∑

t=2

E[zi,tzT
i,t−1]

)( T∑

t=2

E[zi,t−1zT
i,t−1]

)−1

(16)

where by removing the subscript i we obtain the updates
for Az, corresponding to the shared latent space Z. Finally,
the noise updates VẐ and �̂ are estimated similarly to
LDS [16].

4 DPCCA WITH TIME WARPINGS

Both PCCA and DPCCA exhibit several advantages in com-
parison to the classical formulation of CCA. Mainly, as we
have shown, (D)PCCA can inherently handle more than
two sequences, building upon the multiset nature of PCCA.
This is in contrast to the classical formulation of CCA,
which due to the pairwise nature of the correlation operator

7. We note that the complexity of RTS is cubic in the dimension of
the state space. Thus, when estimating high dimensional latent spaces,
computational or numerical issues may arise (due to the inversion of
large matrices). If any of the above is a concern, the complexity of RTS
can be reduced to quadratic [19], while inference can be performed
more efficiently similarly to [17].

is limited to two sequences8. This is crucial for the problems
at hand since both methods yield an accurate estimation
of the underlying signals of all observation sequences, free
of individual factors and noise. However, both PCCA and
DPCCA carry the assumption that the temporal correspon-
dences between samples of different sequences are known,
i.e. that the annotation of expert i at time t directly cor-
responds to the annotation of expert j at the same time.
Nevertheless, this assumption is often violated since dif-
ferent experts exhibit different time lags in annotating the
same process (e.g., Fig. 1, [21]). Motivated by the latter, we
extend the DPCCA model to account for this misalignment
of data samples by introducing a latent warping process
into DPCCA, in a manner similar to [8]. In what follows,
we firstly describe some basic background on time-warping
and subsequently proceed to define our model.

4.1 Time Warping
Dynamic Time Warping (DTW) [22] is an algorithm for opti-
mally aligning two sequences of possibly different lengths.
Given sequences X ∈ R

D×Tx and Y ∈ R
D×Ty , DTW aligns

the samples of each sequence by minimising the sum-of-
squares cost, i.e. ||X	x − Y	y||2F, where 	x ∈ R

Tx×T	 and
	y ∈ R

Ty×T	 are binary selection matrices, with T	 the
aligned, common length. In this way, the warping matri-
ces 	 effectively re-map the samples of each sequence.
Although the number of possible alignments is exponen-
tial in TxTy, employing dynamic programming can recover
the optimal path in O(TxTy). Furthermore, the solution
must satisfy the boundary, continuity and monotonicity
constraints, effectively restricting the space of 	x, 	y [22].

An important limitation of DTW is the inability to align
signals of different dimensionality. Motivated by the for-
mer, CTW [8] combines CCA and DTW, thus alowing
the alignment of signals of different dimensionality by
projecting into a common space via CCA. The optimisa-
tion function now becomes ||VT

x X	x − VT
y Y	y||2F, where

X ∈ R
Dx×Tx , Y ∈ R

Dy×Tx , and Vx, Vy are the projection
operators (matrices).

4.2 DPCTW Model
We define DPCTW based on the graphical model presented
in Fig. 2. Given a set D of N sequences of varying duration,
with each sequence Xi = [xi,1, . . . , xi,Ti ] ∈ R

Di×Ti , we pos-
tulate the latent common Markov process Z = {z1, . . . , zt}.
Firstly, Z is warped using the warping operator 	i, result-
ing in the warped latent sequence ζ i. Subsequently, each ζ i
generates each observation sequence Xi, also considering
the annotator/sequence bias Zi and the observation noise
σ 2

i . We note that we do not impose parametric models for
warping processes. Inference in this general model can be
prohibitively expensive, in particular because of the need
to handle the unknown alignments. We instead propose to
handle the inference in two steps: (i) fix the alignments 	i
and find the latent Z and Zi’s, and (ii) given the estimated
Z, Zi find the optimal warpings 	i. For this, we propose to

8. The recently proposed multiset-CCA [20] can handle multiple
sequences but requires maximising over sums of pairwise operations.
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Fig. 2. Graphical model of DPCTW. Shaded nodes represent the obser-
vations. By ignoring the temporal dependencies, we obtain the PCTW
model.

optimise the following objective function:

L(D)PCTW =
N∑

i

N∑

j,j�=i

||E[Z|Xi]	i − E[Z|Xj]	j||2F
N(N − 1)

(17)

where when using PCCA, E[Z|Xi] = WT
i (WiWT

i + �i)
−1Xi

(Eq. 4). For DPCCA, E[Z|Xi] is inferred via RTS smoothing
(Section 3). A summary of the full algorithm is presented
in Algorithm 1.

At this point, it is important to clarify that our model is
flexible enough to be straightforwardly used with varying
warping techniques. For example, the Gauss-Newton warp-
ing proposed in [23] can be used as the underlying warping
process for DPCCA, by replacing the projected data VT

i Xi
with E[Z|Xi] in the optimisation function. Algorithmically,
this only changes the warping process (line 3, Algorithm 1).
Finally, we note that since our model iterates between esti-
mating the latent spaces with (D)PCCA and warping, the
computational complexity of time warping is additive to
the cost of each iteration. In case of the DTW alignment
for two sequences, this incurs an extra cost of O(TxTy). In
case of more than two sequences, we utilise a DTW-based
algorithm, which is a variant of the so-called Guide Tree
Progressive Alignment, since the complexity of dynamic
programming increases exponentially with the number of
sequences. Similar algorithms are used in state-of-the-art
sequence alignment software in biology, e.g., Clustar [24].
The complexity of the employed algorithm is O(N2T2

max)

where Tmax is the maximum (aligned) sequence length and
N the number of sequences. More efficient implementations
can also be used by employing various constraints [22].

5 FEATURES FOR ANNOTATOR FUSION

In the previous sections, we considered the observed data
to consist only of the given annotations, D = {X1, . . . , XN}.
Nevertheless, in many problems one can extract additional
observed information, which we can consider as a form of
complementary input (e.g., visual or audio features). In fact,

Algorithm 1: Dynamic Probabilistic CCA with Time
Warpings (DPCTW)

Data: D = X1, . . . , XN, XT = [XT
1 , . . . , XT

N]
Result: P(Z|X1, . . . XN), P(Z|Xi),	i, σ

2
i , i = 1:N

1 repeat
2 Obtain alignment matrices (	1, . . . ,	N) by

optimising Eq. 17 on E[Z|XT
1 ], . . . , E[Z|XT

N]∗
3 XT

	 = [(X1	1)
T, . . . , (XN	N)T]

4 repeat
5 Estimate E[ẑt|XT

	], V[ẑt|XT
	] and V[ẑtẑt−1|XT

	]
via RTS

6 for i = 1, . . . , N do
7 repeat
8 Update W∗i according to Eq. 14
9 Update B∗i according to Eq. 15

10 until Wi, Bi converge
11 Update A∗i according to Eq. 16

12 Update A∗, V∗
Ẑ
, �̂∗ according to Section 3.2

13 until DPCCA converges
14 for i = 1, . . . , N do

15 θ i =
{[

Az 0
0 Ai

]

, Wi, Bi,

[
VZ 0
0 Vi

]

, σ 2
i I
}

16 Estimate E[ẑt|XT
i ], V[ẑt|XT

i ] and V[ẑtẑt−1|XT
i ]

via RTS on θi.

17 until LDPCTW converges
18 ∗ Since E[ẑt|XT

i ] is unkown in the first iteration, use Xi instead.

in problems where annotations are subjective and no objec-
tive ground truth is available for any portion of the data,
such input can be considered as the only objective reference
to the annotation/sequence at hand. Thus, incorporating it
into the model can significantly aid the determination of
the ground truth.

Motivated by the latter argument, we propose two mod-
els which augment DPCCA/DPCTW with inputs. Since the
family of component analysis techniques we study are typ-
ically unsupervised, incorporating inputs leads to a form of
supervised learning. Such models can find a wide variety
of applications since they are able to exploit label informa-
tion in addition to observations. A suitable example lies
in dimensional affect analysis, where it has been shown
that specific emotion dimensions correlate better with spe-
cific cues, (e.g., valence with facial features, arousal with
audio features [1], [4]). Thus, one can know a-priori which
features to use for specific annotations.

Throughout this discussion, we assume that a set of
complementary input or features Y = {Y1, . . . , Yν} is avail-
able, where Yj ∈ R

Dyj×Tyj . While discussing extensions of
DPCCA, we assume that all sequences have equal length.
When incorporating time warping, sequences can have
different lengths.

5.1 Supervised-Generative DPCCA (SG-DPCCA)
We firstly consider the model where we simply augment
the observation model with a set of features Yj. In this case,
the generative model for DPCCA (Eq. 9) is:

xi,t =Wi,tzt + Bizi,t + εi, (18)
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Fig. 3. Comparing the model structure of DPCCA (a) to SG-DPCCA, and (b) SD-DPCCA. (c) Notice that the shared space z generates both
observations and features in SG-DPCCA, while in SD-DPCCA, the shared space at time t is generated by regressing from the features y and the
previous shared space state zt−1.

yj,t = hj,s(zt|Wj,t)+ hj,p(zj,t|Bj)+ εj, (19)

where i = {1, . . . , N} and j = {N + 1, . . . , N + ν + 1}.
The arbitrary functions h map the shared space to the fea-
ture space in a generative manner, while εj ∼ N (0, σ 2

j I).
The latent priors are still defined as in Eq. 7,8. By
assuming that h is linear, we can group the parameters
W = [W1, . . . , WN, . . . , WN+ν], B as the block diagonal
of ([B1, . . . , BN, . . . , BN+ν]) and �̂ as the block diagonal
of ([σ 2I1, . . . , σ

2IN, . . . , σ 2IN+ν]). Inference is subsequently
applied as described in Section 3.

This model, which we dub SG-DPCCA, in effect captures
a common shared space of both annotations X and available
features Y for each sequence. In our generative scenario, the
shared space generates both features and annotations. By
further setting hj,p to zero, one can force the representation
of the entire feature space Yj onto the shared space, thus
imposing stronger constraints on the shared space given
each annotation Z|Xi. As we will show, this model can
help identify unwanted annotations by simply analysing
the posteriors of the shared latent space. We note that the
additional form of supervision imposed by the input on the
model is reminiscent of SPCA for PCA [25]. The discrim-
inative ability added by the inputs (or labels) also relates
DPCCA to LDA [10]. The graphical model of SG-DPCCA
is illustrated in Fig. 3(b).

SG-DPCCA can be easily extended to handle time-
warping as described in Section 4 for DPCCA (SG-
DPCTW). The main difference is that now one would have
to introduce one more warping function for each set of fea-
tures, resulting in a set of N + ν functions. Denoting the
complete data/input set as Do = {X1, . . . , XN, Y1, . . . , Yν},
the objective function for obtaining the time warping func-
tions 	i for SG-DPCTW can be defined as:

LSDPCTWo =
N+ν∑

i

N+ν∑

j,j�=i

||E[Z|Do
i ]	i − E[Z|Do

j ]	j||2F
(N + ν)(N + ν − 1)

. (20)

5.2 Supervised-Discrimative DPCCA (SD-DPCCA)
The second model augments the DPCCA model by regress-
ing on the given features. In this case, the posterior of the
shared space (Eq. 7) is formulated as

p(zt|zt−1, Y1:ν, A, Vẑ) ∼

N (Azzt−1 +
ν∑

j=1

hj(Yj|Fj), Vz), (21)

where each function hj performs regression on the features

Yj, while Fj ∈ R
d×Dyj are the loadings for the features

(where the latent dimensionality is d). This is similar to how
input is modelled in a standard LDS [15]. To find the param-
eters, we maximise the complete-data likelihood (Eq. 12),
where we replace the second term referring to the latent
probability with Eq. 21,

T∑

t=2

lnP(ẑt|ẑt−1, Y1:ν, A, Vẑ). (22)

In this variation, the shared space at step t is generated
from the previous latent state zt−1 as well as the features
at step t− 1,

∑ν
j=1 yj,t−1 (Fig. 3(c)). We dub this model SD-

DPCCA. Without loss of generality we assume h is linear,
i.e. hj,s = Wj,tzt, while we model the feature signal only
in the shared space, i.e. hj,p = 0. Finding the saddle points
of the derivatives with respect to the parameters yields the
following updates for the matrices Az and Fj,∀j = 1, . . . , ν:

A∗z =
⎛

⎝
T∑

t=2

E[ztzT
t−1]−

ν∑

j=1

F∗j yj,t

⎞

⎠

( T∑

t=2

E[zt−1zT
t−1]

)−1

,

(23)

F∗j =
⎛

⎝E[zt]−A∗zE[zt−1]−
ν∑

i=1,i�=j

F∗i Yi

⎞

⎠Y−1
j . (24)

Note that as with the loadings on the shared/individual
spaces (W and B), the optimisation of Az and Fj matri-
ces should again be determined recursively. Finally, the
estimation of VZ also changes accordingly:

V∗z = 1
T−1

∑T
t=2(E[ztzT

t ]− E[ztzT
t−1]A∗Tz

−A∗zE[zt−1zT
t ]+A∗zE[zt−1zT

t−1]A∗Tz
+∑ν

j=1(A
∗
zE[zt−1]Y∗Tj F∗Tj + F∗j YjE[zT

t−1]A∗Tz

+F∗j Yj
∑ν

i=1,i�=j YT
i F∗Ti − E[zt]YT

j F∗Tj
−F∗j YjE[zT

t ])).

(25)

SD-DPCCA can be straight-forwardly extended with
time-warping as with DPCCA in Section 4, resulting in
SD-DPCTW. Another alignment step is required before per-
forming the recursive updates mentioned above in order
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to find the correct training/testing pairs for zt and Y.
Assuming the warping matrices are �z and �y, then in
Eq. 23 z is replaced with �zz and y with �yy. The influence
of features Y on the shared latent space Z in SD-DPCCA
and SG-DPCCA is visualised in Fig. 3.

5.3 Varying Dimensionality
Typically, we would expect the dimensionality of a set of
annotations to be the same. Nevertheless in certain prob-
lems, especially when using input features as in SG-DPCCA
(Section 5.1), this is not the case. Therefore, in case the
observations/input features are of varying dimensionali-
ties, one can scale the third term of the likelihood (Eq. 12)
in order to balance the influence of each sequence during
learning regardless of its dimensionality:

T∑

t=1

( ν∑

j=1

1
Dyj

ln
(

P(yt,j|ẑt, Wj, Bj, σ
2
j )
)
+

N∑

j=1

1
Di

ln
(

P(xt,j|ẑt, Wj, Bj, σ
2
i )
))

. (26)

6 RANKING AND FILTERING ANNOTATIONS

In this section, we will refer to the issue of ranking and
filtering available annotations. Since in general, we con-
sider that there is no “ground truth” available, it is not an
easy task to infer which annotators should be discarded and
which kept. A straightforward option would be to keep the
set of annotators which exhibit a decent level of agreement
with each other. Nevertheless, this naive criterion will not
suffice in case where e.g., all the annotations exhibit moder-
ate correlation, or where sets of annotations are clustered in
groups which are intra-correlated but not inter-correlated.

The question that naturally arises is how to rank and
evaluate the annotators when there is no ground truth
available and their inter-correlation is not helpful. We
remind that DPCCA maximises the correlation of the anno-
tations in the shared space Z, by removing bias, temporal
discrepancies and other nuisances from each annotation. It
would therefore be reasonable to expect the latent poste-
riors for each annotation (Z|Xi), to be as close as possible.
Furthermore, the closer the posterior given each annotation
(Z|Xi) to the posterior given all sequences (Z|D), the higher
the ranking of the annotator should be, since the closer it is,
the larger the portion of the shared information is contained
in the annotators signal.

The aforementioned procedure can detect spammers, i.e.
annotators who do not even pay attention at the sequence
they are annotating and adversarial or malicious annotators
that provide erroneous annotations due to e.g., a conflict
of interests and can rank the confidence that should be
assigned to the rest of the annotators. Nevertheless, it does
not account for the case where multiple clusters of anno-
tators are intra-correlated but not inter-correlated. In this
case, it is most probable that the best-correlated group will
prevail in the ground truth determination. Yet, this does
not mean that the best-correlated group is the correct one.
In this case, we propose using a set of inputs (e.g., track-
ing facial points), which can essentially represent the “gold

Algorithm 2: Ranking and filtering annotators
Data: X1, . . . , XN, Y
Result: Rank of each Xi, Cc

1 begin
2 Apply SG-DPCTW/SG-DPCCA(X1, . . . , XN, Y)

3 Obtain P(Z|Y), P(Z|Xi), i = 1, . . . , N
4 Compute Distance Matrix S of

[P(Z|X1), . . . , P(Z|XN), P(Z|Y)]
5 Normalise S, L← I−D− 1

2 SD− 1
2

6 {Cx, Co} ← Spectral Clustering(L)
7 Keep Cx where P(Z|Y) ∈ Cx
8 Rank each Xi ∈ Cx based on distance of P(Z|Xi) to

P(Z|Y)

9 In case Y is not available, replace P(Z|Y) with P(Z|X1:N).

standard”. The assumption underlying this proposal is that
the correct sequence features should maximally correlate
with the correct annotations of the sequence. This can be
straightforwardly performed with SG-DPCCA, where we
attain Z|Y (shared space given input) and compare to Z|Xi
(shared space given annotation i).

The comparison of latent posteriors is further motivated
by R.J. Aumann’s agreement theorem [26]: “If two people
are Bayesian rationalists with common priors, and if they
have common knowledge of their individual posteriors,
then their posteriors must be equal”. Since our model main-
tains the notion of “common knowledge” in the estimation
of the shared space, it follows from Aumann’s theorem that
the individual posteriors Z|Xi of each annotation i should
be as close as possible. This is a sensible assumption, since
one would expect that if all bias, temporal discrepancies
and other nuisances are removed from annotations, then
there is no rationale for the posteriors of the shared space
to differ.

A simple algorithm for filtering/ranking annotations
(utilising spectral clustering [27]) can be found in
Algorithm 2. The goal of the algorithm is to find two clus-
ters, Cx and Co, containing (i) the set of annotations which
are correlated with the ground truth, and (ii) the set of “out-
lier” annotations, respectively. Firstly, DPCCA/DPCTW is
applied. Subsequently, a similarity/distance matrix is con-
structed based on the posterior distances of each annotation
Z|Xi along with the features Z|Y. By performing spectral
clustering, one can keep the cluster to which Z|Y belongs
(Cx) and disregard the rest of the annotations belonging in
Co. The ranking of the annotators is computed implicitly
via the distance matrix, as it is the relative distance of each
Z|Xi to Z|Y. In other words, the feature posterior is used
here as the “ground truth”. Depending on the application
(or in case features are not available), one can use the pos-
terior given all annotations, Z|X1, . . . , XN instead of Z|Y.
Examples of distances/metrics that can be used include
the alignment error (see Section 4) or the KL divergence
between normal distributions (which can be made symmet-
ric by employing e.g., the Jensen-Shannon divergence, i.e.
DJS(P||Q) = 1

2 DKL(P||Q)+ 1
2 DKL(Q||P)).

We note that in case of irrelevant or malicious anno-
tations, we assume that the corresponding signals will be
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Fig. 4. Noisy synthetic experiment. (a) Initial, noisy time series. (b) True latent signal from which the noisy, transformed spirals where attained in
(a). (c) Alignment achieved by DPCTW. The shared latent space recovered by (d) PCTW and (e) DPCTW. (f) Convergence of DPCTW in terms of
the objective (Obj) (Eq. 17) and the path difference between the estimated alignment and the true alignment path (PDGT).

moved to the private space and will not interfere with the
time warping. Nevertheless, in order to ensure this, one can
impose constraints on the warping process. This is easily
done by modifying the DTW by imposing e.g., slope or
global constraints such as the Itakura Parallelogram or the
Sakoe-Chiba band, in order to constraint the warping path
while also decreasing the complexity (see Chap. 5, of [22]).
Furthermore, other heuristics can be applied, e.g. firstly
filter out the most irrelevant annotations by applying SG-
DPCCA without time warping, or threshold the warping
objective directly (Eq. 17).

7 EXPERIMENTS

In order to evaluate the proposed models, in this section, we
present a set of experiments on both synthetic (Section 7.1)
and real (Sections 7.2 and 7.3) data.

7.1 Synthetic Data
For synthetic experiments, we employ a setting similar
to [8]. A set of 2D spirals are generated as Xi = UT

i Z̃MT
i +N,

where Z̃ ∈ R
2×T is the true latent signal which generates

the Xi, while the Ui ∈ R
2×2 and Mi ∈ R

Ti×m matrices
impose random spatial and temporal warping. The signal
is furthermore perturbed by additive noise via the matrix
N ∈ R

2×T. Each N(i, j) = e × b, where e ∼ N (0, 1) and
b follows a Bernoulli distribution with P(b = 1) = 1 for
Gaussian and P(b = 1) = 0.4 for spike noise. The length of
the synthetic sequences varies, but is approximately 200.

This experiment can be interpreted as both of the prob-
lems we are examining. Viewed as a sequence alignment
problem the goal is to recover the alignment of each
noisy Xi, where in this case the true alignment is known.
Considering the problem of fusing multiple annotations,
the latent signal Z̃ represents the true annotation while the
individual Xi form the set of noisy annotations containing
annotation-specific characteristics. The goal is to recover the
true latent signal (in DPCCA terms, E[Z|X1, . . . , XN]).

The error metric we used computes the distance from
the ground truth alignment (	̃) to the alignment recovered
by each algorithm (	) [23], and is defined as:

error = dist(�, �̃)+ dist(�̃,�)

T	 + T̃	

,

dist(�1,�2) =
T1

	∑

i=1

min({||π(i)
1 − π

(j)
2 ||})

T2
	

j=1), (27)

where �i ∈ R
Ti

	×N contains the indices corresponding to
the binary selection matrices �i, as defined in Section 4.1
(and [23]), while π(j) refers to the j-th row of �. For qualita-
tive evaluation, in Fig. 4, we present an example of applying
(D)PCTW on 5 sequences. As can be seen, DPCTW is able to
recover the true, de-noised, latent signal which generated
the noisy observations (Fig. 4(e)), while also aligning the
noisy sequences (Fig. 4(c)). Due to the temporal modelling
of DPCTW, the recovered latent space is almost identical
to the true signal Z̃ (Fig. 4(b)). PCTW on the other hand is
unable to entirely remove the noise (Fig. 4(d)). Fig. 5 shows

Fig. 5. Synthetic experiment comparing the alignment attained by DTW, CTW, GTW, PCTW and DPCTW on spirals with spiked and Gaussian
noise.
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Fig. 6. Applying (D)PCTW to continuous emotion annotations. (a) Original valence annotations from 5 experts. (b, c) Alignment obtained by PCTW
and DPCTW respectively, (d, e) Shared space obtained by PCTW and DPCTW respectively, which can be considered as the “derived ground truth”.

further results comparing related methods. CTW and GTW
perform comparably for two sequences, both outperform-
ing DTW. In general, PCTW seems to perform better than
CTW, while DPCTW provides better alignment than other
methods compared.

7.2 Real Data I: Fusing Multiple Annotations
In order to evaluate (D)PCTW in case of real data, we
employ the SEMAINE database [21]. The database con-
tains a set of audio-visual recordings of subjects interacting
with operators. Each operator assumes a certain person-
ality - happy, gloomy, angry and pragmatic - with a goal
of inducing spontaneous emotions by the subject during a
naturalistic conversation. We use a portion of the database
containing recordings of 6 different subjects, from over
40 different recording sessions, with a maximum length
of 6000 frames per segment. As the database was anno-
tated in terms of emotion dimensions by a set of experts
(varying from 2 to 8), no single ground truth is provided
along with the recordings. Thus, by considering X to be
the set of annotations and applying (D)PCTW, we obtain
E[Z|D] ∈ R

1×T (given all warped annotations)9, which repre-
sents the shared latent space with annotator-specific factors
and noise removed. We assume that E[Z|D] represents the
ground truth. An example of this procedure for (D)PCTW
can be found in Fig. 6. As can be seen, DPCTW provides a
smooth, aligned estimate, eliminating temporal discrepan-
cies, spike-noise and annotator bias. In this experiment, we
evaluate the proposed models on four emotion dimensions:
valence, arousal, power, and anticipation (expectation).

To obtain features for evaluating the ground truth, we
track the facial expressions of each subject via a particle fil-
tering tracking scheme [28]. The tracked points include the
corners of the eyebrows (4 points), the eyes (8 points), the
nose (3 points), the mouth (4 points) and the chin (1 point),
resulting in 20 2D points for each frame.

9. We note that latent (D)PCTW posteriors used, e.g. Z|Xi are
obtained on time-warped observations, e.g. Z|Xi	i (see Algorithm 1)

For evaluation, we consider a training sequence X, for
which the set of annotations Ax = {a1, . . . , aR} is known.
From this set (Ax), we derive the ground truth GT X - for
(D)PCTW, GT X = E[Z|Ax]. Using the tracked points PX
for the sequence, we train a regressor to learn the function
fx:PX → GT X. In (D)PCTW, Px is firstly aligned with GT x
as they are not necessarily of equal length. Subsequently
given a testing sequence Y with tracked points Py, using fx
we predict each emotion dimension (fx(Py)). The procedure
for deriving the ground truth is then applied on the anno-
tations of sequence Y, and the resulting GT y is evaluated
against fx(Py). The correlation coefficient of the GT y and
fx(Py) (after the two signals are temporally aligned) is then
used as the evaluation metric for all compared methods.

The reasoning behind this experiment is that the “best"
estimation of the ground truth (i.e. the gold standard)
should maximally correlate with the corresponding input
features - thus enabling any regressor to learn the mapping
function more accurately.

We also perform experiments with the supervised vari-
ants of DPCTW, i.e. SG-DPCTW and SD-DPCTW. In this
case, a set of features Y is used for inferring the ground
truth, Z|D. Since we already used the facial trackings for
evaluation, in order to avoid biasing our results10, we
use features from the audio domain. In particular, we
extract a set of audio features consisting of 6 mel-frequency
Cepstrum Coefficients (MFCC), 6 MFCC-Delta coefficients
along with prosody features (signal energy, root mean
squared energy and pitch), resulting in a 15 dimensional
feature vector. The audio features are used to derive the
ground truth with our supervised models, exactly acting an
objective reference to our sequence. In this way, we impose
a further constraint on the latent space: it should also
explain the audio cues and not only the annotations, given
that the two sets are correlated. Subsequently, the procedure

10. Since we use the facial points for evaluating the derived ground
truth, if we had also used them for deriving the ground truth we would
bias the evaluation procedure.
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TABLE 1
Comparison of Ground Truth Evaluation Based on the Correlation Coefficient (COR), on Session Dependent Experiments.

The Standard Deviation over All Results Is Denoted by σ

described above for unsupervised evaluation with facial
trackings is employed.

For regression, we employ RVM [29] with a Gaussian
kernel. We perform both session-dependent experiments,
where the validation was performed on each session
separately, and session-independent experiments where
different sessions were used for training/testing. In this
way, we validate the derived ground truth generalisation
ability (i) when the set of annotators is the same and
(ii) when the set of annotators may differ.

Session-dependent and session-independent results are
presented in Tables 1 and 2. We firstly discuss the unsuper-
vised methods. As can be seen, taking a simple annotator
average (A-AVG) gives the worse results (as expected), with
a very high standard deviation and weak correlation. The
model of Raykar et al. [7] provides better results, which can
be justified by the variance estimation for each annotator.
Modelling annotator bias and noise with (D)PCCA further
improves the results. It is important to note that incor-
porating alignment is significant for deriving the ground
truth; this is reasonable since when the annotations are mis-
aligned, shared information may be modelled as individual
factors or vice-versa. Thus, PCTW improves the results fur-
ther while DPCTW provides the best results, confirming
our assumption that combining dynamics, temporal align-
ment, modelling noise and individual-annotator bias leads
to a more objective ground truth. Finally, regarding super-
vised models SG-DPCTW and SD-DPCTW, we can observe
that the inclusion of audio features in the ground truth gen-
eration improves the results, with SG-DPCTW providing
better correlated results than SD-DPCTW. This is reasonable
since in SG-DPCTW the features Y are explicitly gener-
ated from the shared space, thus imposing a form of strict
supervision, in comparison to SD-DPCTW where the inputs
essentially elicit the shared space.

7.2.1 Ranking Annotations
We perform the ranking of annotations as proposed in
Algorithm 2 to a set of emotion dimension annotations from
the SEMAINE database.

In Fig. 7(a), we illustrate an example where an irrele-
vant structured annotation (sinusoid), has been added to
a set of five true annotations. Obviously the sinusoid can
be considered a spammer annotation since essentially, it is
independent of the actual sequence at hand. In the figure
we can see that (i) the derived ground truth is not affected
by the spammer annotation, (ii) the spammer annotation is
completely captured in the private space, and (iii) that the
spammer annotation is detected in the distance matrix of
E[Z|Xi] and E[Z|X].

In Fig. 7(b), we present an example where a set of 5
annotations has been used along with 8 spammers. The
spammers consist of random Gaussian distributions along
with structured periodical signals (i.e. sinusoids). We can
see that it is difficult to discriminate the spammers by
analysing the distance matrix of X since they do maintain
some correlation with the true annotations. By applying
Algorithm 2, we obtain the distance matrix of the latent pos-
teriors Z|Xi and Z|D. In this case, we can clearly detect the
cluster of annotators which we should keep. By applying
spectral clustering, the spammer annotations are isolated in
a single cluster, while the shared space along with the true
annotations fall into the other cluster. This is also obvious
by observing the inferred weight vector (W), which is near-
zero for sequences 6-14, implying that the shared signal is
ignored when reconstructing the specific annotation (i.e. the
reconstruction is entirely from the private space ). Finally,
this is also obvious by calculating the KL divergence com-
paring each individual posterior Z|Xi to the shared space
posterior given all annotations Z|D, where sequences 6-14
have a high distance while 1-5 have a distance which is
very close to zero.

In Fig. 7(c), we present another example where in
this case, we joined two sets of annotations which were
recorded for two distinct sequences (annotators 1-6 for
sequence A and annotators 7-12 for sequence B). In the
distance matrix taken on the observations X, we can see
how the two clusters of annotators are already discrim-
inable, with the second cluster, consisting of annotations
for sequence B, appearing more correlated. We use the facial

TABLE 2
Comparison of Ground Truth Evaluation Based on the Correlation Coefficient (COR), on Session Independent Experiments.

The Standard Deviation over All Results Is Denoted by σ
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Fig. 7. Annotation filtering and ranking (black - low, white - high). (a) Experiment with a structured false annotation (sinusoid). The shared space
is not affected by the false annotation, which is isolated in the individual space. (b) Experiment with 5 true and 9 spammer (random) annotations.
(c) Experiment with 6 true annotations, 7 irrelevant but correlated annotations (belonging to a different sequence). The facial points Y, corresponding
to the 6 true annotations, were used for supervision (with SG-DPCCA).

trackings for sequence A (tracked as described in this sec-
tion) as the features Y, and then apply Algorithm 2. As
can be seen in the distance matrix of [Z|Xi, Z|Y], (i) the
two clusters of annotators have been clearly separated,
and (ii) the posterior of features Z|Y clearly is much
closer to annotations 1-6, which are the true annotations
of sequence A.

7.3 Real Data II: Action Unit Alignment
In this experiment we aim to evaluate the performance of
(D)PCTW for the temporal alignment of facial expressions.
Such applications can be useful for methods which require
pre-aligned data, e.g. AAM (Active Appearance Models).
For this experiment, we use a portion of the MMI database
which contains more than 300 videos, ranging from 100 to
200 frames. Each video is annotated (per frame) in terms
of the temporal phases of each Action Unit (AU) mani-
fested by the subject being recorded, namely neutral, onset,
apex and offset. For this experiment, we track the facial
expressions of each subject capturing 20 2D points, as in
Section 7.2.

Given a set of videos where the same AU is activated
by the subjects, the goal is to temporally align the phases
of each AU activation across all videos containing that AU,
where the facial points are used as features. In the context of
DPCTW, each Xi is the facial points of video i containing the
same AU, while Z|Xi is now the common latent space given
video i, the size of which is determined by cross-validation,
and is constant over all experiments for a specific noise
level.

In Fig. 8 we present results based on the number of
misaligned frames for AU alignment, on all action unit
temporal phases (neutral, onset, apex, offset) for AU 12
(smile), on a set of 50 pairs of videos from MMI. For
this experiment, we used the facial features relating to
the lower face, which consist of 11 2D points. The fea-
tures were perturbed with sparse spike noise in order to
simulate the misdetection of points with detection-based
trackers, in order to evaluate the robustness of the proposed
techniques. Values were drawn from the normal distribu-
tion N (0, 1) and added (uniformly) to 5% of the length of
each video. We gradually increased the number of features
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Fig. 8. Accuracy of DTW, CTW, GTW, PCTW and DPCTW on the problem of action unit alignment under spiked noise added to an increasing
number of features for AU = 12 (smile).

perturbed by noise from 0 to 4. To evaluate the accuracy
of each algorithm, we use a robust, normalised metric. In
more detail, let us say that we have two videos, with fea-
tures X1 and X2, and AU annotations A1 and A2. Based on
the features, the algorithm at hand recovers the alignment
matrices 	1 and 	2. By applying the alignment matrices on
the AU annotations (A1	1 and A2	2), we know to which
temporal phase of the AU each aligned frame of each video
corresponds to. Therefore, for a given temporal phase (e.g.,
neutral), we have a set of frame indices which are assigned
to the specific temporal phase in video 1, Ph1 and video 2,
Ph2. The accuracy is then estimated as Ph1∩Ph2

Ph1∪Ph2
. This essen-

tially corresponds to the ratio of correctly aligned frames to
the total duration of the temporal phase accross the aligned
videos.

As can be seen in the average results in Fig. 8, the best
performance is clearly obtained by DPCTW. It is also inter-
esting to highlight the accuracy of DPCTW on detecting the
apex, which essentially is the peak of the expression. This
can be attributed to the modelling of dynamics, not only
in the shared latent space of all facial point sequences but
also in the domain of the individual characteristics of each
sequence (in this case identifying and removing the added
temporal spiked noise). PCTW peforms better on average

compared than CTW and GTW, while the latter two meth-
ods perform similarly. It is interesting to note that GTW
seems to overpeform CTW and PCTW for aligning the
apex of the expression for higher noise levels. Furthermore,
we point-out that the Gauss-Newton warping used in
GTW is likely to perform better for longer sequences.
Example frames from videos showing the unaligned and
DPCTW-aligned videos are shown in Fig. 9.

8 CONCLUSION

In this work, we presented DPCCA, a novel, dynamic
and probabilistic model based on the multiset probabilis-
tic interpretation of CCA. By integrating DPCCA with time
warping, we proposed DPCTW, which can be interpreted as
a unifying framework for solving the problems of (i) fusing
multiple imperfect annotations and (ii) aligning tempo-
ral sequences. Furthermore, we extended DPCCA/DPCTW
to a supervised scenario, where one can exploit inputs
and observations, both in a discriminative and generative
framework. We show that the family of probabilistic mod-
els which we present is this paper is able to rank and
filter annotators merely by utilising inferred model statis-
tics. Finally, our experiments show that DPCTW features

Fig. 9. Example stills from a set of videos from the MMI database, comparing the original videos to the aligned videos obtained via DPCTW under
spiked noise on 4 2D points. (a) Blinking, AUs 4 and 46. (b) Mouth open, AUs 25 and 27.
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such as temporal alignment, learning dynamics, identifying
individual annotator/sequence factors and incorporating
inputs are critical for robust performance of fusion in
challenging affective behavior analysis tasks.
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