
On One-Shot Similarity Kernels: explicit feature maps and properties

Stefanos Zafeiriou†
†Department of Computing
Imperial College London

s.zafeiriou@imperial.ac.uk

Irene Kotsia∗,†,?
∗Electronics Laboratory, Department of Physics,

University of Patras, Greece
?School of Science and Technology,

Middlesex University, London
i.kotsia@mdx.ac.uk

Abstract

Kernels have been a common tool of machine learn-
ing and computer vision applications for modeling non-
linearities and/or the design of robust1 similarity measures
between objects. Arguably, the class of positive semi-
definite (psd) kernels, widely known as Mercer’s Kernels,
constitutes one of the most well-studied cases. For every
psd kernel there exists an associated feature map to an ar-
bitrary dimensional Hilbert space H, the so-called feature
space. The main reason behind psd kernels’ popularity is
the fact that classification/regression techniques (such as
Support Vector Machines (SVMs)) and component analy-
sis algorithms (such as Kernel Principal Component Analy-
sis (KPCA)) can be devised in H, without an explicit def-
inition of the feature map, only by using the kernel (the
so-called kernel trick). Recently, due to the development
of very efficient solutions for large scale linear SVMs and
for incremental linear component analysis, the research to-
wards finding feature map approximations for classes of
kernels has attracted significant interest. In this paper, we
attempt the derivation of explicit feature maps of a recently
proposed class of kernels, the so-called one-shot similarity
kernels. We show that for this class of kernels either there
exists an explicit representation in feature space or the ker-
nel can be expressed in such a form that allows for exact in-
cremental learning. We theoretically explore the properties
of these kernels and show how these kernels can be used for
the development of robust visual tracking, recognition and
deformable fitting algorithms.

1Robustness may refer to either the presence of outliers and noise or to
the robustness to a class of transformations (e.g., translation).

1. Introduction

In kernel learning2 [26], for each positive semi definite
(psd) kernel k there exists an associated feature map φ to an
arbitrary dimensional (in some cases infinite) feature space
H. In that case, the kernel learning problem, even though
being nonlinear in the original space, becomes linear in the
new space H. The explicit form of φ is not required to per-
form all computations, as the so-called kernel trick (i.e., re-
placing the inner product with the kernel) can be employed.

Recently, the following reverse problem has attracted a
lot of attention: Given a kernel k, one should find an ef-
ficient and effective approximation of φ that successfully
replaces the kernel [27, 18, 2, 15, 16, 2]. The motivation
behind this was twofold. The first concerned recent devel-
opments in learning Support Vector Machines (SVMs), in
which it was showed that it is possible to learn a linear
SVM in linear time, with respect to the number of train-
ing examples [9] (making the applications of SVMs to large
scale databases and structural problems feasible). The sec-
ond concerned the unavailability of both exact (or effective)
and efficient incremental versions of Principal Component
Analysis (PCA) algorithms with kernels [4, 11, 7] (there
exist only for the linear case [14, 23]). Indeed, the most
well known incremental Kernel PCA (KPCA) algorithms
presented in [11, 7, 4] use only approximations. The first
two [11, 7] find an approximate solution using a Hebbian
rule. In [4], the authors kernelized an exact algorithm for in-
cremental PCA [14, 23], but, in order to maintain a constant
update speed, they constructed a reduced set of expansions
of the kernel principal components and of the mean, using
pre-images. However, the method in [4] has two main draw-
backs: first, the reduced set representation provides only an
approximation to the exact solution and second, the extra
optimization problem for finding the reduced expansion in-
evitably increases the complexity of the algorithm.

2As kernel learning we refer to the general framework of classification,
regression and component analysis with kernels.



As mentioned above, a kernel learning problem becomes
linear in the feature spaceH. Hence, when low-dimensional
closed forms or effective, efficient and low-dimensional ap-
proximations exist for φ we can take full advantage of effi-
cient packages for regression and classification [9] but also
of exact and low cost incremental PCA algorithms [14, 23].
Such closed or approximated forms are not, in general, easy
to find. However, it was recently shown that for some par-
ticular classes of kernels such approximations do exist. The
main lines of research towards efficient approximation of
features map include (a) exploiting particular kernel prop-
erties to find the approximation (e.g., in [27, 18] the authors
exploited various properties to propose efficient and effec-
tive approximations of large families of additive kernels);
(b) the application of random sampling on Fourier features
[15, 16, 2] (e.g., in [22] methodologies have been proposed
for encoding stationary kernels by randomly sampling their
Fourier features); (c) the application of the so-called Nys-
trom method, which is a data-dependent methodology that
requires training [29, 28, 21]. Even though the above meth-
ods provide useful and general methodologies that are ap-
plicable to many kernels, their disadvantage is that they pro-
vide approximate solutions.

In this paper, we study a recently proposed kernel, the
so-called one-shot similarity kernel, which was shown to
be particularly useful for the recently introduced similarity
problems (face and action similarity [32, 30, 12]). In par-
ticular, we show that (1) a special form of the kernel has
a closed form feature map and (2) the general kernel can
be written in a form which allows for efficient incremental
solutions. Hence, the proposed form of the one-shot simi-
larity kernel makes it suitable for incremental PCA, which
is particular useful for visual tracking [23]. Summarizing,
the contributions of this paper are:

• We study the recently proposed class of one-shot simi-
larity kernels and show that there exist closed form so-
lutions that can be acquired after simple data normal-
ization. For this case we show that (1) the use of one-
shot similarity kernel with SVMs can be re-interpreted
as a margin maximization and (2) the one-shot simi-
larity kernels can be used with the recently introduced
SVM packages which can train linear SVMs in linear
time (i.e., making them suitable for large datasets).

• We show that the proposed one-shot similarity kernel
can be formulated in a form which allows for incre-
mental Principal Component Analysis.

• We apply the one-shot similarity kernel to object track-
ing where state-of-the-art results are achieved.

2. The One-Shot Similarity Kernel
In this section, we will define the one-shot and multiple-

shot similarity kernels, having as an example the recently
introduced face similarity problem in the wild [30, 12, 31,
32]. Face similarity is conceptually different to the stan-
dard face recognition, in which the algorithm, given a test
facial image, should find the most similar face (or the k-
most similar faces) from a pre-defined dataset (correspond-
ing to the same identity). Indeed, face similarity tries to
determine whether two given facial images belong to the
same face or not. Furthermore, there is a subtle, yet cru-
cial difference between the face similarity and verification
problems [32, 8, 34, 35]. In face verification the identity
being claimed is known, hence person specific models can
be learned and used. This is not the case with face similar-
ity, as such models can not be used or trained (the interested
reader can refer to [8, 32] and in the references within for
more details regarding the face similarity problem).

In order to construct the one-shot similarity kernel, back-
ground samples are required. The term background samples
A = {a1, . . . ,an} corresponds to samples that do not be-
long to the classes being learned and can be in the form of
either feature vectors or vectors of scores [32]. As their la-
beling is not required, their collection is easy. For example,
in face recognition, as background samples we can consider
a set of facial images that do not belong to the list of faces
of the system (very similar to the so-called world model in
the face verification problem).

Let us assume two vectors x and y ∈ <d. Their one-
shot similarity score is computed by considering the set of
background samplesAwith cardinalityNA, which contains
samples not belonging to the same class as neither x nor
y but otherwise not-labeled [32]. The one-shot similarity
score in the Fisher’s Linear Discriminant Analysis (FLDA)
framework can be described as follows.

Let the covariance matrix of the set A be defined as:

S =
1

NA

NA∑
i=1

(ai −mA)(ai −mA)
T (1)

where mA = 1
NA

∑NA
i=1 ai. Then the one-shot similar-

ity kernel measures the similarity between x and y via the
background samples A in a FLDA manner as:

kA(x,y) =
(x−mA)

TS−1(y − x+mA
2 )

||S−1(x−mA)||

+
(y −mA)

TS−1(x− y+mA
2 )

||S−1(y −mA)||
(2)

or the non-normalized kernel:

kA(x,y) = (x−mA)
TS−1(y − x + mA

2
)

+ (y −mA)
TS−1(x− y + mA

2
). (3)



The above kernel in (3), as proven in [30], is a psd kernel
(for further details regarding the one-shot similarity kernel
the interested reader may refer to [30, 12, 31, 32]).

In the following we will show how the above kernel (3):
(1) has a very simple closed form for the case in which the
samples x and background samples A are normalized and
(2) can be written in a very convenient form that allows for
both effective and efficient incremental component analysis.

3. Properties of the Kernel
Let us assume x̃ = S−

1
2 x, m̃A = S−

1
2 mA and ỹ =

S−
1
2 y. Then the kernel in (3) can be written as:

kA(x,y) =

(x̃− m̃A)
T (ỹ − x̃ + m̃A

2
) + (ỹ − m̃A)

T (x̃− ỹ + m̃A
2

)

= x̃T ỹ − m̃T
Aỹ − x̃T x̃

2
− x̃T m̃A

2
+

m̃T
Ax̃

2
+

m̃T
Am̃A
2

+ ỹT x̃− ỹT ỹ

2
− ỹT m̃A

2
− m̃T

Ax̃ +
m̃T
Aỹ

2
+

m̃T
Am̃A
2

= 2(x̃− m̃A
2

)T (ỹ − m̃A
2

)− x̃T x̃

2
− ỹT ỹ

2

= 2(x− mA
2

)TS−1(y − mA
2

)− xTS−1x

2
− yTS−1y

2
.

(4)

The kernel k can thus take the following functional form:

k(x,y) = f(x)Tg(y) (5)

where

f(u) =


√
2S−

1
2 (u− m̃A

2 )

− 1√
2

(
S−

1
2 u
)
�
(
S−

1
2 u
)

1

 (6)

and

g(u) =


√
2S−

1
2 (u− m̃A

2 )
1

− 1√
2

(
S−

1
2 u
)
�
(
S−

1
2 u
)

.

 (7)

and � is the Hadamard product of vectors
(i.e., a� b = [aibi]). A nice property of the kernel is:

k(x,y) = f(x)Tg(y) = f(y)Tg(x) = g(y)T f(x). (8)

In the next section we are going to exploit this property to
formulate an exact and incremental Principal Component
Analysis (iPCA). Finally, it is important to note here that,
even though the mappings f(.) and g(.) are known (and of
course f(.) 6= g(.)), the mapping φ(.) associated to the ker-
nel k is not known and neither can be explicitly defined,
unless xTS−1x and yTS−1y are known. In the following,
we will assume that the training data are previously normal-
ized, such that xTS−1x and yTS−1y are constants.

3.1. A Special Case of the one-shot similarity kernel

Assuming that all data are normalized such that
||x||2S = x̃T x̃ = ỹT ỹ = 1 (i.e., xTS−1x = 1 and
yTS−1y = 1), then the kernel, after removing the constant
terms and the global translation by m̃A

2 , can be written as
the simple dot product:

kA(x̃, ỹ) = x̃T ỹ. (9)

Hence, the closed feature map that can be used has the fol-
lowing closed form:

φ(x) = S−
1
2 x. (10)

We will now study the interpretation of the application of
this kernel within the SVMs framework.

Let a set of labeled samples x1, . . . ,xn, with an accom-
panying set of labels l1, . . . , ln, li ∈ {−1, 1} (normalized
such that ||xi||S = 1) and a set of background samples A
with their corresponding covariance matrix S. SVMs aim
at finding a hyperplane of the form wTx + b by maximiz-
ing the margin of the data subject to data separability con-
straints. Typically, w and b are found by solving the Wolf
dual problem where in the case of the kernel (3) can be writ-
ten as:

max0≤αi≤C αT1− 1

2
αTKsα, s.t.

l∑
i=1

liαi = 0 (11)

where Ks = [liljkA(xi,xj)] and w =
∑n
i=1 liαixi. The

above dual problem is equivalent to the following primal
problem:

min
w

1

2
wTSw + C

n∑
i=1

ξi, s.t. li(wTxi + b) ≥ 1− ξi.

(12)

Thus, when the one-shot similarity kernel is used with
SVMs, it attempts to maximize a squared Mahalanobis type
distance margin, which is inversely proportional to wTSw.
Hence, the one-shot similarity kernel can be interpreted as
a type of margin being maximized within the linear SVM
framework. In case the matrix S is singular or in non-linear
case where the one-shot similarity kernel is used in a fea-
tures space (i.e., a kernel is used in the SVM problem (12)),
solutions can be provided by using the tools in ([36, 13]).

Since the kernel has a closed form it can be directly
used with the recently proposed linear SVMs which can be
trained in linear time with regards to the number of training
samples and solve the following reformulated optimization



problem 3:

min
w,ξ

1

2
wTw + Cξ s.t. ∀c ∈ {0, 1}n (13)

1

n
wT

n∑
i=1

ciliS
− 1

2 (x−mA) ≥
1

n

n∑
i=1

ci − ξ.

It is worth noting here that the functional form of the sim-
ilarity kernel in (3) does not allow the use of fast cutting
plane algorithm for solving (13), as proposed in [10].

4. Exact Incremental Component Analysis us-
ing the one-shot similarity kernel

In this section, we will show how the property in (8) can
be harnessed in order to define a special version of KPCA.
The proposed KPCA, contrary to the general incremental
KPCA approaches [4], does not require the computation of
pre-images. The following analysis is similar to the one
presented in [17] but now refers to strictly psd kernels.

Let Xφ =
[
φ(x1) · · · φ(xN )

]
be the matrix of

N known samples in Hilbert space defined by the kernel
(3) (for simplicity we assume zero mean 4). We define
the matrices Xf =

[
f(x1) · · · f(xN )

]
and Xg =[

g(x1) · · · g(xN )
]
. For the one-shot similarity ker-

nel, even though Xφ cannot be explicitly defined, Xg and
Xf can. The fact that we have explicit mappings for Xg and
Xf makes feasible the computation of incremental PCA
without the use of pre-images.

In KPCA we want to find a set of projections in the fea-
ture space such that:

Uo
φ = max

Uφ

tr[UT
φXφX

T
φUφ] (14)

s.t.UT
φUφ = I. (15)

Unfortunately, Uφ cannot be computed directly as in the
majority of cases the eigen-analysis of XφX

T
φ is computa-

tionally expensive or φ is not known. In [25] it was shown
that we can instead perform eigen-analysis on the Gram ma-
trix K = XT

φXφ. Due to this property we have the follow-
ing eigen-decomposition:

XT
φXφ = XT

f Xg = XT
g Xf = VΛVT . (16)

The projection bases Uφ of KPCA are given by
Uφ = XφVΛ−

1
2 (which cannot be explicitly computed).

We define Uf , XfVΛ−
1
2 and Ug , XgVΛ−

1
2 . Hence,

we have explicit decompositions for Xf and Xg as

3The optimization problem (13) theoretically provides the same solu-
tion as the quadratic program (11) but can be solved efficiently using a
cutting plane algorithm in linear time.

4Centering in the feature space is straightforward by centering the ker-
nel matrix [25].

Xf = UfΣVT and Xg = UgΣVT , where Σ = Λ
1
2 .

Additionally, using the kernel properties (8) the following
properties hold:

UT
φφ(x) = UT

f g(x) = UT
g f(x) (17)

and also Uf and Ug are mutually orthogonal

UT
f Ug = Λ−

1
2 VTXT

f XgVΛ−
1
2

= Λ−
1
2 VTXT

φXφVΛ−
1
2

= UT
φUφ = I.

(18)

We proceed with showing that by using the explicit def-
inition of Uf and Ug we can define an incremental KPCA
without the need of pre-images. Let us assume two ini-
tial subspaces Uf and Ug and a number of incoming data
X̃ =

[
xN+1 · · · xN+M

]
. Incremental KPCA aims

at updating the subspaces Uf and Ug without computing
KPCA from scratch.
X̃φ = [φ(xN+1) · · · φ(xN+M )] is the data matrix of
the new data in the feature space. For these data we de-
fine the explicit maps X̃f = [f(xN+1) · · · f(xN+M )] and
X̃g = [g(xN+1) · · · g(xN+M )]. Finally, we denote the
combined sample matrix by

[
Xφ X̃φ

]
, where Xφ are

the previously available data in H. The combined matrix is
equivalent to [4]:[

UφΣVT UφU
T
φ X̃φ + QφRφ

]
(19)

where Qφ is an orthogonal matrix and QφRφ = Hφ.
Hφ = X̃φ − UφU

T
φ X̃φ is the complementary to the Uφ

subspace,. We obtain Qφ = HφΩ∆−
1
2 and Rφ = ∆

1
2 ΩT

by the eigendecomposition of HT
φHφ = Ω∆ΩT . We de-

fine Hf , X̃f − UfU
T
g X̃f and Hg , X̃g − UgU

T
f X̃g

and compute the eigendecomposition of HT
f Hg to avoid the

computation of the projection of X̃φ onto Uφ as:

HT
f Hg = (X̃T

f − X̃T
f UgU

T
f )(X̃g −UgU

T
f X̃g)

= (X̃φ −UφU
T
φ X̃φ)

T (X̃φ −UφU
T
φ X̃φ)

= HT
φHφ = Ω∆ΩT . (20)

The matrix in (19) can be rewritten as

[
Uφ Qφ

]
Lφ

[
VT
φ 0

0 I

]
(21)

where Lφ =

[
Σφ UT

φ X̃φ

0 Rφ

]
. The SVD of

[
Xφ X̃φ

]
is then given by:[[

Uφ Qφ

]
Ũφ

] [
Σ̃φ

] [
Ṽφ

[
VT
φ 0

0 I

]]
(22)



where Lφ
svd
= ŨφΣ̃φṼ

T
φ . Thus, we only need to com-

pute the SVD of Lφ for the incremental update of our
eigenspace, U′φ =

[
Uφ Lφ

]
Ũφ and Σ′φ = Σ̃φ. As

Uφ and Hφ are not directly given by our KPCA (and ac-
tually they are not essential), we define Qf , HfΩ∆−

1
2

and Qg , HgΩ∆−
1
2 , and set U′f =

[
Uf Qf

]
Ũφ

and U′g =
[

Ug Qg

]
Ũφ. Note that this satisfies (17)

and (18). Algorithm 1 summarizes the proposed incremen-
tal update. Due to our direct approach to KPCA, the storage
requirements for the incremental update is of fixed com-
plexity (e.g. O(4d(p +M)) for our kernel, where p is the
number of eigen-components we update. The complexity
of the update is also fixed for our kernel (e.g. in O(2dM2),
similarly to [23]. Finally, in contrast to the incremental ver-
sion of KPCA proposed in [4], the extra optimization step
required to find the pre-images is not necessary. Therefore,
the proposed method is not only faster but also exact.

One of the main applications of iPCA is object track-
ing [23], in which the object subspace is adaptively learned
and online updated. In this paper we combine the proposed
kernel with the tracking framework proposed in [23], but
instead of PCA we use the KPCA with the proposed kernel.
In brief, in [23], in order to find the parameters of the mo-
tion a particle filter framework is used [20]. At each frame
a number of particles (containing motion parameters) are
drawn. The particle chosen is the one corresponding to an
image which can be best reconstructed within a subspace of
choice (in our case, our kernel subspace). The reconstruc-
tion is measured by:

D (xi) = (φ(xi)−UφU
T
φ )
T (φ(xi)−UφU

T
φ )

= (f(xi)−UfU
T
g g(xi))

T (g(xi)−UgU
T
f f(xi))

(23)
which in our case (using the proposed kernel) can be defined
using only Uf and Ug , whose explicit updates are available
from the proposed KCPA. In the tracking framework the set
of background samples A needed can be images of objects
other than the one we wish to sample. In our case we adap-
tively learn A, updating it in the first 20 frames by keeping
around 100-200 images that correspond to the lowest, in
probability, particles in every frame. In case S is singular
we compute as S−1 = USΛ−1S UT

S where ΛS is the strictly
positive spectrum of S.

5. Experimental Results
For our experiments, we evaluated the proposed kernel in

a number of applications including face recognition, object
tracking and deformable model fitting. For face recogni-
tion we used a similar framework to [32]. We show that the
proposed formulation can obtain similar results but in linear
training time. Furthermore, we applied the one-shot similar-
ity kernel to object tracking by combining the one-shot sim-
ilarity kernel with the proposed incremental subspace learn-

Algorithm 1 INCREMENTAL UPDATE OF KPCA WITH
THE ONE-SHOT SIMILARITY KERNEL
Require: The previous eigenspaces Uf , Ug and Σφ, and the num-

ber of previous samples N , the set of M new samples X̃ =[
xN+1 · · · xN+M

]
∈ <d×M and the two mappings f(.)

and g(.).
Ensure: The updated eigenspaces U′f , U′g and Σ′φ.

1: Calculate the mappings, X̃f and X̃g , of X̃.
2: Find Hf = X̃f −UfUT

g X̃f and Hg = X̃g −UgUT
f X̃g .

3: Compute HT
f Hg = HT

φHφ = Ω∆ΩT and set Rφ = ∆
1
2 ΩT ,

Qf = HfΩ∆−
1
2 and Qg = HgΩ∆−

1
2 .

4: Form Lφ =

[
Σφ UT

g X̃f

0 Rφ

]
and compute

Lφ
svd
= ŨφΣ̃φṼT

φ .

5: Set U′f =
[

Uf Qf

]
Ũφ, U′g =

[
Ug Qg

]
Ũφ.

6: Obtain the p-reduced set of Uf and Ug via the p largest eigenvalue
magnitudes in Σ̃φ.

ing framework. We show that by exploiting the functional
form of the one-shot similarity kernel state-of-the-art track-
ing results can be produced. Finally, we combined the one-
shot similarity kernel- SVMs with the recently introduced
discriminative fitting algorithms, such as the Constrained
Local Models (CLMs) [24] and we report state-of-the-art
fitting results.

5.1. Face Recognition

The usefulness of the one-shot similarity kernel for
face verification has been shown in [32] , using the LFW
database [8], hence we do not repeat these experiments. We
did perform multi-identity face classification in the LFW
image set to show the gain in computational time by using
the proposed formulation of the one-shot similarity kernel.
In more detail, we tried to perform the same face recog-
nition experiments as in [32, 33]. We selected a subset of
the LFW database with subjects having at least four images.
This subset contains 610 subjects with 6733 images. As in
[32, 33], we fused various features and measured the face
recognition performance by varying the number of probes
(from 5, 10, 20 and 50 subjects) and performing 20 random
repetitions per experiment (for more details regarding the
features the interested reader can refer to [32, 33]).

We used the one-vs-all linear SVM proposed in [6] with
the original form of the one-shot similarity kernel in (3).
We also used the proposed form of the kernel (9) with a
fast implementation of one-vs-all linear SVM in [10], for
comparison reasons. This implementation can be used only
for the case of linear kernels (or, as in our case, only when
φ(x) is known). As in [32] for the definition of the negative
set A a set of 1000 images were selected at random from
the remaining individuals having only one image.

The mean classification rate and the variance for the ran-
dom 20 runs is summarized in Table 1. The original one-



Table 1. Mean Classification Accuracy and Variance performance.
Columns represent the number of subjects.

5 10 20 50
OSK 0.742± 0.1621 0.732± 0.987 0.6934± 0.921 0.5728± 0.0672

F-OSK 0.738± 0.1896 0.728± 1.072 0.7001± 0.945 0.5745± 0.0624

shot similarity kernel and the closed form of the one-shot
similarity kernel given in (9)) are denoted as OSK and F-
OSK, respectively. As we can see, the proposed closed form
solution of the one-shot similarity kernel in (9) produces
similar results as the original form of the one-shot similar-
ity kernel, but in at least one order of magnitude less time
(O(n) over O(n2) where n are the training samples). Simi-
lar gain in computational time was recently reported in [27]
using approximations of various additive kernels.

5.2. Object Tracking

We evaluated the performance of our subspace learn-
ing algorithms for the application of appearance-based face
tracking. The appearance-based approach to tracking has
been one of the de facto choices for tracking objects in im-
age sequences. As discussed, the proposed kernel subspace-
based tracking algorithm is closely related to the incremen-
tal visual tracker in [23] (abbreviated as IVT). As such, our
tracker can deal with drastic appearance changes, does not
require offline training, continually updates a compact ob-
ject representation and uses the Condensation algorithm to
robustly estimate the object’s location [23].

We conducted experiments in order to show (1) that the
use of the one-shot similarity kernel and background sam-
ples help eigen-tracking and (2) that the proposed formu-
lation of the one-shot similarity kernel given in (8) com-
bined with the proposed incremental PCA is not only faster
but also more accurate than using the one-shot similarity
kernel with incremental KPCA [4]. Furthermore, we com-
pared with two publicly available state-of-the-art trackers,
namely the `1 tracker proposed in [19] and the Multiple
Instance Learning (MIL) tracker in [1]. We evaluated the
performance of all methods on nine very popular video se-
quences, Si, i = 1, . . . , 9 (subsets of which are used in [23],
[19], and [5, 1]). The videos contain drastic changes of the
target’s appearance, including pose variation, occlusions,
and non-uniform illumination. The un-optimized MATLAB
code using the proposed iPCA tracks 7-8 frames/sec, while
with the original form tracks 1 frame/15 secs (it needs an
extra optimization problem for the pre-images [4]).
S1 is provided along with seven annotated points which

indicate the ground truth. We also annotated 3–7 fiducial
points for the remaining sequences. Our quantitative perfor-
mance evaluation is based on the root mean square (RMS)
errors between the true and the estimated locations of these
points [23]. In our experiments, all trackers use the same
motion models (an affine motion model) with a fixed num-

Figure 1. Examples of tracking results (ground truth, IVT and
OSK-IVT bounding boxes are colored red, blue and green).

Table 2. Mean RMS error for general tracking. “(lost)” indicates
sequences in which the tracker clearly does not follow the target
throughout the entire sequence.

S1 S2 S3 S4 S5 S6 S7 S8

IVT 8.13 (lost) 4.13 13.14 (lost) 27.79 2.02 24.48
OSK-IVT-K (lost) (lost) (lost) (lost) (lost) (lost) (lost) (lost)

L1 (lost) (lost) 2.87 (lost) 12.94 (lost) 1.67 39.15
MIL 51.36 (lost) 13.61 17.78 38.19 (lost) 4.14 40.80

OSK-IVT 5.11 3.47 3.16 10.56 (lost) 8.89 1.82 11.9

ber of drawn particles (800 particles). The parameters of all
trackers have been learned in a different set of videos than
the tested ones and were kept fixed for all tested videos.
The Mean RMS is summarized in Table 2 (the proposed
tracker is under the abbreviation OSK-IVT, while the one-
shot similarity kernel using the online kernel learning tech-
nique with pre-images [4] is abbreviated as OSK-IVT-K).
As can be seen, by exploiting the functional form (8) of the
proposed kernel we obtain an adaptive tracking algorithm
with the same complexity of IVT while producing state-of-
the-art results. We have conducted a statistical test and we
can verify that improvements in S1, S2, S3, S6&S8 are sta-
tistically significant in a 99% confidence interval.

Some indicative examples in which the proposed tracker
(using the proposed kernel) outperforms the IVT kernel are
shown in Fig. 1. In these images, the bounding box ob-
tained from the ground truth, the IVT bounding box and the
OSK-IVT bounding box are colored red, blue and green, re-
spectively. As we can see, even in the case that there is no
ground truth available, due to missing points (as the profile
frame in the middle image), the proposed tracker provides a
more accurate estimation of the bounding box position.

5.3. Deformable Model Fitting

The state-of-the-art algorithms for deformable model fit-
ting are the recently introduced non-parametric CLMs using
non-parametric density estimation. CLM is a part based de-
formable model which comprises of a shape model S (usu-
ally a 3D point distributional model) and a set of detectors
D of the various facial parts (each part corresponds to a fidu-
cial point of S). More formally, D could be a set of linear
classifiers of n parts of the face and can be represented as
D = {wi, bi}ni=1, where wi, bi is the linear detector (i.e.,
SVM) for the i-th part of the face (e.g., eye-corner detec-
tor). These detectors are used to define probability maps for
the i-th part and for a given location x of an image I being



correctly located (li = 1) as:

p(li = 1|x, I) = 1

1 + exp(li(wT
i f(x, I) + bi))

. (24)

Intuitively, the algorithm tries to find the best shape, within
the subspace of the shape model, such that the positions of
the shape correspond to well-aligned (detected) parts (for
more details the interested reader may refer to [24] and the
references within for details regarding building and fitting
CLM-based models). We have implemented CLMs using
as features Histograms of Orientated Gradients (HoGs) and
show that the proposed form of the one-shot similarity ker-
nel in (9) with cutting planes SVMs is not only faster than
CLMs in training but also increases the performance over
SVMs with the one-shot similarity kernel (3) and standard
SVMs. We should note here that the functional form of the
one-shot similarity kernel (3) cannot be combined with the
linear cutting-plane SVMs. For all one-shot similarity ker-
nels the background samples for each of the points are se-
lected as patches of other points (i.e., background samples
for eyes were taken from the nose etc.).

We conducted experiments using the database that
presents the challenge of uncontrolled natural settings. The
Labeled Face Parts in the Wild (LFPW) database [3] con-
sists of the URLs to 1100 training and 300 test images that
can be downloaded from internet. All of these images were
captured in the wild and contain large variations in pose,
illumination, expression and occlusion. We were able to
download only 813 training images and 224 test images
as some URLs are no longer valid. These images were
manually annotated with the 66-point markup to generate
the ground-truths. In face deformable model fitting experi-
ments, results are often reported in a curve of the proportion
of the images vs the shape root mean square error (RMSE)
between the predicted shape and the ground truth shape. We
should note that the size of the faces in these images varies
greatly due to the wild nature of this dataset. To overcome
that, we normalized the shape RMSE by the distance be-
tween the eye-corners in order to show unbiased results. We
compared with the state-of-the-art approach [37], which we
trained using the same data and the code provided by the
authors of [37]. Fig. 2 plots the curves for the all the tested
methods. As we can see, the use of one-shot similarity ker-
nels indeed increases the performance over standard SVMs.
Furthermore, the use the closed form of one-shot similarity
kernel (9) with the cutting-plane SVMs boosts even further
the results over the original one-shot similarity kernel. Fi-
nally, in order to perform fair comparisons, we compared
the actual time for solving the SVM optimization problem
with the proposed kernel and either the cutting plane linear
algorithm or the standard kernel SVM for the original ver-
sion of the kernel. For the whole experiment, that is learning
all 66 discriminant filters, one for each point. Training with

the proposed kernel and the original form required 3 hours
and around 1 day, respectively.

6. Conclusions
In this paper we studied a recently introduced class of

kernels, the one-shot similarity kernels. We derived closed
form feature maps and proved that they can be used for effi-
cient exact incremental learning. We successfully combined
them with typical classification algorithms (SVMs) and in-
cremental learning techniques (iPCA) and applied them in
several problems (face recognition, object tracking and de-
formable model fitting), acquiring state-of-the-art results.
We verified their superiority not only in terms of compu-
tational complexity and time, but also of performance.

7. Acknowledgement
The work of Stefanos Zafeiriou and Irene Kotsia was

partially funded by the EPSRC project EP/J017787/1 (4D-
FAB). Irene Kotsia acknowledges support by the frame-
work of the Action Supporting Postdoctoral Researchers
of the Operational Program Education and Lifelong Learn-
ing (Actions Beneficiary: General Secretariat for Research
and Technology), and is co-financed by the European Social
Fund (ESF) and the Greek State.

References
[1] B. Babenko, M.-H. Yang, and S. Belongie. Robust object

tracking with online multiple instance learning. IEEE T-
PAMI, 33(8):1619–1632, 2011.

[2] E. Bazavan, F. Li, and C. Sminchisescu. Fourier Kernel
Learning. In ECCV, October 2012.

[3] P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Ku-
mar. Localizing parts of faces using a consensus of exem-
plars. In CVPR, pages 545–552. IEEE, 2011.

[4] T.-J. Chin and D. Suter. Incremental Kernel Principal Com-
ponent Analysis. IEEE T-IP, pages 1662 – 1674, 2007.

[5] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object
tracking. IEEE T-PAMI, 25(5):564–577, 2003.

[6] K. Crammer and Y. Singer. On the algorithmic implemen-
tation of multiclass kernel-based vector machines. JMLR,
2:265–292, 2002.

[7] S. Günter, N. Schraudolph, and S. Vishwanathan. Fast Iter-
ative Kernel Principal Component Analysis. JMLR, pages
1893 – 1918, 2007.

[8] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller. La-
beled faces in the wild: A database forstudying face recogni-
tion in unconstrained environments. In Workshop on Faces
in’Real-Life’Images: Detection, Alignment, and Recogni-
tion, 2008.

[9] T. Joachims. Training linear svms in linear time. In ACM
SIGKDD, pages 217–226, 2006.

[10] T. Joachims, T. Finley, and C.-N. J. Yu. Cutting-plane train-
ing of structural svms. Machine Learning, 77(1):27–59,
2009.



Figure 2. Shape RMS versus the proportion of the images

[11] K. I. Kim, M. O. Franz, and B. Scholkopf. Iterative kernel
principal component analysis for image modeling. IEEE T-
PAMI, 27(9):1351–1366, 2005.

[12] O. Kliper-Gross, T. Hassner, and L. Wolf. One shot similar-
ity metric learning for action recognition. In Proceedings of
the First international conference on Similarity-based pat-
tern recognition, pages 31–45, 2011.

[13] I. Kotsia, I. Pitas, and S. Zafeiriou. Novel multiclass classi-
fiers based on the minimization of the within-class variance.
IEEE Transactions on Neural Networks, 20(1):14–34, 2009.

[14] A. Levy and M. Lindenbaum. Squential Karhunen-Loeve
Basis Extraction and its Application to Images. IEEE T-IP,
pages 1371 – 1374, 2000.

[15] F. Li, C. Ionescu, and C. Sminchisescu. Random fourier
approximations for skewed multiplicative histogram kernels.
Pat. Rec., pages 262–271, 2010.

[16] F. Li, G. Lebanon, and C. Sminchisescu. Chebyshev Ap-
proximations to the Histogram χ2 Kernel. In CVPR, 2012.

[17] S. Liwicki, S. Zafeiriou, G. Tzimiropoulos, and M. Pantic.
Efficient online subspace learning with an indefinite kernel
for visual tracking and recognition. IEEE Transactions on
Neural Networks and Learning Systems, 23(10):1624–1636,
2012.

[18] S. Maji, A. Berg, and J. Malik. Efficient classification for
additive kernel svms. IEEE T-PAMI, pages 66–77, 2013.

[19] X. Mei and H. Ling. Robust visual tracking using l1 mini-
mization. In CVPR, pages 1436–1443. IEEE, 2009.

[20] S. Nikitidis, S. Zafeiriou, and I. Pitas. Camera motion es-
timation using a novel online vector field model in particle
filters. IEEE Transactions on Circuits and Systems for Video
Technology, 18(8):1028–1039, 2008.

[21] F. Perronnin, J. Sánchez, and Y. Liu. Large-scale image cat-
egorization with explicit data embedding. In CVPR, pages
2297–2304. IEEE, 2010.

[22] A. Rahimi and B. Recht. Random features for large-scale
kernel machines. NIPS, 20:1177–1184, 2007.

[23] D. Ross, J. Lim, R. Lin, and M. Yang. Incremental Learning
for Robust Visual Tracking. IJCV, pages 125 – 141, 2008.

[24] J. M. Saragih, S. Lucey, and J. Cohn. Deformable model
fitting by regularized landmark mean-shift. IJCV, 91(2):200–
215, 2011.

[25] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear com-
ponent analysis as a kernel eigenvalue problem. Neural com-
putation, 10(5):1299–1319, 1998.

[26] B. Schölkopf and A. J. Smola. Learning with kernels: Sup-
port vector machines, regularization, optimization, and be-
yond. MIT press, 2001.

[27] A. Vedaldi and A. Zisserman. Efficient additive kernels via
explicit feature maps. IEEE T-PAMI, 34(3):480–492, 2012.

[28] C. Williams and M. Seeger. The effect of the input density
distribution on kernel-based classifiers. In ICML, 2000.

[29] C. Williams and M. Seeger. Using the nystrom method to
speed up kernel machines. NIPS, pages 682–688, 2001.

[30] L. Wolf, T. Hassner, and Y. Taigman. The one-shot similarity
kernel. In CVPR, pages 897–902. IEEE, 2009.

[31] L. Wolf, T. Hassner, and Y. Taigman. Similarity scores based
on background samples. In ACCV, pages 88–97. 2010.

[32] L. Wolf, T. Hassner, and Y. Taigman. Effective unconstrained
face recognition by combining multiple descriptors and
learned background statistics. IEEE T-PAMI, 33(10):1978–
1990, 2011.

[33] L. Wolf, T. Hassner, Y. Taigman, et al. Descriptor based
methods in the wild. In Workshop on Faces in’Real-
Life’Images: Detection, Alignment, and Recognition, 2008.

[34] S. Zafeiriou, A. Tefas, and I. Pitas. The discriminant elastic
graph matching algorithm applied to frontal face verification.
Pattern recognition, 40(10):2798–2810, 2007.

[35] S. Zafeiriou, A. Tefas, and I. Pitas. Learning discriminant
person-specific facial models using expandable graphs. IEEE
T-IFS, 2(1):55–68, 2007.

[36] S. Zafeiriou, A. Tefas, and I. Pitas. Minimum class variance
support vector machines. IEEE Transactions on Image Pro-
cessing, 16(10):2551–2564, 2007.

[37] X. Zhu and D. Ramanan. Face detection, pose estimation,
and landmark localization in the wild. In CVPR, pages 2879–
2886, 2012.


