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Maximum Margin Projection Subspace Learning
for Visual Data Analysis
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Abstract— Visual pattern recognition from images often
involves dimensionality reduction as a key step to discover a
lower dimensional image data representation and obtain a more
manageable problem. Contrary to what is commonly practiced
today in various recognition applications where dimensionality
reduction and classification are independently treated, we pro-
pose a novel dimensionality reduction method appropriately
combined with a classification algorithm. The proposed method
called maximum margin projection pursuit, aims to identify
a low dimensional projection subspace, where samples form
classes that are better discriminated, i.e., are separated with
maximum margin. The proposed method is an iterative alternate
optimization algorithm that computes the maximum margin
projections exploiting the separating hyperplanes obtained from
training a support vector machine classifier in the identified
low dimensional space. Experimental results on both artificial
data, as well as, on popular databases for facial expression, face
and object recognition verified the superiority of the proposed
method against various state-of-the-art dimensionality reduction
algorithms.

Index Terms— Maximum margin projections, support vector
machines, face recognition, facial expression recognition, object
recognition.

I. INTRODUCTION

ONE of the most crucial problems that every image
analysis algorithm encounters is the high dimensionality

of the image data, which can range from several hundreds
to thousands of extracted image features. Directly dealing
with such high dimensional data is not only computationally
inefficient, but also yields several problems in subsequently
performed statistical learning algorithms, due to the so-called
“curse of dimensionality”. Thus, various techniques have
been proposed in the literature for efficient data embedding
(or dimensionality reduction) that obtain a more manageable
problem and alleviate computational complexity. Such a pop-
ular category of methods is the subspace image represen-
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tation algorithms which aim to discover a low dimensional
representation of the image data by projecting linearly or
non-linearly the high-dimensional input samples to a low-
dimensional subspace, where an appropriately formed criterion
is optimized.

The most popular dimensionality reduction algorithms can
be roughly categorized, according to their underlying opti-
mization criteria, into two main categories. Those that form
their optimization criterion based on geometrical arguments
and those that attempt to enhance data discrimination in the
projection subspace. The goal of the first category methods
is to embed data into a low-dimensional space, where the
intrinsic data geometry is preserved. Principal Component
Analysis (PCA) [1] is such a representative method that
exploits the global data structure, in order to identify a
subspace where the sample variance is maximized. While PCA
exploits the global data characteristics in the Euclidean space,
the local data manifold structure is ignored. To overcome this
deficiency, manifold-based embedding algorithms assume that
the data reside on a submanifold of the ambient space and
attempt to discover and preserve its structure. Such repre-
sentative methods include e.g. ISOMAP [2], Locally Linear
Embedding (LLE) [3], Locality Preserving Projections [4],
Orthogonal Locality Preserving Projections (OLPP) [5] and
Neighborhood Preserving Embedding (NPE) [6].

Discrimination enhancing embedding algorithms aim to
identify a discriminative subspace, in which the data samples
from different classes are far apart from each other. Linear
Discriminant Analysis (LDA) [7] and its variants, are such
representative methods that extract discriminant information
by finding projection directions that maximize the ratio of the
between-class and the within-class scatter. Margin maximizing
embedding algorithms [8]–[10] inspired by the great success
of Support Vector Machines (SVMs) [11] also fall in this
category, since their goal is to enhance class discrimination
in the low dimensional space.

The Maximum Margin Projection (MMP) algorithm [9]
is an unsupervised embedding method that attempts to find
orthogonal projection directions that separate data in different
clusters with maximum margin. To do so, MMP iteratively
seeks for such a data partitioning, so that if a binary SVM clas-
sifier is trained, the resulting separating hyperplane separates
the two data clusters with maximum margin. Thus, the projec-
tion direction of the corresponding SVM trained on such a data
labelling, is considered as one of the directions of the sought
subspace, while considering different possible data clusterings
and enforcing the constraint that each subsequently found
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SVM hyperplane is orthogonal to the previous ones, several
projections are derived and added to the subspace. He et. al [8]
proposed a semisupervised dimensionality reduction method
for image retrieval that aims to discover both geometrical
and discriminant structures of the data manifold. To do so,
the algorithm constructs a within-class and a between-class
graph by exploiting both class and neighborhood information
and finds a linear transformation matrix that maps image data
to a subspace, where, at each local neighborhood, the margin
between relevant and irrelevant images is maximized.

Recently significant attention has been attracted by
Compressed Sensing (CS) [12] that combines data acquisition
with data dimensionality reduction performed by Random
Projections (RP). RP are a desirable alternative of traditional
embedding techniques, since they offer certain advantages.
Firstly, they are data independent and do not require a training
phase thus being computationally efficient. Secondly, as it has
been shown in the literature [13]–[15], a Gaussian random
projection matrix preserves the pairwise distances between
data points in the projection subspace and, thus, can be effec-
tively combined with distance-based classifiers, such as SVMs.
Another important aspect for real life applications using sensi-
tive biometric data is the provision of security and user privacy
protection mechanisms, since the use of random features,
instead of the actual biometric data for e.g. person identifi-
cation, protects the original data [16] from malicious attacks.

In this paper we integrate optimal data embedding and SVM
classification in a single framework to be called Maximum
Margin Projection Pursuit (MMPP). MMPP algorithm first
initializes the projection matrix as a semiorthogonal Gaussian
RP matrix in order to exploit the aforementioned merits.
Subsequently, it iteratively and till convergence trains an SVM
classifier in order to identify the optimal decision hyperplanes
in the low dimensional subspace and updates the projection
matrix such that the separating margin between the pro-
jected samples of different classes is maximized. The MMPP
approach brings certain advantages, both to data embedding
and classification. In contrary to what is commonly practiced
where dimensionality reduction and classification are treated
independently, MMPP combines these into a single frame-
work. Furthermore, in contrast to the conventional classifica-
tion approaches, which consider that the training data points
are fixed in the input space, the SVM classifier is trained
over the projected data samples in the projection subspace
determined by MMPP. Thus, working on low dimensional
data reduces the required computational effort. Moreover,
since the decision hyperplane identified by SVM training is
explicitly determined by the support vectors, data outliers and
the overall data samples distribution inside classes do not
affect MMPP performance, in contrast to other discriminant
subspace learning algorithms, such as LDA which assumes
a Gaussian data distribution for optimal class discrimination.
Furthermore, although the proposed method and the MMP
algorithm share similar characteristics, since both capitalize on
the maximum margin principle and exploit the SVM training
problem, our method is radically different overcoming certain
deficiencies of [9]. More precisely, MMPP is a supervised
learning algorithm unlike MMP which is unsupervised build

upon the assumption that samples of the same class are
grouped together in the initial high dimensional input space
thus being close to each other in the Euclidean sense forming
compact data clusters. However, this assumption is rarely true,
since usually data do not form compact data clusters but have
a multimodal distribution [17], [18]. This fact significantly
affects the correctness of the projection directions identified
by MMP. In addition, the proposed algorithm exploits in the
learning process the actual separating hyperplanes, contrary to
MMP algorithm which at each step constraints the identified
by SVM normal vector so that it is orthogonal to all previously
found projection directions thus the resulting subspace bases
are no longer directly determined by the support vectors.

In summary, the novel contributions of this paper are the
following:

• The MMPP algorithm integrates data embedding and
classification into a single framework, thus possess-
ing certain desired advantages (good classification per-
formance, computational speed and robustness to data
outliers).

• MMPP is derived both for two class and multiclass data
embedding problems.

• The MMPP non-linear extension that seeks to identify
a projection matrix that separates different classes in the
feature space with maximum margin is also demonstrated.

• The superiority of the proposed method against var-
ious state-of-the-art embedding algorithms for facial
image characterization problems and object recognition
is verified by several simulation experiments on popular
datasets.

The rest of the paper is organized as follows. Section II
presents the proposed MMPP dimensionality reduction
algorithm for a two-class linear classification problem and
discusses its initialization using a semiorthogonal Gaussian
random projection matrix, in order to form the basis of the
projection subspace. MMPP extension to a multiclass problem
is presented in Section III, while its non-linear extension con-
sidering either a Gaussian Radial Basis or an arbitrary degree
polynomial kernel function is derived in Section IV. Section V
describes the conducted experiments and presents experimen-
tal evidence regarding the superiority of the proposed algo-
rithm against various state-of-the-art data embedding methods.
Finally, concluding remarks are drawn in Section VI.

II. MAXIMUM MARGIN PROJECTION PURSUIT

The MMPP algorithm aims to identify a low-dimensional
projection subspace, where samples form classes that are better
discriminated, i.e., are separated with maximum margin. To do
so, MMPP involves three main steps. The first step, performed
during the initialization of the MMPP algorithm, extracts the
random features from the initial data and forms the basis of
the low-dimensional projection subspace using RP, while the
second and the third steps involve two optimization problems
that are combined in a single iterative alternate optimization
framework. More precisely, the second step identifies the
optimal decision hyperplane that separates different classes
with maximum margin, in the respective subspace determined
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by the projection matrix, while the third step updates the
projection matrix, so that the identified separating margin
between the projected samples of different classes is increased.
Next, we first formulate the optimization problems considered
by MMPP, discuss algorithm initialization and demonstrate
the iterative optimization framework considering both a two
class and a multiclass separation problem. Subsequently, we
derive the non-linear MMPP algorithms extension and propose
update rules considering polynomial and Gaussian kernel
functions to project data into a Hilbert space, using the
so-called kernel trick.

A. MMPP Algorithm for Binary Classification Problems

Given a set X = {(x1, y1), . . . , (xN , yN )} of N train-
ing data pairs, where xi ∈ R

m, i = 1, . . . , N are the
m-dimensional input feature vectors and yi ∈ {−1, 1} is
the class label associated with each sample xi , a binary
SVM classifier attempts to find the separating hyperplane
that separates training data points of the two classes with
maximum margin, while minimizing the classification error
defined according to which side of the decision hyperplane
training samples of each class fall in. Considering that each
training sample of X is firstly projected from the initial
m-dimensional input space to a low-dimensional subspace
using a projection matrix R ∈ R

r×m , where r � m
and performing the linear transformation x́i = Rxi ,
the binary SVM optimization problem is formulated as
follows:

min
w,ξi ,R

1

2
wT w + C

N∑

i=1

ξi (1)

subject to the constraints:

yi

(
wT Rxi + b

)
≥ 1 − ξi (2)

ξi ≥ 0, i = 1, . . . , N, (3)

where w ∈ R
r is the normal vector of the separating

hyperplane, which is r -dimensional, since training is per-
formed in the projection subspace, b ∈ R is its bias term,
ξ = [ξ1, . . . , ξN ]T are the slack variables, each one associated
with a training sample and C is the term that penalizes the
training error.

The MMPP algorithm attempts to learn a projection
matrix R, such that the low-dimensional data sample
projection is performed efficiently, thus enhancing the discrim-
ination between the two classes. To quantify the discrimination
power of the projection matrix R, we formulate our MMPP
algorithm based on geometrical arguments. To do so, we
employ a combined iterative optimization framework, involv-
ing the simultaneous optimization of the separating hyperplane
normal vector w and the projection matrix R, performed by
successively updating the one variable, while keeping the other
fixed. Next we first discuss the derivation of the optimal
separating hyperplane normal vector wo, in the projection
subspace determined by R and subsequently, we demonstrate
the projection matrix update with respect to the fixed wo.

1) Finding the Optimal wo in the Projection Subspace
Determined by R: The optimization with respect to w, is
essentially the conventional binary SVM training problem
performed in the projection subspace determined by R, rather
than in the input space. To solve the constrained optimization
problem in (1) with respect to w, we introduce positive
Lagrange multipliers αi and βi each associated with one of
the constraints in (2) and (3), respectively and formulate the
Lagrangian function L(w, ξ , R,α,β):

L(w, ξ , R,α,β) = 1

2
wT w + C

N∑

i=1

ξi

−
N∑

i=1

αi

[
yi

(
wT Rxi + b

)
− 1 + ξi

]

−
N∑

i=1

βiξi . (4)

The solution can be found from the saddle point of the
Lagrangian function, which has to be maximized with
respect to the dual variables α and β and minimized with
respect to the primal ones w, ξ and b. According to the
Karush-Kuhn-Tucker (KKT) conditions [19] the partial deriv-
atives of L(w, ξ , R,α,β) with respect to the primal variables
w, ξ and b vanish deriving the following equalities:

∂L(w, ξ , R,α,β)

∂w
= 0 ⇒ w =

N∑

i=1

αi yi Rxi , (5)

∂L(w, ξ , R,α,β)

∂b
= 0 ⇒

N∑

i=1

αi yi = 0, (6)

∂L(w, ξ , R,α,β)

∂ξi
= 0 ⇒ βi = C − αi . (7)

By substituting terms from the above equalities into (4), we
switch to the dual formulation, where the optimization problem
with respect to the primal variables in (1) is reformulated to
the maximization of the following Wolfe dual problem:

min
R

max
α

N∑

i=1

αi − 1

2

N∑

i, j

αiα j yi y j xT
i RT Rx j (8)

subject to the constraints:

N∑

i=1

αi yi = 0, αi ≥ 0, ∀ i = 1, . . . , N. (9)

Consequently, solving (8) for α the optimal separating
hyperplane normal vector wo in the reduced dimensional space
determined by R, is subsequently derived from (5).

2) Maximum Margin Projection Matrix Update for
Fixed wo: At each optimization round t we seek to update
the projection matrix R(t−1), so that its new estimate R(t)

improves the objective function in (8) by maximizing
the margin between the two classes. To do so, we first project
the high dimensional training samples xi from the input space
to a low dimensional subspace, using the projection matrix
R(t−1) derived during the previous step, and subsequently,
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train the binary SVM classifier in order to obtain the optimal
Lagrange multipliers αo specifying the normal vector of the
separating hyperplane w(t)

o .
To formulate the optimization problem for the projection

matrix R, we exploit the dual form of the binary SVM
cost function defined in (8). However, since term

∑N
i=1 αi

is constant with respect to R, we can remove it from the
cost function. Moreover, in order to retain the geometrical
correlation between samples in the projection subspace, we
constrain the derived updated projection matrix R(t) to be
semiorthogonal. Consequently, the constrained optimization
problem for the projection matrix R update can be summarized
by the objective function O(R) as follows:

max
R

O(R) = 1

2

N∑

i, j

αi,oα j,o yi y j xT
i RT Rx j , (10)

subject to the constraints:

RRT = I, (11)

where I is an r × r identity matrix. The orthogonality
constraint introduces an optimization problem on the Stiefel
manifold solved to find the dimensionality reduction matrix R.

In the literature, optimization of problems with orthogonal-
ity constraints is performed using a gradient descent algorithm
along the Stiefel manifold geodesics [20], [21]. However,
the simplest approach to take the constraint RRT = I into
account, is to update R using any appropriate unconstrained
optimization algorithm, and then to project R back to the
constraint set [22]. This is the direction we have followed
in this paper, where we first solve (10), without the ortho-
normality constraints on the rows of the projection matrix
and obtain Ŕ. Consequently, the projection matrix update is
accomplished orthonormalizing the rows of Ŕ by performing
a Gram-Schmidt procedure. Thus, we solve (10) for R keeping
w(t)

o fixed, by applying a steepest ascent optimization algo-
rithm, which, at a given iteration t , invokes the following
update rule:

Ŕ(t) = R(t−1) + λt∇O(R(t−1)), (12)

where λt is the learning step parameter for the t-th iteration
and ∇O(R(t−1)) is the partial derivative of the objective
function O(R) in (10) with respect to R(t−1), evaluated as:

∇O(R(t−1)) =
N∑

i, j

αi,oα j,o yi y j R(t−1)xi xT
j

=
N∑

i=1

αi,o yi w(t)
o xT

i . (13)

Thus, Ŕ(t) is derived as:

Ŕ(t) = R(t−1) + λt

(
N∑

i=1

αi,o yi w(t)
o xT

i

)
. (14)

Obtaining the projection matrix Ŕ(t) that increases the separat-
ing margin between the two classes in the projection subspace,
we subsequently orthonormalize its rows to derive R(t).

An efficient approach for setting an appropriate value to
the learning step parameter λt based on the Armijo rule [23]
is presented in [24], which is also adopted in this work.
According to this strategy, the learning step takes the form
λt = βgt , where gt is the first non-negative integer value found
satisfying:

O(R(t)) − O(R(t−1)) ≥ σ 〈∇O(R(t−1)), R(t) − R(t−1)〉, (15)

where operator 〈., .〉 is the Frobenius inner product. Parame-
ters β and σ in our experiments have been set to β = 0.1 and
σ = 0.01, which is an efficient parameter selection, as has
been verified in other studies [24], [25].

After deriving the new projection matrix R(t), the previously
identified separating hyperplane is no longer optimal, since
it has been evaluated in the projection subspace determined
by R(t−1). Consequently, it is required to re-project the
training samples using R(t) and retrain the SVM classifier
to obtain the current optimal separating hyperplane and its
normal vector. Thus, MMPP algorithm iteratively updates
the projection matrix and evaluates the normal vector of the
optimal separating hyperplane wo in the projection subspace
determined by R, until the algorithm converges.

In order to verify whether the learned projection matrix R(t)

at each iteration round t is optimal or not, we track the partial
derivative value in (13) to identify stationarity. The following
stationarity check step is performed, which examines whether
the following termination condition is satisfied:

||∇O(R(t))||F ≤ eR||∇O(R(0))||F , (16)

where eR is a predefined stopping tolerance satisfying:
0 < eR < 1. In our conducted experiments, we considered
that eR = 10−3. The combined iterative optimization process
of the MMPP algorithm for the binary classification problem
is summarized in Algorithm 1.

B. MMPP Algorithm Initialization

In order to initialize the iterative optimization framework,
it is first required to train the binary SVM classifier and obtain
the optimal wo in a low dimensional subspace determined by
an initial projection matrix R(0), used in order to perform
dimensionality reduction and form the basis of the projection
subspace. To do so, we construct R(0) as a semiorthogo-
nal Gaussian random projection matrix. To derive R(0) we
create the m × r matrix R of i.i.d., zero-mean, unit vari-
ance Gaussian random variables, normalize its first row and
orthogonalize the remaining rows with respect to the first, via
a Gram-Schmidt procedure. This procedure results in the
Gaussian random projection matrix R(0) having orthonormal
rows that can be used for the initialization of the iterative
optimization framework.

III. MMPP ALGORITHM FOR MULTICLASS

CLASSIFICATION PROBLEMS

The dominant approach for solving multiclass classifica-
tion problems using SVMs has been based on reducing the
multiclass task into multiple binary ones and building a set
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Algorithm 1 Outline of the Maximum Margin Projection
Pursuit Algorithm Considering a Binary Classification
Problem

of binary classifiers, where each one distinguishes samples
between one pair of classes [26]. However, adopting such an
one-against-one multiclass SVM classification schema to our
MMPP algorithm requires to learn one projection matrix for
each of the k(k − 1)/2 binary SVM classifiers that handle a
k-class classification problem. Clearly, this approach becomes
impractical for classification tasks involving a large number
of classes, as for instance, in face recognition.

A different approach to generalize SVMs to multiclass prob-
lems is to handle all available training data together forming a
single optimization problem by adding appropriate constraints
for every class [27], [28]. However, the size of the generated
quadratic optimization problem may become extremely large,
since it is proportional to the product of the number of training
samples multiplied by the number of classes in the classifica-
tion task at hand. Crammer and Singer [29] proposed an ele-
gant approach for multiclass classification, by solving a single
optimization problem, where the number of added constraints
is reduced and remains proportional to the number of the avail-
able training samples. More importantly, such a one-against-
all multiclass SVM formulation enables us to learn a single
maximum margin projection matrix common for all training
samples, independently of the class they belong to. Therefore,
we adopt this multiclass SVM formulation [29] in this work.

In the multiclass classification context, the training samples
xi are assigned a class label yi ∈ {1, . . . , k}, where k is the
number of classes. We extend the multiclass SVM formulation
proposed in [29], by considering that all training samples
are first projected on a low-dimensional subspace determined
by the projection matrix R. Our goal is to solve the MMPP
optimization problem and to learn a common projection matrix
R for all classes, such that the training samples of different
classes are projected in a subspace, where they are separated
with maximum margin, and also, to derive k separating hyper-
planes, where the p-th hyperplane p = 1, . . . , k determined
by its normal vector wp ∈ R

r , separates the training vectors
of the p-th class from all the others with maximum margin.

The multiclass SVM optimization problem in the projection
subspace is formulated as follows:

min
wp,ξi ,R

1

2

k∑

p=1

wT
p wp + C

N∑

i=1

ξi , (17)

subject to the constraints:

wT
yi

Rxi − wT
p Rxi ≥ b p

i − ξi , i = 1, . . . , N p = 1, . . . , k.

(18)

Here bias vector b is defined as:

b p
i = 1 − δ

p
yi =

{
1, if yi �= p
0, if yi = p,

(19)

where δ
p
yi is the Kronecker delta function which is 1 for yi = p

and 0, otherwise.
Similar to the binary classification case, we employ a

combined iterative optimization framework that successively
optimizes either variables wp , p = 1, . . . , k keeping matrix
R fixed, (thus, training the multiclass SVM classifier in the
projection subspace determined by R) or updates the pro-
jection matrix R, so that it improves the objective function
i.e., it projects the training samples in a subspace where the
margin that separates the training samples of each class from
all the others, is maximized. Next, we first demonstrate the
optimization process with respect to the normal vectors of
the separating hyperplanes in the projection subspace of R
and subsequently, we discuss the projection matrix R update,
while keeping the optimal normal vectors wp,o fixed.

1) Finding the Optimal wp,o in the Projection Subspace
Determined by R: Since the derivation of the following
dual optimization problem is rather technical, we will briefly
demonstrate it and refer the interested reader to [30] and [31]
for its complete exposition. To solve the constrained opti-
mization problem in (17) we introduce positive Lagrange
multipliers α

p
i , each associated with one of the constraints

in (18). Note that it is not required to introduce additional
Lagrange multipliers regarding the non-negativity constraint
applied on the slack variables ξi . This is already included
in (18), since, for yi = p, b p

i = 0, inequalities in (18) become
ξi ≥ 0. The Lagrangian function L(wp, ξ , R,α) takes the
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form:

L(wp, ξ , R,α)

= 1

2

k∑

p=1

wT
p wp + C

N∑

i=1

ξi

−
N∑

i=1

k∑

p=1

α
p
i

[(
wT

yi
− wT

p

)
Rxi + ξi − b p

i

]
. (20)

Switching to the dual formulation, the solution of the
constrained optimization problem in (17) can be found from
the saddle point of the Lagrangian function in (20), which
has to be maximized with respect to the dual variables α and
minimized with respect to the primal ones wp and ξ . To find
the minimum over the primal variables we require that the
partial derivatives of L(wp, ξ , R,α) with respect to ξ and wp

vanish, which gives the following equalities:

∂L(wp, ξ , R,α)

∂ξi
= 0 ⇒

k∑

p=1

α
p
i = C, (21)

∂L(wp, ξ , R,α)

∂wp
= 0 ⇒ wp =

N∑

i=1

(
α

p
i − Cδ

p
yi

)
Rxi

⇔ wp =
N∑

i=1

⎛

⎝α
p
i −

k∑

p=1

α
p
i δ

p
yi

⎞

⎠ Rxi .

(22)

By substituting terms from (21) and (22) into (20), and
expressing the corresponding to the i -th training sample
bias terms and Lagrange multipliers in a vector form as
bi = [b1

i , . . . , bk
i ]T and αi = [α1

i , . . . , αk
i ]T , respectively and

performing the substitution ni = C1yi − αi , (where 1yi is a
k-dimensional vector with all its components equal to zero
except of the yi -th, which is equal to one) the saddle point
of the Lagrangian is reformulated to the minimization of the
following Wolfe dual problem:

min
n

max
R

1

2

N∑

i, j

xT
i RT Rx j nT

i n j +
N∑

i=1

nT
i bi , (23)

subject to the constraints:

k∑

p=1

n p
i = 0, n p

i ≤
{

0, if yi �= p
C, if yi = p

∀i = 1, . . . , N , p = 1, . . . , k. (24)

By solving (23) for n, and consequently, deriving the optimal
value of the actual Lagrange multipliers αo, the normal vector
wp,o is derived from (22), corresponding to the optimal
decision hyperplane that separates the training samples of the
p-th class from all the others with maximum margin in the
projection subspace of R.

2) Maximum Margin Projection Matrix Update for
Fixed wp,o: Similar to the binary classification case, we
formulate the optimization problem by exploiting the dual
form of the multiclass SVM cost function in (23). To do
so, we remove the term

∑N
i=1 nT

i bi from (23), since it is

independent of the optimized variable R and derive the
objective function O(R). In addition we impose orthogonality
constraints on the derived projection matrix R(t) rows, thus
leading to the following optimization problem:

max
R

O(R) = 1

2

N∑

i, j

xT
i RT Rx j nT

i n j , (25)

subject to the constraints:

RRT = I. (26)

To derive a new estimate of Ro at a given iteration t
the steepest ascent update rule in (12) is invoked, where
∇O(R(t−1)) is the partial derivative of (25) with respect
to R(t−1):

∇O(R(t−1)) =
N∑

i, j

R(t−1)xi xT
j nT

i,on j,o

= −
N∑

i=1

k∑

p=1

α
p
i,o

(
w(t)

yi ,o − w(t)
p,o

)
xT

i . (27)

Thus, Ŕ(t) is updated as:

Ŕ(t) = R(t−1) − λt

⎛

⎝
N∑

i=1

k∑

p=1

α
p
i,o

(
w(t)

yi ,o − w(t)
p,o

)
xT

i

⎞

⎠. (28)

The projection matrix update is followed by the orthonormal-
ization of the rows of Ŕ(t), in order to to satisfy the imposed
constraints. Similar to the binary classification task, MMPP
algorithm for multiclass classification problems successively
updates the maximum margin projection matrix R and eval-
uates the normal vectors wp,o p = 1, . . . , k of the k optimal
separating hyperplanes in the projection subspace determined
by R. The involved learning rate parameter λt is set using the
previously presented methodology for the binary classification
case, while the iterative optimization process is terminated by
tracking the partial derivative value in (27) and examining the
termination condition in (16).

IV. NON-LINEAR MAXIMUM MARGIN PROJECTIONS

When data can not be linearly separated in the initial
input space, a common approach is to perform the so-called
kernel trick, using a mapping function φ(.) that maps (usually
non-linearly) the input feature vectors xi to a possibly high
dimensional space F , called feature space, which usually has
the structure of a Hilbert space [32], [33], where the data
are supposed to be linearly or near linearly separable. The
exact form of the mapping function is not required to be
known, since all required subsequent operations of the learning
algorithm are expressed in terms of dot products between the
input vectors in the Hilbert space performed by the kernel
trick [34].

To derive the non-linear extension of the MMPP
algorithm, we assume that the low dimensional training sample
representations are non-linearly mapped in a Hilbert space
using a kernel function and seek to identify such a projection
matrix that separates different classes in the feature space with
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maximum margin. Next we will only demonstrate the deriva-
tion of the update rules for the maximum margin projection
matrix R, both for the two class and the multiclass classi-
fication problems, considering two popular kernel functions:
an arbitrary degree polynomial kernel function and the Radial
Basis Function (RBF). However, it is straightforward to extend
the non-linear MMPP algorithm, such as to exploit other
popular kernel functions using the presented methodology.

A d-degree polynomial kernel function is defined as:
K (xi , x j ) = (xT

i x j +1)d . Considering that training samples are
first projected into the low dimensional subspace determined
by R, the d-degree polynomial kernel function over the
projected samples takes the form:

K (Rxi , Rx j ) =
(
(Rxi )

T Rx j + 1
)d

. (29)

Consequently, the partial derivative ∇O(R(t−1)) of the objec-
tive function for the binary classification case in (10) is
evaluated as below:

∇O(R(t−1))

=
1
2

∑N
i, j αi,oα j,o yi y j K (R(t−1)xi , R(t−1)x j )

∂R(t−1)

= d
N∑

i, j

αi,oα j,o yi y j

×
((

R(t−1)xi

)T
R(t−1)x j + 1

)d−1

R(t−1)xi xT
j ,

(30)

while for the multiclass formulation is evaluated using the cost
function in (25) as:

∇O(R(t−1)) =
1
2

∑N
i, j K (R(t−1)xi , R(t−1)x j )nT

i n j

∂R(t−1)

= d
N∑

i, j

((
R(t−1)xi

)T
R(t−1)x j + 1

)d−1

×R(t−1)xi xT
j nT

i,on j,o. (31)

On the other hand, the RBF kernel function is defined using
the projected samples as: K (Rxi , Rx j ) = e−γ ||Rxi −Rx j ||2 ,
where γ is the Gaussian spread. Similarly, the partial derivative
of (10), with respect to R(t−1) is evaluated as follows:

∇O(R(t−1)) = 2γ R(t−1)
N∑

i, j

αi,oα j,o yi y j

(
xi xT

i + x j xT
j

)

×K (R(t−1)xi , R(t−1)x j ), (32)

while, for the multiclass separation problem, it is evaluated
from (25):

∇O(R(t−1)) = 2γ R(t−1)
N∑

i, j

(
xi xT

i + x j xT
j

)

×K (R(t−1)xi , R(t−1)x j )nT
i,on j,o. (33)

The update rules for the maximum margin projection matrix
are subsequently derived by substituting the respective par-
tial derivatives in (12). Moreover, similar extensions can be
derived for other popular non-linear kernel functions, by
simply evaluating their partial derivatives with respect to
the projection matrix R and by modifying accordingly the
respective update rules.

V. EXPERIMENTAL RESULTS

We compare the performance of the proposed method
with that of several state-of-the-art dimensionality reduc-
tion techniques, such as PCA, LDA, Subclass Discrimnant
Analysis (SDA) [17], LPP, Orthogonal LPP (OLPP), MMP
and the linear approximation of the LLE algorithm called
Neighborhood Preserving Embedding (NPE). Moreover, in our
comparison we include RP [35] and also we directly feed the
initial high dimensional samples without performing dimen-
sionality reduction to a multiclass SVM classifier, to serve
as our baseline testing methods. Experiments have been per-
formed for facial expression recognition on the Cohn-Kanade
database [36], for face recognition on “Labeled Faces in the
Wild” (LFW) [37], Extended Yale B [38] and AR [39] datasets
and for object recognition on ETH-80 image dataset [40].

On the experiments for facial expression and face recog-
nition as our classification features, we considered the facial
image intensity information and its augmented Gabor wavelet
representation, which provides robustness to illumination and
facial expression variations [41]. To create the augmented
Gabor feature vectors we convolved each facial image with
Gabor kernels considering 5 different scales and 8 directions.
Thus, for each facial image, and for each Gabor kernel a
complex vector containing a real and an imaginary part was
generated. Based on these parts we computed the Gabor
magnitude information creating in total 40 feature vectors for
each facial image. Each such feature vector was subsequently
downsampled, in order to reduce its dimension using interpo-
lation and normalized to zero mean and unit variance. Finally,
for each facial image we derived its augmented Gabor wavelet
representation by concatenating the 40 feature vectors into a
single vector. On the experiments for object recognition we
used the cropped and scaled to a fixed size of 128×128 pixels
binary images of ETH-80 containing the contour of each
object.

To determine the optimal projection subspace dimensional-
ity for MMPP, MMP, PCA, RP and SDA a validation step was
performed exploiting the training set. Moreover, for SDA the
optimal number of subclasses that each class is partitioned
to has been also specified using the same validation step
and exploiting the stability criterion introduced in [42]. For
validation we randomly divided the training set into training
(80% of the samples) and validation (20% of the samples) sets
and the parameters that resulted to the best recognition rate on
the validation set were subsequently adopted for the test set.

In order to train the proposed MMPP algorithm and derive
the maximum margin projection matrix, we have combined our
optimization algorithm with LIBLINEAR [43], which provides
an efficient implementation of the considered multiclass linear



4420 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 10, OCTOBER 2014

TABLE I

BEST AVERAGE EXPRESSION RECOGNITION ACCURACY RATES (%) IN COHN-KANADE DATABASE. IN PARENTHESES IT IS SHOWN THE DIMENSION

THAT RESULTS IN THE BEST PERFORMANCE FOR EACH METHOD

Fig. 1. Sample images depicting facial expressions in the Cohn-Kanade
database.

kernel SVM classifier. Moreover, for the fairness of the
experimental comparison, the discriminant low-dimensional
facial representations derived from each examined algorithm
were also fed to the same multiclass SVM implemented in
LIBLINEAR for classification. We should note that, by
adopting LIBLINEAR we explicitly exploit a linear kernel.
However, as it has been shown in the literature [35], linear
SVMs are already appropriate for separating different classes
and this also makes it possible to directly compare between
different algorithms and draw trustworthy conclusions regard-
ing their efficacy. Nevertheless, better performance could be
achieved by MMPP algorithm by projecting the input high
dimensional samples non-linearly and using non-linear kernel
SVMs for their classification.

A. Facial Expression Recognition in the
Cohn-Kanade Database

The Cohn-Kanade AU-Coded facial expression database is
among the most popular databases for benchmarking methods
that perform facial expression recognition. Each subject in
each video sequence of the database poses a facial expression,
starting from the neutral emotional state and finishing at the
expression apex. To form our data collection we discarded the
intermediate video frames depicting subjects performing each
facial expression in increasing intensity level and considered
only the last video frame depicting each formed facial expres-
sion at its highest intensity. Face detection was performed
on these images and the resulting facial Regions Of Interest
(ROIs) were manually aligned with respect to the eyes posi-
tion. Subsequently, they were anisotropically scaled to a fixed
size of 150 × 200 pixels and converted to grayscale. Thus,
in our experiments, we used in total 407 images depicting
100 subjects, posing 7 different expressions (anger, disgust,
fear, happiness, sadness, surprise and the neutral emotional
state). Fig. 1 shows example images from the Cohn-Kanade
dataset, depicting the recognized facial expressions arranged
in the following order: anger, disgust, fear, happiness, sadness,
surprise and the neutral emotional state.

To measure the facial expression recognition accuracy, we
randomly partitioned the available samples into 5 approxi-
mately equal sized subsets (folds) and a 5-fold cross-validation

has been performed by feeding the projected discriminant
facial expression representations to the linear SVM classifier.
This resulted into such a test set formation, where some
expressive samples of an individual were left for testing, while
his rest expressive images (depicting other facial expressions)
were included in the training set. This fact significantly
increased the difficulty of the expression recognition problem,
since person identity related issues arose.

Table I summarizes the best average facial expression
recognition rates achieved by each examined embedding
method, both for the considered facial image intensity and
the augmented Gabor features. The mean facial expression
recognition rates attained by directly feeding the initial high
dimensional data to the linear SVM classifier are also provided
in Table I. Considering the facial image intensity as the input
features, MMPP outperforms, in terms of recognition accuracy
percentage points, all other competing embedding algorithms.
The best average expression recognition rate attained by
MMPP is 80.1% using 120D discriminant representations of
the initial 30,000D input samples. Exploiting the augmented
Gabor features significantly improved the recognition perfor-
mance of all examined methods, verifying the appropriateness
of these descriptors in the task compared against the image
intensity features. MMPP algorithm performance increased
by more than 9% reaching an average recognition rate of
89.2%. Again MMPP attained the highest average expression
recognition rate outperforming the second best method (LDA)
by 2.7%. MMP algorithm failed to provide competitive expres-
sion recognition performance on both experiments due to the
applied experimental protocol. More precisely, since we do
not perform person independent expression recognition where
all the expressive images of an individual are left for testing,
MMP failed to derive discriminative projection directions,
since all facial images of the same subject belonging to
different expression classes tend to cluster together in the high
dimensional input space.

It is significant to highlight the difference in expression
recognition performance between PCA, RP and the proposed
algorithm when a varying number of features are extracted
by each method. Fig. 2 plots the average facial expression
recognition rate achieved by each method with respect to
the number of extracted features. As it can be observed,
MMPP attained the highest recognition rate while was able
to extract features with higher discriminant information.
Fig. 3 demonstrates the average facial expression recognition
rate attained by MMPP, when the initial 48,000D augmented
Gabor wavelet representations are projected on a 3D space,
versus the number of MMPP learning process iterations.
It should be noted that since for the initialization of MMPP
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Fig. 2. Average facial expression recognition rate in Cohn-Kanade database
with respect to the extracted features.

Fig. 3. MMPP average facial expression recognition rate versus the number
of optimization iterations. The initial 48,000D Gabor wavelet representations
derived from Cohn-Kanade database are projected on a 3D space.

it is exploited a semiorthogonal Gaussian RP matrix, thus
practically dimensionality reduction is performed using RP,
the reported recognition accuracy at the first iteration, which
is 40.2%, is identical to that achieved by RP. As can be
observed in Fig. 3, during the iterative optimization process
class discrimination in the projection subspace is enhanced
and the attained mean expression recognition rate is gradually
increased reaching 88.3%.

B. MMPP Algorithms Convergence and
Computational Complexity

To investigate MMPP optimization performance, we exam-
ined its ability to minimize the cost function in (17) in every
optimization round, thus maximizing the separating margin
between the projected samples of different classes. We also
investigated whether MMPP is able to reach a stationary point
by monitoring the gradient magnitude in (27).

In the conducted experiment, we used approximately
half (200) of the available expressive images from
Cohn-Kanade, in order to train MMPP and learn a 100D
discriminant projection subspace. From the expressive facial
images we extracted the augmented Gabor features by con-
volving each with Gabor kernels of 5 different scales and
8 orientations and downsampled, normalized and concate-
nated the derived filter responses following the same proce-
dure as previously described. The resulting from each facial
image 48, 000D feature vectors were used in order to train

TABLE II

TRAINING TIME IN SECONDS REQUIRED BY PCA, LDA, SDA, LPP AND

MMPP ON COHN-KANADE DATASET

MMPP and obtain the projection matrix R of dimensions
100 × 48, 000. In Fig. 4a, the objective function in (17) value
versus the number of iterations is plotted, which is monotoni-
cally decreasing, verifying that the separating margin increases
per iteration. Moreover, the gradient Frobenius norm value
after each update is demonstrated in Fig. 4b. In this experiment
MMPP required 304 iterations in order to sufficiently decrease
the gradient norm and reach the convergence point (i.e. to
satisfy the termination condition in (16)). In Table II we
show the recorded CPU training time, measured in seconds,
required by PCA, LDA, SDA, LPP and MMPP algorithms
in this dataset. All algorithms have been implemented on
Matlab R2012b [44] and the required by each method CPU
time during training has been recorded on a 2.66 GHz and
8 GB RAM computer. As it can be observed since PCA,
LDA and LPP all solve a Generalized Eigenvalue Problem
(GEP) have the shortest training times. SDA although it
also solves a GEP problem its training time is significantly
higher since it requires to determine the optimal subclasses
partition using the stability criterion [42] which is costly.
MMPP required the highest training time in the comparison
which is attributed to the considered iterative optimization
framework.

To visualize the ability of MMPP algorithm to estimate
useful subspaces that enhance data discrimination, we run the
proposed algorithm, aiming to learn a 2D projection space in
a two class toy classification problem, using artificial data.
To generate our toy dataset we collected 600 300D samples
for each class, with the first class features drawn randomly
from a standard normal distribution N (0, 1) and the second
class samples drawn from a N (0.2, 1) normal distribution and
used 100 samples of each class for training, while the rest
were used to compose the toy test set. Fig. 5 shows the 2D
projection of the two classes training data samples after differ-
ent iterations of the MMPP algorithm, where circled samples
denote the identified support vectors. As can be observed,
the proposed algorithm was able, after a few iterations, to
perfectly separate linearly the two classes, by continuously
maximizing the separating margin. Moreover, as a side effect
of MMPP algorithm, we observed that the SVM training
process converges faster and into a more sparse solution
after each iteration of MMPP algorithm, since the number
of identified support vector decreases as class discrimination
increases.

C. Face Recognition in LFW Image Set

LFW image set realistically simulates the variability evident
to unconstrained, in the wild, face recognition problems. More
precisely, LFW data set is the standard benchmark on face
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Fig. 4. MMPP convergence results using augmented Gabor features derived from half of the Cohn-Kanade images; a) Objective function value versus the
number of iterations, b) Gradient Frobenius norm versus the number of algorithm iterations.

Fig. 5. Training data 2D projection at different iterations of the MMPP algorithm. Circled data samples denote the identified support vectors which reduce
during MMPP algorithms convergence.

verification which focuses on pair matching where given two
face images, the goal is to decide whether the two samples
depict the same individual or not. In total LFW data consist
of 13, 233 facial images depicting 5, 749 different individuals
of which 4, 069 only have a single image in the database.
In order to perform face recognition using the LFW image
set we employed a subset of the available data, considering
only the face images of those individuals that have more than
30 samples sufficient to contribute both to the training and
test set. Thus the dataset we considered from LFW image set
consists in total of 2, 310 face images from 32 individuals
where for each subject a different number of samples were

available varying from 30 to 530 images. The considered facial
images were aligned, cropped and scaled to a fixed size of
64 × 64 pixels using their facial landmarks location and gray
scaled. To form our testing set we randomly selected 5 images
of each individual, while the remaining were used for training.

Table III summarizes the highest face recognition rates
achieved by each method in the comparison. The proposed
MMPP algorithm performs the best reaching 93.1% recogni-
tion rate followed in order by PCA when we used the image
intensity information as the input features, while for the Gabor
wavelet representations MMPP reached 95% followed by SDA
that attained 93.1%.



NIKITIDIS et al.: MAXIMUM MARGIN PROJECTION SUBSPACE LEARNING 4423

TABLE III

BEST FACE RECOGNITION ACCURACY RATES (%) IN LFW IMAGE SET. IN PARENTHESES IT IS SHOWN THE DIMENSION THAT

RESULTS IN THE BEST PERFORMANCE FOR EACH METHOD

TABLE IV

FACE RECOGNITION ACCURACY RATES (%) IN THE EXTENDED YALE B DATABASE. IN PARENTHESES IT IS SHOWN THE DIMENSION THAT

RESULTS IN THE BEST PERFORMANCE FOR EACH METHOD

TABLE V

FACE RECOGNITION ACCURACY RATES (%) IN THE AR DATABASE. IN PARENTHESES IT IS SHOWN THE DIMENSION THAT

RESULTS IN THE BEST PERFORMANCE FOR EACH METHOD

D. Face Recognition in the Extended Yale B Database

The Extended Yale B database consists of 2, 414 frontal
facial images of 38 individuals, captured under 64 different
laboratory controlled lighting conditions. The database ver-
sion used in this experimental evaluation has been manually
aligned, cropped and then resized to 168 × 192 pixels by the
database creators. For our experimental comparison, we have
considered three different experimental settings, by randomly
selecting 10%, 30% and 50% of the available images of each
subject for training, while the rest of the images were used for
testing. In this experiment we did not exploit the augmented
Gabor features, since the recognition accuracy rates attained
using the facial image intensity values as our classification
features were already sufficiently high. Table IV presents
the highest face recognition rate achieved by each method.
As can be observed, the proposed MMPP method achieves the
best performance across all considered experiments. Moreover,
LDA, LPP and OLPP, since they are all based in the Fisher
discriminant ratio, were able to handle the lighting variations
in the Extended Yale B dataset [7].

E. Face Recognition in the AR Database

The AR database is much more challenging than the
Extended Yale B dataset and exhibits significant variations

among its facial image samples. It contains color images
corresponding to 126 different subjects, depicting their frontal
facial view under different facial expressions, illumination
conditions and occlusions (sunglasses and scarf). For this
experiment we used the pre-aligned and cropped version of the
AR database containing in total 2, 600 facial images of size
120 × 165 pixels, corresponding to 100 different subjects cap-
tured during two sessions, separated by two weeks time. Thus,
13 images are available for each subject per each session.

In order to investigate MMPP algorithms robustness,
we have conducted three different experiments with increasing
degree of difficulty. For the first experiment (Exp 1), we
formed our training set by considering only those facial
images with illumination variations captured during the first
session, while for testing we considered the respective images
captured during the second recording session. For the second
experiment (Exp 2), we used facial images with both varying
illumination conditions and facial expressions from the first
session for training and the respective images from the second
session for testing. Finally, for the third experiment (Exp 3),
we used all the first session images for training and the rest
for testing.

Table V summarizes the highest attained recognition rate
and the respective subspace dimensionality, by each method
in each performed experiment. The proposed method achieved
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TABLE VI

OBJECT RECOGNITION ACCURACY RATES (%) IN THE ETH-80 DATABASE. IN PARENTHESES IT IS SHOWN THE DIMENSION THAT

RESULTS IN THE BEST PERFORMANCE FOR EACH METHOD

recognition rates equal to 93.3% 91% and 87% in each
experiment respectively using the facial image intensities,
while for the augmented Gabor features attained recognition
rates equal to 97.2% 96.2% and 93.4% which are the best or
the second best among all examined methods.

F. Object Recognition in the ETH-80 Image Dataset

ETH-80 image dataset [40] depicts 80 objects divided into
8 different classes, where for each object 41 images have
been captured from different view points, spaced equally over
the upper viewing hemisphere. Thus, the database contains
3,280 images in total. For this experiment we used the cropped
and scaled to a fixed size of 128 × 128 pixels binary images
containing the contour of each object. In order to form our
training set we randomly picked 25 binary images of each
object, while the rest were used for testing. Table VI shows
the highest attained object recognition accuracy rate by each
method and the respective subspace dimensionality. Again
MMPP outperformed in this experiment attaining the highest
object recognition rate of 84.6%. It is significant to note that
all discriminant dimensionality reduction algorithms in our
comparison, based on Fisher discriminant ratio (i.e. LDA, LPP,
OLPP and NPE) attained a reduced performance compared
against the baseline approach which is feeding directly the
initial high dimensional feature vectors to the linear SVM
for classification. This can be attributed to the fact that since
each category in the ETH-80 dataset includes images depicting
10 different objects captured from various view angles, data
samples inside classes span large in-class variations. As a
result all the aforementioned methods which have the Gaussian
data distribution optimality assumption [17], [45] fail to iden-
tify appropriate discriminant projection directions. In contrast
to the proposed MMPP method which depends only on the
support vectors and the overall data samples distribution inside
classes does not affect its performance.

VI. CONCLUSION

We proposed a discrimination enhancing subspace learning
method called Maximum Margin Projection Pursuit algorithm
that aims to identify a low dimensional projection subspace
where samples form classes that are separated with maxi-
mum margin. The proposed method is an iterative alternate
optimization algorithm that computes the maximum margin
projections exploiting the separating hyperplanes obtained
from training an SVM classifier in the identified low dimen-
sional space. We also demonstrated the non-linear extension of
our algorithm that identifies a projection matrix that separates
different classes in the feature space with maximum margin.
Finally we showed that it outperforms current state-of-the-
art linear data embedding methods on challenging computer

vision recognition tasks such as face, expression and object
recognition on several popular datasets.

REFERENCES

[1] I. T. Jolliffe, Principal Component Analysis. New York, NY, USA:
Springer-Verlag, 1986.

[2] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5500, pp. 2319–2323, 2000.

[3] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[4] X. He and P. Niyogi, “Locality preserving projections,” in Advances in
Neural Information Processing Systems, vol. 16. Cambridge, MA, USA:
MIT Press, 2003.

[5] D. Cai, X. He, J. Han, and H.-J. Zhang, “Orthogonal laplacianfaces
for face recognition,” IEEE Trans. Image Process., vol. 15, no. 11,
pp. 3608–3614, Nov. 2006.

[6] X. He, D. Cai, S. Yan, and H.-J. Zhang, “Neighborhood preserving
embedding,” in Proc. Int. Conf. Comput. Vis. (ICCV), Oct. 2005,
pp. 1208–1213.

[7] P. N. Belhumeur, J. P. Hespanha, and D. Kriegman, “Eigenfaces vs.
fisherfaces: Recognition using class specific linear projection,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711–720, Jul. 1997.

[8] X. He, D. Cai, and J. Han, “Learning a maximum margin subspace
for image retrieval,” IEEE Trans. Knowl. Data Eng., vol. 20, no. 2,
pp. 189–201, Feb. 2008.

[9] T. J. F. Wang, B. Zhao, and C. Zhang, “Unsupervised large margin
discriminative projection,” IEEE Trans. Neural Netw., vol. 22, no. 9,
pp. 1446–1456, Sep. 2011.

[10] A. Zien and J. Q. Candela, “Large margin non-linear embedding,” in
Proc. 22nd Int. Conf. Mach. Learn. (ICML), Aug. 2005, pp. 1060–1067.

[11] V. Vapnik, The Nature of Statistical Learning Theory. New York, NY,
USA: Springer-Verlag, 1995.

[12] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[13] A. Majumdar and R. K. Ward, “Robust classifiers for data reduced
via random projections,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 40, no. 5, pp. 1359–1371, Oct. 2010.

[14] Q. Shi, C. Shen, R. Hill, and A. van den Hengel, “Is margin preserved
after random projection?” in Proc. 29th Int. Conf. Mach. Learn. (ICML),
2012, pp. 1–8.

[15] S. Paul, C. Boutsidis, M. Magdon-Ismail, and P. Drineas, “Random
projections for support vector machines,” in Proc. Int. Conf. Artif.
Intell. (AISTATS), 2013, pp. 498–509.

[16] J. K. Pillai, V. M. Patel, R. Chellappa, and N. K. Ratha, “Secure
and robust iris recognition using random projections and sparse rep-
resentations,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 9,
pp. 1877–1893, Sep. 2011.

[17] M. Zhu and A. M. Martinez, “Subclass discriminant analysis,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 28, no. 8, pp. 1274–1286,
Aug. 2006.

[18] X.-W. Chen and T. Huang, “Facial expression recognition: A clustering-
based approach,” Pattern Recognit. Lett., vol. 24, nos. 9–10,
pp. 1295–1302, 2003.

[19] R. Fletcher, Practical Methods of Optimization, 2nd ed. New York, NY,
USA: Wiley, 1987.

[20] K. R. Varshney and A. S. Willsky, “Learning dimensionality-reduced
classifiers for information fusion,” in Proc. 12th Int. Conf. Inf. Fusion,
Jul. 2009, pp. 1881–1888.

[21] D.-S. Pham and S. Venkatesh, “Robust learning of discriminative pro-
jection for multicategory classification on the Stiefel manifold,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2008, pp. 1–7.

[22] K. Torkkola, “Feature extraction by non parametric mutual information
maximization,” J. Mach. Learn. Res., vol. 3, pp. 1415–1438, Mar. 2003.



NIKITIDIS et al.: MAXIMUM MARGIN PROJECTION SUBSPACE LEARNING 4425

[23] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA, USA:
Athena Scientific, 1999.

[24] C.-J. Lin, “Projected gradient methods for nonnegative matrix factoriza-
tion,” Neural Comput., vol. 19, no. 10, pp. 2756–2779, 2007.

[25] C. Lin and J. J. Moré, “Newton’s method for large bound-constrained
optimization problems,” SIAM J. Optim., vol. 9, no. 4, pp. 1100–1127,
1999.

[26] J. C. Platt, N. Cristianini, and J. Shawe-Taylor, “Large margin DAGs for
multiclass classification,” in Advances in Neural Information Process-
ing Systems, vol. 12. Cambridge, MA, USA: MIT Press, 2000,
pp. 547–553.

[27] J. Weston and C. Watkins, “Support vector machines for multi-class
pattern recognition,” in Proc. Eur. Symp. Artif. Neural Netw., Apr. 1999,
pp. 1–6.

[28] V. N. Vapnik, Statistical Learning Theory. New York, NY, USA: Wiley,
1998.

[29] K. Crammer and Y. Singer, “On the learnability and design of out-
put codes for multiclass problems,” Mach. Learn., vol. 47, nos. 2–3,
pp. 201–233, May 2002.

[30] K. Crammer and Y. Singer, “On the algorithmic implementation of
multiclass kernel-based vector machines,” J. Mach. Learn. Res., vol. 2,
pp. 265–292, Mar. 2001.

[31] S. Nikitidis, N. Nikolaidis, and I. Pitas, “Multiplicative update rules
for incremental training of multiclass support vector machines,” Pattern
Recognit., vol. 45, no. 5, pp. 1838–1852, May 2012.

[32] B. Schölkopf et al., “Input space versus feature space in kernel-based
methods,” IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 1000–1017,
Sep. 1999.

[33] K. R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf,
“An introduction to kernel-based learning algorithms,” IEEE Trans.
Neural Netw., vol. 12, no. 2, pp. 181–201, Mar. 2001.

[34] B. Schölkopf and A. J. Smola, Learning With Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT Press, 2002.

[35] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.

[36] T. Kanade, J. F. Cohn, and Y. Tian, “Comprehensive database for facial
expression analysis,” in Proc. IEEE Int. Conf. Autom. Face Gesture
Recognit., Mar. 2000, pp. 46–53.

[37] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in uncon-
strained environments,” Univ. Massachusetts, Amherst, MA, USA,
Tech. Rep. 7-49, 2007.

[38] A. S. Georghiades, P. N. Belhumeur, and D. Kriegman, “From few to
many: Illumination cone models for face recognition under variable
lighting and pose,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23,
no. 6, pp. 643–660, Jun. 2001.

[39] A. M. Martinez and R. Benavente, “The AR face database,” CVC,
Tech. Rep. 24, 1998.

[40] B. Leibe and B. Schiele, “Analyzing appearance and contour based
methods for object categorization,” in Proc. IEEE Int. Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2003, pp. 409–415.

[41] C. Liu and H. Wechsler, “Gabor feature based classification using the
enhanced fisher linear discriminant model for face recognition,” IEEE
Trans. Image Process., vol. 11, no. 4, pp. 467–476, Apr. 2002.

[42] A. M. Martinez and M. Zhu, “Where are linear feature extraction
methods applicable?” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
no. 12, pp. 1934–1944, Dec. 2005.

[43] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” J. Mach. Learn.
Res., vol. 9, pp. 1871–1874, Jun. 2008.

[44] MATLAB, Version R2012b. MathWorks Inc., Natick, MA, USA, 2012.
[45] F. De la Torre and T. Kanade, “Multimodal oriented discriminant

analysis,” in Proc. Int. Conf. Mach. Learn. (ICML), Aug. 2005,
pp. 177–184.

[46] T. Joachims, “Training linear SVMS in linear time,” in Proc. 12th ACM
Int. Conf. Knowl. Discovery Data Mining, Aug. 2006, pp. 217–226.

[47] T. Joachims, T. Finley, and C.-N. J. Yu, “Cutting-plane training of
structural SVMS,” Mach. Learn., vol. 77, no. 1, pp. 27–59, 2009.

[48] J. A. K. Suykens and J. Vandewalle, “Least squares support vector
machine classifiers,” Neural Process. Lett., vol. 9, no. 3, pp. 293–300,
1999.

[49] E. Meyers and L. Wolf, “Using biologically inspired features for face
processing,” Int. J. Comput. Vis., vol. 76, no. 1, pp. 93–104, 2008.

[50] L. Wolf, T. Hassner, and Y. Taigman, “Effective unconstrained face
recognition by combining multiple descriptors and learned background
statistics,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 10,
pp. 1978–1990, Oct. 2011.

Symeon Nikitidis received the B.Sc. and Ph.D.
degrees in informatics from the Aristotle University
of Thessaloniki, Thessaloniki, Greece, in 2004 and
2013, respectively, and the M.Sc. degree in advanced
computing from the University of Glasgow,
Glasgow, U.K., in 2005. From 2006 to 2012, he
was a Research and Teaching Assistant with the
Department of Informatics, Aristotle University
of Thessaloniki, and since 2012, he has been
a Research Associate with the Department of
Computing, Imperial College London, London,

U.K. His current research interests include statistical machine learning,
digital signal and image processing, pattern recognition, and computer vision.

Anastasios Tefas (M’04) received the B.Sc. and
Ph.D. degrees in informatics from the Aristotle
University of Thessaloniki, Thessaloniki, Greece, in
1997 and 2002, respectively. Since 2013, he has
been an Assistant Professor with the Department
of Informatics, Aristotle University of Thessaloniki,
where he was a Lecturer from 2008 to 2012. From
2006 to 2008, he was an Assistant Professor with
the Department of Information Management, Tech-
nological Institute of Kavala, Kavala, Greece. From
2003 to 2004, he was a temporary Lecturer with the

Department of Informatics, University of Thessaloniki. From 1997 to 2002, he
was a Researcher and Teaching Assistant with the Department of Informatics,
University of Thessaloniki. He was involved in 12 research projects financed
by the national and European funds. He has co-authored 40 journal papers, 120
papers in international conferences, and contributed seven chapters to edited
books in his area of expertise. Over 2 150 citations have been recorded to his
publications and his H-index is 23 according to Google Scholar. His current
research interests include computational intelligence, pattern recognition,
statistical machine learning, digital signal and image processing, and computer
vision.

Ioannis Pitas (SM’94–F’07) received the Diploma
and Ph.D. degrees in electrical engineering from
the Aristotle University of Thessaloniki, Thessa-
loniki, Greece, where he has been a Professor
with the Department of Informatics since 1994. He
served as a Visiting Professor at several universities.
His current interests are in the areas of image/video
processing, intelligent digital media, machine learn-
ing, human centered interfaces, affective computing,
computer vision, 3D imaging, and biomedical imag-
ing. He has authored over 750 papers; contributed in

39 books in his areas of interest; and edited, authored, or co-authored another
nine books. He has also been an invited speaker and/or a Program Committee
Member of many scientific conferences and workshops. In the past, he served
as an Associate Editor or a Co-Editor of eight international journals, and
the General or Technical Chair of four international conferences (including
the 2001 International Conference on Image Processing). He was involved
in 68 research and development projects, primarily funded by the European
Union, and is/was a Principal Investigator/Researcher of 40 such projects. He
has over 18 400 citations (Google scholar), over 6 250 (Scopus) to his work,
and has an H-index of over 64 (Google scholar) and over 38 (Scopus).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


