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Abstract

In this work we pursue a data-driven approach to the
problem of estimating surface normals from a single inten-
sity image, focusing in particular on human faces. We in-
troduce new methods to exploit the currently available fa-
cial databases for dataset construction and tailor a deep
convolutional neural network to the task of estimating fa-
cial surface normals ‘in-the-wild’. We train a fully convo-
lutional network that can accurately recover facial normals
from images including a challenging variety of expressions
and facial poses. We compare against state-of-the-art face
Shape-from-Shading and 3D reconstruction techniques and
show that the proposed network can recover substantially
more accurate and realistic normals. Furthermore, in con-
trast to other existing face-specific surface recovery meth-
ods, we do not require the solving of an explicit alignment
step due to the fully convolutional nature of our network.

1. Introduction
Facial surface reconstruction from a single image is a

problem that has attracted considerable attention over the
past 25 years. This is in part due to both the multitude of
applications related to face recognition and facial expres-
sion analysis, as well as its tractability due to the desir-
able properties of the physical structure of the human face.
In contrast to the difficulty of the general case, the recov-
ery of 3D facial shape has been highly successful. Human
faces have a number of qualities that are desirable for shape
recovery: they are extremely homogeneous in configura-
tion (all healthy human faces have two eyes, a nose and
mouth in the same approximate location), convex, exhibit
approximately Lambertian reflectance [55, 17, 61, 44], are
largely captured from a single direction (frontal) and are de-
formable and mostly not self occluding. Furthermore, there
exists a large amount of publicly available imagery of faces

and human faces are of significant interest to a number of
fields including entertainment, medicine, and psychology.
The two main lines of research consist of (a) Shape from
Shading (SfS) methods which can also potentially employ a
statistical face prior [71, 3, 65, 12, 56, 59, 57], or (b) build-
ing and fitting a 3D Morphable Model (3DMM) [8, 7, 1]. A
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Figure 1: Depiction of our pipeline for 3D face shape es-
timation. Using a number of images of facial normals we
train a fully convolutional network for normal estimation.
Using the estimated normals we can retrieve the 3D face
shape by classical normal integration techniques.

3DMM consists of a linear statistical model of the facial tex-
ture and surface which is learnt from a set of captured and
well-aligned 3D facial scans. For many years, the only pub-
licly available 3DMM was the Basel model [41], which was
constructed from 200 Caucasian people displaying a neutral
expression. Now, large-scale 3DMMs of neutral faces are
available in LSFM [8] and expressive 3DMMs can be con-
structed by combining the statistical model of neutral faces
with blendshapes [27, 9]. Nevertheless, fitting a 3DMM
to single images requires solving a high-dimensional non-
linear optimisation problem which is not only computation-
ally demanding but also requires a near-optimal initialisa-
tion. Due to the difficulty of solving the original optimisa-
tion problem for 3DMMs, recent methods do not attempt
to optimise the texture consistency term, but instead only
fit the facial surface part of the 3DMM to a set of 2D fa-
cial landmarks [1, 27]. SfS [24], is the process of recov-
ering surface by assuming that shading (i.e., the intensity
of a pixel in the image) is generated as a function of the
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surface geometry and its interaction with light which is re-
flected/absorbed by the surface and captured by an imaging
device. This function is generally modelled by the image
irradiance equation:

I(x, y) ∝ R(sx(x, y), sy(x, y)), (1)

which states that the measured brightness of the image
I(x, y) is proportional to the radiance R at the correspond-
ing point on the surface sx(x, y), sy(x, y). The most com-
monly employed radiance function is the Lambertian func-
tion, which describes the measured brightness as being pro-
portional to the cosine of the angle between the direction
of the incident light and the surface normal. Explicitly,
the Lambertian function describes the observed intensity
at a single pixel as I = ρdn

>s, where ρd is the albedo,
n is the unit normal of the surface for the given pixel
and s is a single unit point light placed at infinity. Al-
though this is a relatively simple explanation for the poten-
tially complex interaction between a surface and the light
sources within an environment, it has been shown to de-
scribe up to 90% [68] of the low-frequency component of
the lighting for images of a human face [5, 4, 68]. How-
ever, it is well known that shading alone is insufficient to
disambiguate shape (e.g., the well known bas-relief ambi-
guity [6]), hence generic SfS methods such as [3] are of-
ten suboptimal for more structured objects such as faces.
Thus, statistical priors of facial surface normals have been
utilised to constrain generic SfS methods in order to im-
prove results. For example, generic methods such as that of
Worthington et al. [65] have been extended by performing
a linear projection of the recovered surface normals onto a
constructed basis of facial normals [56, 57, 59]. Similarly,
the work of Barron et al. [3] was extended to incorporate
face specific priors by [36]. However, both of these meth-
ods required pre-built models in order to constrain their so-
lutions. The current state-of-the-art SfS methods that do not
require models [58, 29] combine ideas from uncalibrated
photometric stereo [4] and low-rank tensor decompositions
to robustly recover a combined model of shape and identity.
Other methods have also explored the adaptation of fitted
3D templates with surface normals for more plausible sur-
face recovery [46, 47, 31, 30]. However, the majority of
these methods require an explicit alignment step in order to
bring the facial model into correspondence with the facial
image. Despite impressive advances in the area of facial
alignment, this remains to be a challenging problem. Fur-
thermore, dense alignment, as is required for the recovery
of dense facial shape, is often achieved through highly ex-
pensive operations such as optical flow [29]. Both 3DMMs
and SfS are generative methods. In this paper, we take a dif-
ferent direction for estimation of the facial normals in un-
constrained images and propose the first, to the best of our
knowledge, discriminative deep learning methodology for
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Figure 2: Facial surface normal estimation results from
state-of-the-art techniques on the ‘in-the-wild’ image of
Fig. 1. Left to right: Proposed, IMM: state-of-the-art SfS
technique [58], and generic state-of-the-art network [2].

the task of facial normal estimation. In particular, motivated
by the success of deep learning to various tasks including
object detection, dense semantic segmentation, and normal
estimation of scenes [23, 2, 33, 62] etc., we propose to ex-
ploit the available large scale facial databases captured both
in controlled, as well as in unconstrained conditions [8, 48]
to train a fully convolutional deep network that maps image
pixels to normals.

More precisely, to acquire accurate ground truth of fa-
cial normals we synthesise images of faces created with
the use of recently released Large-Scale 3D Facial Mod-
els (LSFM) [8] which contains facial shapes of individuals
with diverse ethnicities and characteristics. To retrieve the
3D facial shape of the subject, we integrate the recovered
normals using standard methods [14].

We provide experiments with multiple deep architectures
using various loss functions appropriate for the task. We
show that the proposed networks achieve state-of-the-art
performance in estimation of facial normals in controlled
conditions, as well as impressive reconstruction for very
challenging ‘in-the-wild’ facial images.

2. Prior work on Discriminative Surface Nor-
mal Estimation

Discriminative estimation of normals has started to re-
cently received increased attention [2, 13, 62, 33, 45, 15].
One of the first methods was proposed in [70]. The training
images were segmented using multiple unsupervised seg-
mentation methods. Then, several dense features were ex-
tracted (e.g., texton [39], SIFT [38], local quantised ternary
patterns [25] and self-similarity features [50]) and discrim-
inative feature representations combining contextual and
segment-based features were built. The ground truth nor-
mals were approximated by applying the local feature cod-



ing by a weighted sum of representative normals and the
discriminative regressor (based on boosting) for these co-
efficients is trained. In the test phase, the likelihood of
each representative normal was predicted by the classifier
and the output normal was recovered as a weighted sum
of representative normals. Richter and Roth [45] relax the
requirement for external training data and instead use syn-
thetic training data. Given the object silhouette, it is used to
guess an initial normal map, which is used to approximate
the object reflectance map in order to relight the synthetic
training data.

One of the first methods that exploited the power of Deep
Convolutional Neural Networks (DCNNs) for estimating
the normals were proposed in [62]. The method in [62] used
DCNNs to combine normal estimates from local and global
scales, incorporating at the same time cues from room lay-
out, edge labels, and vanishing points. The method turned
the normal regression problem as a classification one by ap-
plying the surface normal triangular coding technique from
Ladicky et al. [70]. In particular, a codebook using k-means
and a Delaunay triangulation cover is constructed over the
words. Given this codebook and triangulation, a normal can
be re-written as a weighted combination of the codewords
in whose triangle it lies. At training-time, a softmax clas-
sifier is trained on the codewords. Recently, [15] used reli-
able surface normals reconstructed from multiview stereo as
training data for a DCNN, which then predicts continuous
normals from image intensity patches. This allows for ob-
ject specific training and was shown to improve viewpoint
specific reconstruction.

The first method that directly regresses to the sur-
face normals was proposed in [13], which simultaneously
trained a course-to-fine multi-scale DCNN for three tasks:
depth prediction, surface normal estimation, and semantic
labelling. The convolutional layers of the first scale (coarse
level) were initialised by training on the object classifica-
tion task over ImageNet [11]. The remaining network pa-
rameters for the mid- and fine- levels were trained from
scratch on the surface normal prediction task using NYU
depth [52, 51]. The element-wise loss function used for sur-
face estimation was the dot product between ground-truth
and the estimated surface normals.

Another regression based DCNN for normal estimation
was proposed in [2]. Similar to [13], the method leverages
the rich feature representation learnt by a DCNN trained
on large-scale data tasks, such as object classification over
ImageNet. The architecture combined a fully-convolutional
architecture adapted from VGG-16 [54] with structures in-
spired by the hypercolumn representation [22]. The net-
work was optimised using the `2 norm between ground-
truth and the estimated surface normals.

Most recently, another regression DCNN trained for sur-
face estimation was proposed in [33]. This DCNN is a part

of the so-called UberNet architecture which was proposed
for jointly solving multiple image labelling tasks: such as
detection of boundaries, saliency, semantic segmentation,
human-parts, surface normals etc. The building block of
Ubernet is VGG-16. For surface normal estimation, the `1
norm between ground-truth and the estimated surface nor-
mals was used.

All the above networks for surface normal estimation
were trained on data samples displaying various indoor
scenes [51, 52], hence, could are likely sub-optimal for es-
timating the normals of human faces (please see Fig. 2). In
this paper, we explore various DCNN architectures trained
on facial databases for the task of facial surface normal es-
timation.

3. Databases of facial normals
Over the past two decades, the computer vision com-

munity has made considerable efforts to collect facial im-
ages for varying applications. Notable examples in the early
years include the FERET database [43] for face recognition
and Cohn-Kadade database [28] for facial expression recog-
nition. The interested reader may refer to [19] for a survey
on face databases.

In this paper, we are interested in databases that can be
used for training a DCNN for surface normal estimation.
Ideally, we would use datasets that contain samples whose
texture is captured in unconstrained conditions or whose
texture is as close as possible to ‘in-the-wild’ textures. Un-
fortunately, even with modern 3D capturing devices it is
very difficult to acquire the 3D or 2.5D surface information
from ‘in-the-wild’ images. To mitigate this, we propose a
learning strategy where we mix synthetic and real data for
training the proposed network.

The databases appropriate for training our network are
those that provide 3D surface scans, as well as databases
captured under varying illuminations where the normals can
be recovered using Photometric Stereo (PS) [64]. Currently,
there are many databases that provide 3D facial scans, in-
cluding FRGC [42], BU-3D [67], BU-4D [66] and BP4D-
Spontaneous [72]. Nevertheless, collectively they do not
contain more than 620 unique identities. Fortunately, a re-
cent effort was made to collect a large database of faces and
to build a large scale 3D Morphable Model (3DMM) [8]. In
this paper, we use this database to create a large amount of
synthetic data.

The databases that contain samples captured under dif-
ferent illuminations include YALE-B [16], PIE [53] and
MULTI-PIE [20], as well as the recently collected Photo-
face database [69]. The Photoface database [69] was col-
lected using a custom-made four-source PS device designed
to enable data capture with minimal interaction with peo-
ple. The device was placed at the entrance to a busy work-
place and captured many sessions from more than 450 peo-



ple displaying various expressions. Each session comprises
four different images, under four different illuminants, from
which the surface normal can be calculated using PS [64].

We also used the 3D Relightable Facial Expression
database (ICT-3DRFE) [60] which contains 23 subjects and
15 expressions for a total of 345 images. The ICT-3DRFE
dataset was acquired using a face scanning system that em-
ploys a spherical light stage with 156 white LED lights.
This database can be used to synthesise high quality facial
samples under different illuminations due to the separation
of both specular and diffuse normals for each individual.

Finally, in order to incorporate the statistics of ‘in-the-
wild’ facial textures, we used the facial landmarks of the
300W data [49] to fit a 3DMM, following [27, 73]. We
visually inspected the fittings and we kept those images for
which the fitting was deemed acceptable.

In the remainder of this section we provide more details
regarding how the data have been prepared with some visu-
alisations of these data can be seen in Fig. 3.

3.1. Synthetic data generation from ICT-3DRFE

We generated synthetic data using the ICT-3DRFE
database. The ICT-3DRFE dataset was captured using a
high resolution face scanning system that employs a spher-
ical light stage with 156 white LED lights. The lights are
individually controllable in intensity and are used to light
the face with a series of controlled spherical lighting condi-
tions which reveal detailed shape and reflectance informa-
tion. Linear polariser filters on the LED lights and an active
polariser on the cameras allow specular and diffuse reflec-
tion to be recorded independently, yielding the diffuse and
specular reflectance maps needed for photorealistic render-
ing under new lighting. We relit each sample under different
random illuminations using the diffuse normals, as shown
in Fig. 4.

3.2. Synthetic data generation using the LSFM
3DMM

As discussed above, the largest obstacle in solving the
normal estimation problem for in-the-wild images is the
lack of ground truth accurate normals in unconstrained sce-
narios. Although there are many databases suitable for
normal recovery using Photometric Stereo (PS) [64], these
lighting conditions are highly unrealistic. Also, the nature
of PS capture set-ups is highly constrained and thus the
variety in both identity and expression are low for these
databases. For this reason, we constructed a large amount of
synthetic data using rendered images. Specifically, we per-
formed the following two steps (1) use a generative model
of shape and texture to create a 3D instance of a face; (2)
given this shape and a texture instance render it in a pseudo-
photorealistic way on top of a randomly chosen scene.

The solution to (1) can be obtained by the use of three-

dimensional statistical models of human facial shape and
texture, known as 3D morphable models (3DMMs). A
3DMM is constructed by performing some form of dimen-
sionality reduction, typically Principal Component Analysis
(PCA), on a training set of 3D scans of faces that are in cor-
respondence. Given this model one can generate an infinite
amount of realistic normals by synthesising a new instance
x of the model. Specifically, choosing parameters from a
normal distribution cI ∼ N (0, I) and using the mean shape
µ ∈ R3N and weights of the model W ∈ R3N×k we can
synthesise a new instance x ∈ R3N×p,

x = µ+W Ic (2)

Booth et al. [8], provide a powerful 3DMM constructed
with 9, 663 distinct subjects from a diverse set of demo-
graphics. Although this dataset is very diverse in terms of
identity variation, it does not contain any diversity with re-
spect to facial expression as all the subjects were captured in
a neutral expression. To circumvent this, we use the expres-
sion bases created from the FaceWarehouse Database [9] to
create a dual basis model of expression and identity as was
also done in [73],

x = µ+W IcI +WEcE .

This process is further depicted in Fig. 5 where we detail the
process that we used to generated the synthetic images of
this dataset. As now we know the true 3D facial structure we
always obtain high quality ground truth normals for every
synthesised image.

From the newly constructed mesh, we can retrieve the
surface normals n at a vertex location v ∈ R3 by the vector
cross product of two edges of that the vertex’s triangle,

n =
(vu − v)× (vv − v)

‖(vu − v)× (vv − v)‖2

where vu and vv are vertices adjacent to v in the mesh
structure along the positive horizontal and vertical direc-
tions.

A caveat with these generated samples is that a powerful
regressor, as is the case with a large convolutional network,
is that it can ‘cheat’ by taking into advantage various pe-
culiarities of the synthesised samples such as the disconti-
nuities from the face to the background or unnatural light-
ing to learn to recognise more easily the pose and shape
of the face. To account for this, we align these generated
images to existing large-scale 2D datasets of ‘in-the-wild’
images [48] in order to provide more realistic backgorunds.
Each of these facial image contains a set of sparse annota-
tions s2d ∈ R68×2. Thus, we manually annotate the 3D
mesh in the same manner in order to provide a set of 68 cor-
responding points s3d ∈ R68×3 with the 2D images. Once
we establish this correspondence, we can align the 3D shape



Figure 3: From left to right: Photoface, ICT-3DRFE, 3D Morphable Models fitting, Synthesised image using a 3D Morphable
model. Below are the associated ground truth normals for each dataset.

Figure 4: Relitting of the of the ICT-3DRFE dataset using
the diffuse normals. On the left is the albedo texture, and
on the right three examples of the relit texture.

to the image plane by employing a Perspective-n-Point (P-
n-P) problem:

s2d = KRs3d + t (3)

where

K =

fx 0 cx
0 fy cy
0 0 1


is the matrix of intrinsic camera parameters, containing
the focal length f ∈ R2 and the principle point location
c ∈ R2. This way we have generated 100 000 images of
synthetic faces.

3.3. Synthetic data generation fitting a 3DMM

As has been previously mentioned, the constructed data
using the 3DMM may not contain the desired facial tex-
ture of the ‘in-the-wild’ images. To this end, we also fit the

Figure 5: 1. The generated shape and texture instance using
the LSFM morphable model; 2. Addition of expression us-
ing the FaceWarehouse expression basis; 3. An image from
the series Breaking Bad; 4. The rendered aligned model.

3DMM to the ‘in-the-wild’ images by employing the avail-
able sparse landmarks, similar to [1, 27, 73]. Specifically,
to fit the 3DMM to the available images we employ the fol-
lowing optimisation problem

arg min
c,R,t

‖P(R(s̄+Uc) + t))− s2d‖2F , (4)

where the goal is to recover the rotation R, translation t
and parameters c of the morphable model, under a weak-
pespective projection P. Beginning with just the mean 3D
shape s̄, we optimise in an alternating manner the pose pa-
rametersR, t and then the shape model parameters c.

However, as is shown in Fig. 3, the fittings do not accu-
rately capture the identity of the person in the image. How-
ever, these fittings can still be employed to regularise the
whole optimisation problem. They ensure that the normals
correctly capture the pose and expression of the subject.



3.4. Data from the Photoface Database

The last database we used was the Photoface
database [69]. In the Photoface database, each ses-
sion contains four images captured under a different
illumination. Examples of the Photoface are shown
in Fig. 3. In order to estimate the normals from the images,
we used the standard 4 source PS [64]. The standard PS
assumes three or more greyscale images of a Lambertian
object and constructs the following matrix equation:

I = ρ�NL (5)

where I = [I1, I2, . . . , IN ] is a P×N matrix containing ir-
radiance values from all images, and P and N are the num-
ber of pixels and images respectively. Each row of I cor-
responds to a pixel position in an image, and each column
corresponds to a different image. The albedo ρ ∈ RP com-
bined with the normals matrix N ∈ RP×3 represents the
surface properties. The lighting matrix L = [l1, . . . , lN ] ∈
R3×F represents the lighting directions and intensities, i.e.,
the j-th column of the matrix L corresponds to the lighting
direction in the j-th image scaled by its intensity. Assum-
ing that the light source vectors are known, we can solve a
least squares version of the system in Eq. 5 for the albedo
and the surface normal components at each pixel. Having
available the albedo and normal information of a face, we
can generate synthesised examples of the same subject by
varying the light direction. We synthesised ‘3148‘ images
by sampling random illuminations.

4. Model

We now introduce the architecture of our network. As in
[35, 37], we use a ‘fully convolutional’ network to extract an
increasingly sophisticated hierarchy of features. Since the
normal estimation task can benefit from both low- and high-
level features, we use skip layers [21] that take intermediate
layer activations as inputs and perform simple linear oper-
ations on those. In particular, we pool features from layers
conv1,block2/unit4,block3/unit6,block4/unit3 of the
Resnet-50 [23] network. At each layer we learn linear map-
pings from the high-dimensional intermediate neuron acti-
vation space to the three-dimensional output space required
for normal estimation.

We process these intermediate layers with batch normal-
isation [26] so as to bring the intermediate activations into
a common scaling. As in [33] we keep the task-specific
memory and computation budget low by applying linear op-
erations within these skip layers, and fuse skip-layer results
through additive fusion with learnt weights.

We appropriately place interpolation layers to ensure that
results from different skip layers have commensurate di-
mensions, while, as in [40, 10], we use atrous convolution

to increase the spatial resolution of high-level neurons. Fi-
nally, to account for the varying face sizes in images we
employ a 3-scale pyramid of our proposed network where
at scales 2 & 3 we down-sample the image by half and a
quarter times respectively by using a 2D average pooling
operation, similar to [33]. The outputs of the different reso-
lutions are combined through an additional fusion scheme,
that delivers the final normal estimates.

We consider two possible objective functions for the
problem of surface normal regression. As our evaluation
criterion is to minimise the angular distance between the
network predictions f(I) and the available ground truth
normals n∗ it is preferable to use the same loss function
to train our fully convolutional network. To ensure that the
resulting predictions are valid unit normal vectors we add a
further `2 constraint, after of which we arrive at,

Lcosine = 1−
∑
i∈M

f(I)>i n
∗
i

s.t. ‖f(I)‖22 = ‖n∗‖22 = 1,

where M is a mask containing the image indices corre-
sponding to the visible face region. In addition to the cosine
distance, we consider the smooth `1 loss [18] which was
used in dense estimation tasks such as surface normal re-
trieval, segmentation [33] and object detection [18]. The `1
loss is regarded generally as a robust penaliser which helps
to avoid the effect over oversmoothing the dense reconstruc-
tions [63]. To incorporate the smooth `1 loss we add again
the `2 constrain for the network predictions,

L`1 =
∑
i∈M

smoothL1(f(I)i − n∗i )

s.t. ‖f(I)‖22 = ‖n∗‖22 = 1

5. Experiments
We conducted two sets of experiments. The first set

is quantitative experiments on the Photoface database [69]
where we consider as ground-truth the normals produced
by the calibrated 4-source Photometric Stereo. For the pur-
poses of this experiment we have withheld 100 subjects
from the training set of all algorithms. Due to the lack of
in-the-wild databases of normals, our second experiment is
purely qualitative and includes images obtained from the
Helen [34] and 300W [48] databases.

5.1. Experimental Setup

For learning the weights of the network we employ
stochastic optimisation with Adam [32] with the default hy-
perparameters and one image per mini-batch. We use an
initial learning rate of 0.001 with a polynomial decay rule,
decreasing the learning rate by a factor of 10 every 10 000
iterations. To initialise the weights of the network we use
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Figure 6: Example facial normal estimation and surface reconstruction from the Helen Dataset.

the ImageNet-pretrained Resnet-50 model and initialise the
weights of the new layers with random weights drawn from
a Gaussian distribution.

5.2. Experiments in Photoface

We compare with an array of state-of-the-art techniques
for estimation of normals. Although we are concerned
about the problem of surface normal estimation from a sin-
gle image, we also provide experimental results for two
well established techniques for SfS which require many im-
ages of the same subject under different illuminations as
input [29, 58, 4]. First is Photometric Stereo with Unknown
lighting (PS w/o Light), as it is detailed in [4] where we
used the images from all four available illuminants to es-
timate the normals. Second we applied the SfS method
in [29, 58] (IMM). The method in [29] reconstructs the fa-
cial normals from a collection of images of the same object.
Hence, they have been applied on all the available data of
Photoface to perform normal estimation. Furthermore, we
applied the robust version of the method [29], proposed in
[58], but since the database does not contain occlusion the
results were very similar to [29]. We also compare against
a landmark-driven fitting of the state-of-the art large scale
3DMM that we used for synthetic data generation in Sec-
tion 3.2 (the model can describe both identity and expres-
sion variations). Finally, regarding state-of-the-art generic
networks, we compare against the publicly available pre-
trained networks [33, 2]. For all methods, we computed the
angular error between the ground-truth and the estimated
surface normals.

The results are summarised in Tab. 1. As can be seen
the proposed network has the best performance by achiev-
ing the lowest angular error. It is worth noting that the av-
erage performance of 3DMM fitting is good because it can
capture general facial characteristics but there are far fewer
pixels with errors below 20◦ because it lacks the ability of
capturing fine-grained details on the facial surface. It is also
worth noting that our method does not require an explicit

Table 1: Angular error for all the tested surface normal es-
timation methods. We show the results of the proposed net-
work trained using the `1 loss.

Name Mean ± Std < 20◦ < 25◦ < 30◦

PS w/o Light 42.9± 15.2 1.1% 13.1% 35.8%
IMM [29, 58] 24.2± 5.4 23.5 64.6% 88.3%

3DMM 26.3± 10.2 4.3% 56.05% 89.4%
Marr Rev. [2] 28.3± 10.1 31.8% 36.5% 44.4%
UberNet [33] 29.1± 11.5 30.8% 35.5% 55.2%

Proposed 22.0± 6.3 36.63% 59.8% 79.6%

Loss Mean ± Std < 20◦ < 25◦ < 30◦

Cosine Loss 21.5± 6.9 29.9% 55.9% 81.5%

Smooth `1 Loss 22.0± 6.3 36.63% 59.8% 79.6%

Table 2: Angular error for the different loss functions.

Architecture Mean ± Std < 20◦ < 25◦ < 30◦

Resnet + Cosine 21.5± 6.9 29.9% 55.9% 81.5%

Pixelnet + Cosine 23.5± 6.3 35.17% 58.0% 78.2%

Table 3: Angular error for the different architectures.

alignment step, in comparison to both [29] and the land-
mark driven 3DMM estimation.

Finally, we performed a series of experiments in order to
evaluate the effect (a) of the loss function for the task (i.e.,
`1 vs cosine distance) and (b) of the network architecture
(i.e., Resnet vs the PixelNet, which is based on VGG [2]).
The experiments are summarised in Tables 2 and 3. As can
be seen there is small difference between the performance
of the two losses but the cosine distance is slightly better.
Furthermore, the proposed architecture produces better re-
sults than PixelNet trained on exactly the same data and us-
ing the same loss function.



Figure 7: Representative surface reconstruction results from the challenging 300W dataset of ‘in-the-wild’ facial images.
The network generalises well to a diverse set of individuals and expressions. On the left is the original image from the 300W
dataset. Next is the 3D shape reconstruction and the sampled texture from the image onto the shape.

5.3. Experiments ‘in-the-wild’ databases

Since, there is no ground-truth for ‘in-the-wild’ images,
we can show only qualitative examples. For the experi-
ments we have used the data provided by the 300W fa-
cial landmark localisation challenge[48, 49]. The methods
we compare against are the robust version of the so-called
Internet-Based Morphable Model (IMM) [58, 29] and, as
before, a landmark-based fitting of the large scale 3DMM.
The IMM reconstructs a collection of images, hence we
have used 3,000 ‘in-the-wild’ facial images (the reconstruc-
tion process takes around 20 mins for the whole dataset).
Fig. 6 shows some representative reconstruction cases of
the proposed network versus IMM and the surface nor-
mal estimation network in [2]. For all surface reconstruc-
tions from normals we used the standard Frankot-Chellappa
method [14].

It is evident that the proposed network provides very
high-quality facial normals, even in images captured in very
challenging recording conditions. Visual comparison ver-
sus the 3DMM are provided in the supplementary materi-
als, since although the 3DMM can recover the pose and the
expression, up to a certain extent, it cannot capture the fine-
grained details. Finally, Fig. 7 shows more facial surfaces
reconstructed by the proposed network.

6. Conclusions

We have presented the first, to the best of our knowl-
edge, discriminative methodology tailored to facial surface
estimation ‘in-the-wild’. To this end, we capitalised on both
the available facial database, as well as on the power of deep
convolutional neural networks (DCNNs). We proposed
methodologies for preparing training data for the task. We
show that the proposed DCNN outperforms both the state-
of-the-art facial surface normal estimation techniques, as
well as the state-of-the-art pre-trained networks for normal
estimation.
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