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Abstract—Slow feature analysis (SFA) is a dimensionality
reduction technique which has been linked to how visual brain
cells work. In recent years, SFA was adopted for computer vision
tasks. In this paper, we propose an exact kernel SFA (KSFA)
framework for positive definite and indefinite kernels in Krein
space. We then formulate an online KSFA which employs a
reduced set expansion. Finally, by utilizing a special kindof
kernel family, we formulate exact online KSFA for which no
reduced set is required. We apply the proposed system to develop
a SFA-based change detection algorithm for stream data. This
framework is employed for temporal video segmentation and
tracking. We test our setup on synthetic and real data streams.
When combined with an online learning tracking system, the
proposed change detection approach improves upon tracking
setups that do not utilize change detection.

Index Terms—Slow feature analysis, online kernel learning,
change detection, temporal segmentation, tracking

I. I NTRODUCTION

SLOW FEATURE ANALYSIS (SFA) originates from theo-
ries in neural networks [1], and extensive studies in neural

science found similarities between SFA and the properties of
brain cells in the visual cortex [1], [2]. More recently, SFA
found its way into computer vision [3], [4], [5], [6]. Here,
SFA is employed as an unsupervised learning technique for
dimensionality reduction of temporally arranged data suchas
video. In particular, it extracts an orthogonal subspace from the
input data, similarly to principal component analysis (PCA).
In contrast to PCA however, SFA considers the temporal
information to find the most descriptive components that vary
slowest over time [1]. The intuition behind SFA is linked to the
assumption that the information contained in a signal changes
not suddenly, but slowly. Note, a signal generally contains
high variation (caused by noise), nonetheless, it is the seldom
varying features that mark the separation between informative
changes. SFA extracts these features, as it selects the important
attributes which change least over time.
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A. Related Research

1) SFA in Computer Vision:Inspired by the slowness
principle of neural networks [7], [5] employs SFA for in-
variant localization and recognition. This work extract slow
features hierarchically. Multiple areas of the input images are
analyzed for slow features individually. These features are then
combined and reused as input signal for the higher levels of
the hierarchy. In total, 4 SFA layers are introduced. The final
layer’s features are then used for regression or classification.

In [3], SFA’s properties are exploited to segment video data
temporally. The aim of this study is to extract unknown dif-
ferent actions in an image sequence. The individual segments
are thought to be the activities in the examined video. After
performing SFA on the complete video, the authors determine
whether a split of the sequence is required. The decision is
based on the median of change in the slow features. For the
separation, the frame with the largest change is utilized assplit
position. SFA is once more performed on the resulting videos,
and the process is repeated until no further split is necessary.

Another example of SFA applied to temporal segmentation
is [6]. After formulating SFA as probabilistic model and
solving for expectation maximization, the authors are ableto
extract the temporal phases of facial expressions through SFA.
Their offline algorithm successfully extracts onset (beginning),
apex (duration) and offset (ending) of facial action units.

2) Online Learning:The literature above reveals SFA’s
ability for temporal video segmentation in image sequences,
although only in offline setups. With an ever increasing im-
portance of realizing online applications, incremental learning
methods have become a popular research topic [8], [9], [10],
[11]. In particular, real-time object tracking has been shown to
benefit from online models [9], [11], [12]. Commonly in online
learning, however, the appearance model used to describe the
tracked object (target) is susceptible to drift [11]. With change
detection and SFA in particular a tracking system can detect
when drift is likely (during changes). In this work, we want to
combine online tracking systems with an incremental approach
to SFA to improve drift suppressants.

An online learning system to find slow features is required
for the detection of changes in video streams. All methods
presented thus far require the complete videoa priori. To the
best of our knowledge, the only incremental version of SFA
(IncSFA) is proposed in [4]. As SFA can be solved in two
stagesvia PCA and minor component analysis (MCA), IncSFA
utilizes a combination of the candid covariance-free incremen-
tal PCA (CCIPCA) in [13], and the sequential extraction of
minor components in [14]. CCIPCA is based on statistical
efficiency and incrementally estimates the data distribution
by means of scale and mean. Consequently, IncSFA learns
a rough estimation of the true slow features. Furthermore,
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IncSFA is designed to learn from multiple complete videos of
similar motions, rather than the data points of a single video.
Therefore, IncSFA is very suitable for learning features of
sequences that reoccur in its entirety,e.g.complete activities.
However, online learning for change detection, where a scene
is seen only once, is not supported by this approach.

3) Non-linear Features:SFA is originally designed for
data signals with quadratic expansions. In this case, sinceSFA
is a statistical component analysis, it is quite likely to suffer
from the curse of dimensionality. Hierarchical SFA, as in [5],
somewhat improves this situation, but important properties
could be missed. More recently, [15] introduces kernel SFA
(KSFA) for standard positive definite kernels. Similarly toa
quadratic expansion, kernel methods allow for a mapping of
features into a high-dimensional feature space. However, this
feature space is never required to be computed explicitly, as
it is realized by the kernel which represents the dot-product
of two samples in such space. The computation of kernels is
often more efficient than non-linear expansions – at least in
the amount of computer memory used. Furthermore, kernel
functions allow for more flexible feature spaces. Typically, as
in [15], the selection of standard kernels such as Gaussian
RBFs (GRBFs) is encountered. These kernels seldom utilize
the domain-dependent property of the data. In recent work
we present a kernel specifically designed for image gradients
[12]. Inspired by its success in tracking and recognition, we
now wish to apply this kernel to SFA. An important aspect
of our kernel is that it is not positive definite and, thus, the
appropriate space in which our kernel can represent a dot-
product is a Krein space. Therefore, an extension of KSFA
into Krein space is required.

4) Online Kernel Learning:Typically, the classification
or regression functions of online kernel methods are written
as a weighted sum of kernel combinations, taken from a set
of stored instances, usually referred to as support or reduced
set. At each step a new instance is fed to the algorithm
and depending on the update criterion the algorithm adds the
instance to the support set. One of the major challenges in
online learning is that the support set may grow arbitrarily
large over time [10], [16], [17].

Many techniques that try to bound this set have been
presented in the literature [18], [19], [20], [21]. For example,
[22] propose online kernel algorithms for classification, regres-
sion and novelty detection using a stochastic gradient descent
algorithm in the Hilbert space defined by the kernel. In orderto
avoid the arbitrary growth of the support set, the authors adopt
simple truncation and shrinking strategies. In [23] an online
regression algorithm which uses an alternative model reduction
criterion is proposed. Instead of using a sparsification proce-
dure, the increase in the number of variables is controlled by a
coherence parameter, a fundamental quantity that characterizes
the behavior of dictionaries in sparse approximation problems.

In contrast to reducing the support set needed, in [24] the
kernel function is approximate by a finite number of functions
which can be explicitly calculated. Finally, [10], obtain a
reduced set expansion to bound the samples in the support
set. Such samples are referred to as pre-images, and they are
optimized to fulfill the kernel method.

Notice, all methods above areapproximationsin one form
or another, which inadvertently reduces the accuracy over time.
For example, while a reduced set expansion with pre-images
allows for arbitrary kernels, the computation of pre-images has
drawbacks: (1) the reduced set representation provides only an
approximation to the exact solution and (2) the optimization
problem for finding the expansion inevitably increases the
complexity of the algorithm. In contrast, a specific kernel
family can be applied which allows us to formulate a special
case ofexact online KSFA without pre-image computation
or kernel approximations. One robust, domain-specific kernel
function of such class is given by [12].

5) Unsupervised Video Segmentation:Some related
works in the broader area of unsupervised video segmentation
are [25], [26], [27]. In [25] a method for clustering events is
proposed. Their work is only suitable for offline processing
and requires the number of clustersa priori. This is also the
case for the clustering algorithm in [26]. A method for joint
segmentation and classification of human actions in video is
proposed in [27]. Their method is supervised,i.e. a model
for human actions is learned from a set of labeled training
samples. Then, given a testing video with a continuous stream
of human activities, the algorithm in [27] finds the globally
optimal temporal segmentation (i.e the change points between
actions) and class labels. Our methodology takes a different
direction. In particular, we detect the temporal changes in
video streams online. We do not require the number of clusters,
nor train to a predefine set of examples. Thus, the methods in
[26], [27], [28] constitute excellent post-processing tools for
clustering or classifying the events.

B. Contributions

First, we introduce a general kernel framework for SFA
with positive definite and indefinite kernels. Furthermore,we
formulate an online learning algorithm for the proposed KSFA
which computes the slow components at each given time-
step incrementally. We emphasize, in contrast to IncSFA [4]
which learns from multiple videos, our incremental version
of SFA is designed to learn from individual data points of a
single data stream. Then, we extend our learning framework to
formulate an exact incremental kernel KSFA, which uses the
kernel family of [12]. Finally, we develop the first SFA-based
real-time change detection algorithm which we employ for
temporal video segmentation and visual tracking. In summary,
our contributions are as follows:

1) We propose exact KSFA with arbitrary derivative ap-
proximations for any kernel in Hilbert or Krein space.

2) We formulate an accurate framework for general online
KSFA for which we apply a reduced set expansion
in Krein space. In contrast to [4], our online learning
system computes the slow features at each time-step,
from individual data points of a single video sequence.

3) We propose incremental KSFA that does not require a
reduced set expansion, exploiting the properties of our
domain-specific kernel in [12].

4) We introduce SFA-based online change detection which
we apply to temporal video segmentation and tracking.
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In [29], we introduce KSFA in Krein space and develop
an incremental KSFA algorithm for our special, domain-
specific kernel in [12]. We implement SFA’s change detection
algorithm, and apply it to temporal video segmentation. In
this paper we extend our work, and introduce an incremental
KSFA for arbitrary kernels in Krein or Hilbert space. Notice,
the setup in [29] depends on a version of the scatter matrix
which is not available in general kernel methods. With our
new algorithm, we propose a true scatter-matrix-independent
version of SFA, as we use the kernel matrix throughout. We
also introduce a tracking framework with change detection.

C. Notation

We summaries some mathematical notation for the readers
convenience in table I. See text for details.

TABLE I
SUMMARY OF MATHEMATICAL NOTATION .

R space of real numbers
C space of complex numbers
H infinite dimensional Hilbert space
K non-positive definite Krein space
|K| associated Hilbert space ofK
J fundamental symmetry ofK
K kernel matrix
k(.) kernel function
φ(.) implicit kernel mapping
〈., .〉 inner product
Ẋ derivative ofX
X̃ centralized matrix ofX
C helper matrix to compute mean
M helper matrix to compute centralized matrix
µ vector of mean values
(.)T matrix transpose
(.) complex conjugate
(.)H complex conjugate transpose
(.)∗ conjugate transpose with fundamental symmetry
⊕ direct sum of spaces
⊙ element-wise multiplication

II. SFA WITH INDEFINITE KERNELS

We propose a general kernel SFA. Contrasting [15] indefi-
nite kernels are handled. Section II-A introduces the theory of
positive definite and indefinite kernels. SFA and its kernelized
optimization is presented in section II-B. Finally, section II-C
introduces our algorithm for SFA in Hilbert and Krein space.

A. Kernel Functions in Hilbert and Krein Space

A Hilbert spaceH is a complete vector space which is
defined by an inner product onto complex space〈., .〉H : H×
H → C, which induces a norm and, thus, a metric. Generally,
H is an implicitly defined infinite dimensional hyperspace. A
kernel functionkH : CP × CP → C defines the unknown
mappingφH : CP → H which transforms the original data
into Hilbert space, and the inner product is realized by

〈φH(y), φH(x)〉H = φH(x)HφH(y) = kH(x,y) (1)

wherex andy are members of the original spaceCP and(.)H

indicates the Hermitian transpose. For many applications,kH
is employed andφH is never explicitly required [15], [30],

[31]. For example, the linear distance between two samples in
the non-linear Hilbert space is givenvia the kernel as

l2(φH(x), φH(y)) = kH(x,x) − kH(x,y)

− kH(y,x) + kH(y,y). (2)

The following properties are important for the inner product
of a Hilbert space (∀x,y, z ∈ H, ∀a, b ∈ C):

〈x,y〉H = 〈y,x〉H (3)

〈ax+ by, z〉H = a〈x, z〉H + b〈y, z〉H (4)

l(x, z) ≤ l(x,y) + l(y, z) (5)

where (.) denotes the complex conjugate. Therefore, if a
positive definite kernel is selected, the space is Hilbert.

Similar to Hilbert spaces, kernels in Krein space define an
implicit mappingφK : CP → K from feature space ontoK,
and provide the inner product〈., .〉K : K ×K → C such that

〈φK(y), φK(x)〉 = kK(x,y) (6)

for x,y ∈ CP . They also satisfy the analogous properties for
eq. (3) and eq. (4). However, when the distance is similarly
to eq. (2), the triangular inequality may not hold [32], [33].

A Krein space is composed out of two Hilbert spaces,K−

andK+, such thatK = K−⊕K+, where⊕ denotes the direct
sum (i.e.K− andK+ are orthogonal in terms of〈., .〉K). Thus,
two orthogonal projections can be extracted fromK: F+ onto
K+ andF− ontoK−, known as fundamental projections. By
use of the fundamental symmetryJ = F+−F−, an associated
Hilbert space|K| is found. We write the relationship between
K and |K| in terms of a “conjugate”, as

x∗y , 〈y,x〉K = xHJy = 〈Jy,x〉|K| (7)

wherex,y ∈ K. That is,K can be turned into its associated
Hilbert space|K| by using its positive definite inner product
〈., .〉|K|, as 〈x,y〉|K| = 〈x,Jy〉K. In finite dimensional Krein
spaces (i.e. dim(K+) + dim(K−) < ∞, wheredim(.) finds
the dimensionality), the fundamental symmetry is given by

J =

[

Idim(K+) 0

0 −Idim(K−)

]

(8)

whereIn is then× n identity, and0 implies zero padding.
Kernels in Hilbert or Krein spaces are important, as they

provide feature representations for dissimilarities in non-linear
spaces. Plenty successful applications exist in the literature for
Hilbert kernels [15], [30], [31]. The use of Krein kernels is
more seldom [33]. In [12], we introduced an indefinite Krein
kernel for tracking and recognition. It is important to note
here, that methods which employ Krein spaces are also valid
for Hilbert spaces, asK ⊃ H. Thus, in the following we
consider indefinite kernels in Krein spaces only.

B. SFA’s Optimization Problem

Given N sequential observation vectors as columns of
X = [x1 · · · xN ] ∈ CP×N , SFA finds a descriptive outputon

for eachxn such that the output signalO = [o1 · · · oN ] ∈
CF×N changesslowestover time [1].1 The output of each

1The original SFA is defined only in the real valued space, however, an
extension into complex space is trivially archived by replacing the transpose
operation with the Hermitian transpose.
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individual sample is formed as the concatenation ofF map-
pings sf : CP → C, f = 1, . . . , F , such thaton =

[s1(xn) · · · sF (xn)]
T, where (.)T computes the transpose.

SFA minimizes theslownessfor these values, defined as

∆(sf ) =
1

N

N
∑

n=1

|ṡf (xn)|2. (9)

Hence, SFA minimizes the time derivativeṡf of sf for the
whole video sequence. Although,ṡf is often represented as
the difference between consecutive time steps,i.e. ṡf(xn) =
sf (xn)− sf (xn−1) [3], [15], any derivative may be utilized.

Additionally, [1] introduces constrains to avoid trivial solu-
tions and prevent information redundancy. The output signals
of each mappingsf , i.e. sf = [sf (x1) · · · sf (xN )]T, are
required to have zero mean, eq. (10), and unit variance,
eq. (11). Moreover, allsf are constrained to be uncorrelated,
eq. (12). Finally, an ordering of the components according to
their slowness is employed, eq. (13). We summarize:

∀f sHf 1N×1 = 0 (10)

∀f sHf sf = 1 (11)

∀f 6= e sHf se = 0 (12)

∀f < e ∆(sf ) < ∆(se) (13)

where1a×b is ana× b matrix with all elements equal to1.
Often, the input featuresX ∈ CP×N are either assumed

to be linear and directly taken from the input valuesZ =
[z1 · · · zN ] ∈ CP ′×N , i.e. xn = zn, P = P ′, or a result of a
nonlinear expansion,e.g.a quadratic expansion wherez ∈ RP ′

xn =

















zn(1)
...

zn(1)zn(P
′)

...
zn(P

′)zn(P
′)

















, P = P ′ + P ′P
′ + 1

2
(14)

wherea(b) denotes thebth element of vectora. Generally, we
may utilize any mappingφ : CP ′ → K, such thatxn = φ(zn).

SFA can be solved by means of the generalized eigenvalue
problem [2]. Let the scatter of the data beS =

∑N
n=1(xn −

µ)(xn−µ)H, whereµ is the sample mean. The scatter of the
data’s derivative iṡS =

∑N
n=1(ẋn − µ̇)(ẋn − µ̇)H, whereẋn

is the derivative ofxn, andµ̇ is the derivatives’ mean. Then,
SFA finds a projectionV = [v1 · · · vF ] ∈ CP×F such that

V = argmin
V̌

tr
(

(

V̌HSV̌
)−1

V̌HṠV̌
)

(15)

wheretr(.) computes the trace of a matrix. After ordering, the
functionssf are then provided bysf (xn) = vH

f (xn−µ− µ̇).

C. Solving Kernel SFA in Krein Space

Let φ : CP ′ → K be an unknown mapping into Krein
space whose inner product is equivalent to a know kernel,
k : CP ′ × CP ′ → C. Although we notateφ to describe our
method, we never require its evaluation, ask is employed.

We defineX = [φ(z1) · · ·φ(zn)] as the implicitly given
sample matrix of the original features inZ. The samples’ mean

and centralized matrix can be respectively computed as

µ = 1
N
X1N×1 = XM (16)

X̃ = X
(

IN − 1
N
1N×N

)

= XC (17)

whereM = 1
N
1N×1 and C = IN − 1

N
1N×N [10], [33].

Furthermore, we define the total scatter matrix

S ,
∑N

n=1(φ(zn)− µ)(φ(zn)− µ)∗

= X̃X̃∗ = X̃X̃HJ
(18)

for some fundamental symmetry matrixJ. Note, this matrix
describes the scatter in the associated Hilbert space|K|.

Similarly to [3], [15], the signal derivative is expressed as

Ẋ = X











0 −1
0 1 −1
...

. . .
. . .

0 1











= XD (19)

whereD ∈ RN×N describes the backward difference.2 The
derivatives’ mean,µ̇, and centralized matrix,˜̇X, are respec-
tively found analogously to eq. (16) and eq. (17), and we define
the scatter matrix of the derivatives as

Ṡ ,
˜̇
X

˜̇
X

∗

= [XDC]
[

CTDTXH
]

J. (20)

Based on KSFA in Hilbert space [15] and KPCA in Krein
space [12], we formulate the projection as linear combination
V = X̃V́, and define KSFA’s optimization in Krein space as

V́ = argmin
V̌

tr

(

(

V̌HK̃2V̌
)−1

V̌HKDCDTKHV̌

)

(21)

whereK = X∗X is the kernel matrix, and̃K = X̃∗X̃ =
CTKC its centralized version. The optimum of eq. (21) is
found via a two step approach. First, we ensure that

V́HK̃2V́ = I (22)

and then we find the optimum for

V́ = argmin
V̌

tr
(

V̌HKDCDTKHV̌
)

. (23)

We achieve eq. (22) by whitening the squared kernel matrix,
K̃2. For this, let us compute the eigenvalue decomposition,
K̃2 = ΩΛ2ΩH, and definéV = WΘ such thatW = Ω|Λ|−1

andΘHΘ = I holds (eigenvalues with zero magnitude and
the corresponding eigenvectors are removed). We can now
reformulate eq. (23) as

Θ = argmin
Θ̌

tr
(

Θ̌HWHKDCDTKHWΘ̌
)

subject toΘHΘ = I
(24)

which is solved via the eigenvalue decomposition of
WHKDCDTKHW = ΘΣΘH. Finally, the sought projection
is provided byV = X̃V́ = X̃WΘ.3 The ordering of the
slow feature projections is given by the eigenvalues inΣ. In
particular, the columns inV, or equivalently the columns in
V́, that correspond to the smallest non-zero eigenvalues inΣ,

2If a more general derivative is desired,̇X may be represented as the
product of any two matriceśX = [φ(ź1) · · ·φ(źN′ )] andD ∈ RN

′
×N .

3If X́ 6= X, W seldom introduces a null-space to the projection ofṠ.
Here, an alternative optimization problem with total scatter matrix of samples
and derived samples facilitates slow feature analysis. However, as this is rare
and exceeds the scope of this work, we refer to [34], [35].
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Algorithm 1 BATCH KSFA IN KREIN SPACE

Input: The training dataZ ∈ CP ′×N , the derivative matrix
D ∈ R

N×N , the number of components kept after
whiteningR, and the kernel functionk : CP ′ ×CP ′ → C.

Output: The data projectiońV with sorted components ac-
cording to slowness.

1: Compute the kernel matrixK = X∗X, utilizing k.
2: Find CHKC = ΩΛΩH.
3: Form the reduced setΩR ∈ CN×R and ΛR ∈ RR×R

which is related to theR eigenvalues with largest magni-
tude in |Λ|.

4: SetWR = ΩR|ΛR|−1.
5: ComputeWH

RC
TKDCDTKCWR = ΘΣΘH.

6: Reorganize the components inΘ in relation to the ascend-
ing eigenvalues inΣ.

7: SetV́ = WRΘ.

Algorithm 2 TESTING SFA IN KREIN SPACE

Input: The to-be-tested samplez ∈ CP ′

, the data projection
V́ with sorted components, the numberF of slow features
to be used, the training dataZ ∈ CP ′×N , the derivative
matrix D ∈ RN×N , and the kernel functionk : CP ′ ×
CP ′ → C.

Output: The output signalo ∈ CF .
1: Computeo′ = X̃∗x − X̃∗µ − X̃∗µ̇, wherex = φ(z),

using the kernelk.
2: Find o = V́H

Fo
′ whereV́F ∈ CN×F consists of the first

F rows of V́.

represent the smallest changing features of the sample data.
Often, high dimensional data contains dimensions which

virtually never vary. Unfortunately, such data points are likely
to provide the slowest features in SFA. Therefore, a dimen-
sionality reduction on the scatter matrix of the original data
is often advantageous. The eigenvalue decomposition ofK̃2

is ideal for this task, as we can extract the eigenvectors
ΩR ∈ CN×R related to the largest absolute eigenvalues
|ΛR| ∈ RR×R. The projection of the reduction is then given by
WR = ΩR|ΛR|−1. All other parts of the calculation remain
unchanged. In the following, the reduced set is implied when
we writeΛ andΩ for ease of notation.

For convenience and clarity, we summarize the learning
procedure of batch SFA in algorithm 1, and show how the
slow feature functions are applied in algorithm 2.

III. A F RAMEWORK FORONLINE KSFA

We now formulate online KSFA which updates the slow
features from novel data. In section III-A, online SFA with
arbitrary Krein space kernels is introduced. A reduced set ex-
pansion is required to employ general kernels. In section III-B,
we present a special kernel-type, which allows a representation
which does not required a reduced set expansion.

A. General Online Kernel SFA

As seen in section II, SFA can be solved in two stages, the
data whitening in eq. (22) and the decomposition in eq. (23).
In figure 1, we illustrate our incremental setup. We employ

the same notation as before, and indicate time steps and new
data by subscripts (e.g.Xt is the implicitly mapped sample
matrix at timet, andNδ is the number of new samples).

1) Indefinite KPCA Update for Online Whitening:The
update of the whitening projections can be performed with
online KPCA. We extend the incremental KPCA in [10] to
allow for indefinite kernels in Krein spaces.

Let Xδ be the mapping of the new samples inZδ, such
thatXt =

[

Xt−1 Xδ

]

provides the updated data set. We
want to incrementally update the eigenvectorsΩt−1 and the
eigenvalue magnitudes|Λt−1| of the previous time stept− 1,
to find the new whitening projectionWt = Ωt|Λt|−1 which
incorporates the additional information of the new samples.

Similarly to eq. (16) and eq. (17), we notate the new data’s
mean asµδ = XδMδ and its centered sample matrix asX̃δ =
XδCδ, whereMδ = 1

Nδ
1Nδ×1 andCδ = INδ

− 1
Nδ

1Nδ×Nδ
.

For the sake of simplification, let us first assume the data
mean unchanged (i.e. µt−1 = µδ). We define the kernel
matrix of the new datãKδ = X̃∗

δX̃δ and find the eigenvalue
decompositionK̃2

δ = ΩδΛ
2
δΩ

H

δ . Then, in respect to eq. (22),
we seek to find the eigenvalue decomposition of

K̃2
t = Ω̌t

[

|Λt−1| ΩH

t−1X̃
∗
t−1X̃δΩδ

ΩH

δ X̃
∗
δX̃t−1Ωt−1 |Λδ|

]2

Ω̌H

t

= Ω̌t

[

Ω̂tΛ
2
t Ω̂

H

t

]

Ω̌H

t = ΩtΛ
2
tΩ

H

t (25)

where Ω̌t =

[

Ωt−1 0

0 Ωδ

]

is an orthogonal matrix, com-

posed of the eigenvectors inΩt−1 andΩδ. Notice, eq. (25)
can be solved utilizing the decomposition of the inner matrix,
Ω̂tΛ

2
t Ω̂

H
t . The size of this matrix is independent of the sample

number. The projected eigenvectors provide the solution

Ωt =

[

Ωt−1 0

0 Ωδ

]

Ω̂t = Ω̌tΩ̂t. (26)

Thus, the new projection is given byWt = Ωt|Λt|−1 (zero
eigenvalues and their eigenvectors are removed implicitly). A
dimensionality reduction may be applied as outlined in sec-
tion II-C. It is important to note thatΩt may grow arbitrarily
large over time. We refer to section III-A4, where we overcome
this problem by introducing a reduced set representation that
bounds the grows by means of approximation.

Thus far, only the case with unchanged data mean is
considered. A simple modification of̃Xδ allows for changing
means [9], [10]. In particular, we include an additional data
point to the new samples, whose sole purpose is the correction
of the mean substraction

X̃′
δ =

[

X̃δ

√

Nt−1Nδ

Nt−1+Nδ

(

µt−1 − µδ

)

]

= Xt

[ [

0

Cδ

]

√

Nt−1Nδ

Nt−1+Nδ

[

Mt−1

−Mδ

] ]

.(27)

Now, we compute eq. (25) with̃X′
δ in place ofX̃δ. Finally,

we update the mean of the overall data

µt =
Nt−1

Nt−1 +Nδ

Xt−1Mt−1 +
Nδ

Nt−1 +Nδ

XδMδ

= XtMt (28)



6 IEEE TRANS. ON IMAGE PROCESSING, VOL. ??, NO. ??, ?? 2015

Fig. 1. Illustration of incremental SFA at initialization (time 0) and time-stept. We utilize incremental kernel PCA and our incremental derivative projection
to find the slow features at each time-step. Details are provided in the text.

whereMt =
1

Nt−1+Nδ

[

Nt−1Mt−1

NδMδ

]

.

It is important to note, that our complete incremental
update never requires the explicit calculation of the unknown
mappingφ, as we employ the kernel trick using the kernel
k. Furthermore, ignoring the growth of the kernel support
set, our framework for updating general KPCAs in Krein
space computes in constant time and memory. Section III-A4
introduces a reduced set representation for constant execution
of the whole algorithm. First, however, we complete the online
KSFA framework with the second part (related to eq. (23)).

2) Slow Feature Update:After finding the whitening ma-
trix, the slow features ińVt−1 = Wt−1Θt−1 require update.
More precisely, the eigendecomposition of the projected scat-
ter matrix,WH

t−1X̃
∗
t−1Ṡt−1X̃t−1Wt−1 = Θt−1Σt−1Θ

H

t−1,
needs to be renewed with regards to the new derivatives and
the projection, which we denotėXδ andWt respectively.

Let us first assume unchanged means (i.e. µ̇t−1 = µ̇δ). The
new projection of the new scatter matrix is then provided as

WH

t X̃
∗
t ṠtX̃tWt

= WH

t X̃
∗
t Ṡt−1X̃tWt +WH

t X̃
∗
t ṠδX̃tWt

= WH

t

[

X̃∗
t−1Ẋt−1Ct−1

X̃∗
δẊt−1Ct−1

] [

X̃∗
t−1Ẋt−1Ct−1

X̃∗
δẊt−1Ct−1

]H

Wt

+ WH

t X̃
∗
t ẊδCδẊ

∗
δX̃tWt (29)

whereṠδ is the scatter of the new derivatives.
The second term of eq. (29) can be directly computed. More

complicated, however, is the calculation of the first term when
constant running time is required for online learning. Notice
that X̃tWt can be expressed through the samples’ subspaces
for X̃t−1 andX̃δ, given byUt−1 = X̃t−1Ωt−1|Λt−1|−

1
2 and

Uδ = X̃δΩδ|Λδ|−
1
2 respectively. We write

X̃tWt =
[

Ut−1|Λt−1|
1
2 Uδ|Λδ|

1
2

]

Ω̂t|Λt|−1. (30)

It is reasonable to assume thatẊt−1 is well represented
by the subspaceUt−1 alone, as the projection’s components
were selected to reproduce both̃Xt−1 and Ẋt−1. The new

components which are introduced by the new samples inX̃δ

are unlikely to be of significance tȯXt−1. Hence we omit
their contribution,4 and rewrite the first term of eq. (29) as

WH

t X̃
∗
t Ṡt−1X̃Wt ≈ PH

t W
H

t−1X̃
∗
t−1ṠX̃t−1Wt−1Pt (31)

wherePt ∈ CRt−1×Rt is a correction matrix given by

Pt =
[

|Λt−1| 0
]

Ω̂t|Λt|−1 (32)

whereΩ̂t corresponds to the non-zero eigenvalues inΛt.
Let us represent the old data mean in its projected form,

WH

t−1X̃
∗
t−1µ̇t−1. UsingPt, its update is approximated by

WH

t X̃
∗
t µ̇t−1 ≈ PH

t W
H

t−1X̃
∗
t−1µ̇t−1. (33)

Similarly to eq. (27), the step to correct the mean substraction
is performed by adding a correction sample to the new data,
or, equivalently, by adding the following to eq. (29)

Nt−1Nδ

Nt−1 +Nδ

WH

t X̃
∗
t (µ̇t−1 − µ̇δ)(µ̇t−1 − µ̇δ)

∗X̃tWt (34)

and the new mean is provided by

WH

t X̃
∗
t µ̇t =

Nt−1W
H
t X̃

∗
t µ̇t−1 +NδW

H
t X̃

∗
t µ̇δ

Nt−1 +Nδ

. (35)

Finally, after computing the new scatter matrix
WH

t X̃
∗
t ṠtX̃tWt, we obtain the slow features through

eigenvalue decomposition as described in section II-C.
Note, the size of this matrix is bound by the number of
components inWt. Hence, the computation time and memory
requirements remain constant.

3) Forgetting Factor: In many online systems it is
beneficial to attach a higher weight to recent data. A common
approach to moderate the balance between old and new data is
a forgetting factor[8], [9]. This value acts as a weight on the
known data, and reduces their impact by a factorw ∈ [0, 1]
(usually0 ≪ w < 1). In the following, we describe howw is
applied to both steps of the incremental update.

4The forgetting factor, introduced in section III-A3, reduces the effect of
errors even further.
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Essentially, we want to reduce the effect of the values in
Xt−1 by w. The forgetting factor can be directly applied to
the eigenvalues of the old data, as we find

(

wX̃∗
t−1X̃t−1w

)2

= Ωt−1

(

w2Λt−1

)2
ΩH

t−1. (36)

Hence, we reflect this in the computation of the inner matrix
of eq. (25), as we compute the decomposition of
[

w2|Λt−1| ΩH

t−1X̃
∗
t−1X̃δΩδ

ΩH

δ X̃
∗
δX̃t−1Ωt−1 |Λδ|

]2

= Ω̂tΛ
2
t Ω̂

H

t . (37)

The forgetting factor also effects the old data’s meanµt−1,
which is changed by multiplyingw. Analogously to [9], we
update the mean using

Mt =
1

wNt−1 +Nδ

[

wNt−1Mt−1

NδMδ

]

. (38)

Finally, the correction term for the mean substraction inX̃′
δ

(in eq. (27)) is also modified to reflectw:

Xt

[ [

0

Cδ

] √
w2Nt−1Nδ(Nt−1+Nδ)

fNt−1+Nδ

[

Mt−1

−Mδ

] ]

. (39)

Similar modifications are employed for the second stage of
the update. With analogous derivations to above, we find

WH

t X̃
∗
t ṠtX̃tWt

=

√

w2Nt−1Nδ(Nt−1 +Nδ)

wNt−1 +Nδ

WH

t X̃
∗
t (µ̇t−1 − µ̇δ)

(µ̇t−1 − µ̇δ)
∗X̃tWt

√

w2Nt−1Nδ(Nt−1 +Nδ)

wNt−1 +Nδ

+ w2WH

t X̃
∗
t Ṡt−1X̃tWt +WH

t X̃
∗
t ṠδX̃tWt (40)

which can be computed as described in section III-A2. The
mean update is now given by

WH

t X̃
∗
t µ̇t =

wNt−1W
H
t X̃

∗
t µ̇t−1 +NδW

H
t X̃

∗
t µ̇δ

wNt−1 +Nδ

. (41)

Finally, the number of elements at timet isNt = wNt−1+Nδ.
4) Introducing Constant Running Time:Like most

learning systems which employ the kernel trick, our online
SFA with arbitrary Krein kernel depends on a support set of
the previously encountered data. One of the major challenges
is that this set may grow to become arbitrarily large over time
[10], [16], [17]. For example, whenever we wish to apply
the slow featuresV to a samplex the kernel matrixX̃∗

tx is
computed, which requires all data points inZt. This, however,
violates the online learning requirements of bound running
speed, asZt grows at every update.

Although alternatives exist [20], [21], [23], [24], we adopt
the reduced set expansion of [10] to ensure constant running
time. While we describe the main steps in the following, we
refer to [10] for details.

Our algorithm uses the support setZt in combination with
the eigenvectorsΩt in the form of X̃tΩt. Therefore, in
the following, as we exploit properties of orthogonality, we
estimate the reduced set expansion based on the subspace
Ut = X̃tΩt|Λt|−

1
2 of X̃t. Each principal component in

Ut = [u1 · · ·uR] depends on the complete set of previously
encountered data inZt. In particular, each component is
realized by computingur = X̃tωr|λr|−

1
2 , whereωr is the

Ẑ1

Ẑ2

Ẑμ

w1 w2 w3 w4 wμ

(a) (b) (c)

... ... ...

... ... ...

... ... ...

...

...

...

...

...

...

Fig. 2. The mean and each component inUt is approximated byQ pre-
images, denoted̂Zr, and a weight vectorwr as detail in the text and shown
in (a). Improved optimization can be archived through propagating the pre-
images to other components, as shown in (b) and (c), and detailed in [10].

component ofΩt related to therth eigenvalue, denotedλr,
at time t. The basic idea behind the reduced set expansion is
depicted in figure 2 [10]. For each componentur, we want to
find a set of at mostQ pre-imageŝZr = [ẑr1 · · · ẑrQ] whose
implicit mappings, denoted̂Xr = [φ(ẑr1) · · ·φ(ẑrQ)], best
approximateur ≈ X̂rwr. Herewr is an optimized multiplier
which controls the weighting of the samples.

A two stage greedy search finds the components [10].
Intuitively, we find the next pre-image which carries most
information to describe the remainder ofur. For convenience,
let us denote the mapped set of the firstq samples as
X̂rq = [φ(ẑr1) · · ·φ(ẑrq)] and the weighting of theq elements
aswrq ∈ Rq. The (q + 1)th element is found as

ẑr(q+1) = argmax
ž

((

u∗
r −wH

rqX̂
∗
rq

)

φ(ž)
)2

φ(ž)∗φ(ž)
(42)

and the optimal weighting as [10], [36]

wr(q+1) =
(

X̂∗
r(q+1)X̂r(q+1)

)−1

X̂∗
r(q+1)ur. (43)

Analogously, an additional set of at mostQ pre-images,
denoted̂Zµ with mappingsX̂µ and weightswµ approximates
the meanµt ≈ X̂µwµ. One approach to solve the optimization
is gradient decent, but other algorithms exist [37].

Once all pre-images are computed, we could set

Z′
t ,

[

Ẑ1 · · · ẐR Ẑµ

]

(44)

X′
t ,

[

X̂1 · · · X̂R X̂µ

]

(45)

Ũ′
t , X′

t











w1 · · · 0Q×1

...
. . .

...
0Q×1 · · · wR

0Q×1 · · · 0Q×1











(46)

M′
t ,

[

0(RQ)×1

wµ

]

. (47)

However, we apply the method shown in figure 2 and detailed
in [10], which extracts a better approximation, by using
all elements inZ′

t for each component iñU′
t and M′

t,
effectively making these less sparse. See [10] for details.

Finally, we enforce orthogonality in the new found̃U′
t

subspace. Note,̃U′
t is only an approximation of the orig-
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inal Ut subspace, and thus the unit norm is no longer
guaranteed. We extend [10] to work with complex kernels
in Krein space. In particular, using the decomposition of
(Ũ′

t
∗Ũ′

t)
2 = ΠΥ2ΠH, we whiten the estimated projection

to find orthogonal components,i.e.

U′
t , Ũ′

tΠ|Υ|− 1
2ΠH. (48)

The new eigenvalues’ magnitudes are given by

|Λ′
t| = diag(U′∗

tUt|Λt|) (49)

where diag(.) discards the values, not located on the diagonal.
After substituting the new representation with the original

set, we continue the update through the usual process. Note
however, the variable for the number of previous data points
Nt remains unchanged. In total, the reduced set contains
Q(R + 1) preimages,i.e. Q for each component and an
additional set ofQ data values to represent the meanµt.
Therefore, we compute a reduced set whenever the number
of samples inXt exceedsQ(R + 1). For clarity, the code is
provided in the supplementary material.

B. Direct Online SFA with Special Kernels

We now present a special kernel family allows for a direct
computation of online KSFA, coined direct online KSFA.
Direct online KSFA does not require a reduced set expansion,
making the update computationally faster and more accurate.

1) Motivation: Eq. (6) defines a regular Krein space’s
kernel representation as the dot-product between the implicitly
defined mappingsφ(x), φ(y) ∈ K, wherex,y ∈ CP ′

are
samples in the original feature space. In traditional systems,
the implicity of the mapping, however, makes the reduced set
expansion necessary. In our previous work [12], we introduce
a special kernel which does not require such set. In particular,
the kernel can be expressed exactly by two explicit mappings:

a(x) =







Rx⊙eiθx

2

√

P ′
∑

p=1

R2
x
(p)P ′

eiθx






, b(x) =







eiθx

Rx⊙eiθx

2

√

P ′
∑

p=1

R2
x
(p)P ′






(50)

where x corresponds to an image with vectorized gradient
magnitudesRx ∈ R+P ′

and gradient anglesθx ∈ [−π, π)P
′

.
Here, the operator⊙ is shorthand for a componentwise mul-
tiplication, andeiθx ,

[

eiθx(1) · · · eiθx(P
′)
]T

. As this
kernel has been shown to achieve state-of-the-art performance
when utilized for tracking and recognition [12], We now desire
to employ this kernel for online KSFA.

For generality, we consider a special kernel family. In
particular, we assume that our kernels are expressed by two
explicit functionsa : CP ′ → CP andb : CP ′ → CP such that

k(x,y) = a(x)Hb(y) = a(y)Hb(x). (51)

It is important to note here that not our mapping is not only
finite dimensional like [24], but it is also exactly equivalent to
the computation of the kernel function.

2) Direct Online Learning: Let us develop a direct
online KSFA algorithm for any kernel that satisfies eq. (51).
The main benefits of the two mappings is the capability of
computing an equivalence of the implicit projection explicitly.

Given the sample matrices of mappingsa and b, denoted
X(a) =

[

a(z1) · · · a(zN )
]

and X(b), we replace the
implicit linear combinationX̃Ω with two explicit matrices
A = X̃(a)Ω = X(a)CΩ andB = X̃(b)Ω. Then, the projec-
tion of a new samplez is exactly computed by utilizing either
of its mapping, such thatΩX̃∗φ(z) = AHb(z) = BHa(z). We
reformulate the online learning process using this setup.

We exploit the explicit mappings to find the decomposition
of the inner matrix in eq. (25)via

[

|Λt−1| AH

t−1Bδ

BH

δAt−1 |Λδ|

]2

= Ω̂tΛ
2
t Ω̂t (52)

whereAδ andBδ is related to the new data iñX(a)
δ andX̃(b)

δ

respectively. The update ofAt andBt is analogous to eq. (26):

At =
[

At−1 Aδ

]

Ω̂t (53)

Bt =
[

Bt−1 Bδ

]

Ω̂t. (54)

Additionally, we substitute the data meanµ with the explicit
versions,µ(a) = X(a)M andµ(b), making the correction in
eq. (27) and the mean update in eq. (28) trivial.

All that is left to do, is the formulation of the slow feature
extraction in section III-A2 using the explicit mappings. We
rewrite the projection in eq. (29) as follows

WH

t X̃
∗
t ṠtX̃tWt

≈ Pt|Λt−1|−1AH

t−1Ẋ
(b)
t−1Ct−1Ẋ

(a)
t−1

HBt−1|Λt−1|−1Pt

+ |Λt|−1AH

t Ẋ
(b)
δ CδẊ

(a)
δ

HBt|Λt|−1 (55)

whereẊ(a) and Ẋ(b) are the explicit versions of the derived
samples inẊ. Notice thatX̃W is expressed throughA|Λ|−1

and B|Λ|−1. Analogously, incorporating explicit mean rep-
resentationsµ̇(a) = Ẋ(a)C and µ̇(b), we apply the mean
correction factor in eq. (34) and update the projected mean
in eq. (35) usingA|Λ|−1 andB|Λ|−1.

After eigenvalue decomposition of the whitened scatter
matrix of the derived samplesWH

t X̃
∗
t ṠtX̃tWt = ΘtΣtΘ

H
t

we represent the slow featuresVt by the explicit matrices
At|Λt|−1Θt andBt|Λt|−1Θt, and we apply our projections
on either mappinga or b of novel incoming data points. A full
implementation can be found in the supplementary material.

C. Running Time Analysis

We analyze the complexity of our setups thus far. For this,
we assume the dimensionality ofP to e larger than the number
of samplesN . Table II summarizes our findings.

TABLE II
COMPLEXITY OF EACH FRAME IN SEQUENTIAL DATA.

Batch SFA O(N3 + FN2)
Online SFA O(N3

δ
+NδQ+R(R +Nδ)

2 + FR2 +Q3)
Direct Online SFA O(N3

δ
+R(R +Nδ)

2 + FR2)

First, let us consider the complexity of the batch algorithm
for SFA. We compute the eigenvalue decomposition of the
kernel matrix to solve the PCA stage of SFA. A linear kernel
function requiresO(N2) to compute the kernel matrix for
N samples. The eigenvalue decomposition can be evaluation
in O(N3). The final stage, which finds theF slow feature
functions, is an eigenvalue decomposition inO(FN2).
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The online method with reduced set expansion requires
an incremental update at each time-step. In particular, we
compute the eigenvalue decomposition of the kernel matrix for
the novel data samples inO(N3

δ ). We then combine the new
data with the support set of sizeQ using the kernel, costing
O(NδQ), to produce a matrix of size(R +Nδ)× (R +Nδ)
(eq. (25)), which eigenvalue decomposition we compute in
O(R(R+Nδ)

2). Here,R represents the number of components
in the PCA. The final eigenvalue decomposition to find the
slow features costsO(FR2). However, not only does the com-
plexity of the update need to be accounted for, we also require
the optimization problem for the reduced set expansion. This
is commonly done inO(Q3) for linear kernel functions.

In the direct online SFA we benefit from the known map-
ping functions. Hence, the computation of the PCA stage is
composed of two eigenvalue decompositions inO(NδQ

3) and
O(R(R+Nδ)

2) respectively. The final state is again computed
in O(FR2). Notice, no optimization step is required as pre-
images are not needed.

IV. A PPLICATIONS OFONLINE SFA

We introduce the first SFA-based change detection which
we apply to temporal video segmentation and tracking with
multiple appearance models.

A. Temporal Video Segmentation

One application of incremental SFA is temporal video
segmentation through change detection. In particular, given
a video with multiple activities, the segmentation of these
activities is closely related to finding consecutive frameswhich
have large differences in their slow features [3].

SFA natively minimizes the slowness of a signal, see eq. (9).
In video, the slowness uses the squared magnitude of the
derivative signal, extracted from a sample frame. Analogously,
we define thechangeof a signalxn ∈ K, at time t, as the
magnitude of its projected derivative,i.e.

ct(xn) = ẋ∗
nVtV

∗
t ẋn = DT

nX
∗
nVtV

∗
tXnDn (56)

whereXnDn is a product of matrices, which describes the
derivative ofxn, using the notation from section II-C.

When a new activity starts, the change is expected to be
“unusually” large. We measure the importance of a change
as achange ratiobetween the new data pointxNt+1

and the
average change of previous data, given by

rt(xNt+1
) =

Ntct(xNt+1
)

∑Nt

n ct(xn)
. (57)

Notice however, a trivial update of the mean is not possible,
as ct changes at each time interval. If we stored the whole
signal in memory to compute the average at each time-step,
the requirements of an online system would be violated. A
sliding window could alleviate this problem, but it does not
take the dynamics of the whole video into account.

Let us now present an alternative approach. Considering
eq. (22) and the related update in eq. (39), we already know the
eigenvalue decompositionV∗

tXtDtCtX
T

t X́
∗
tVt = ΘtΣtΘ

H

t .

The eigenvalues are much related to the sum of previous
changes, and we can compute eq. (57) as follows

rt(xNt+1
) =

Ntct(xNt+1
)

tr(Σt) + µ̇∗
tVtV

∗
t µ̇t

(58)

whereµ̇∗
tVtV

∗
t µ̇t handle the mean substraction byµ̇t.

With the change ratiort it is now possible to identify
significant changes in data streams. At each time-step, we first
analyze the significance of variation, and then update the SFA
with the new data point. A threshold is applied to find the
frames with large amount of change. These frames provide the
split position in the temporal segments of the video stream.
An optional median filter may be applied to smoothen the
change detection. However, if immediate output is required
this process may be skipped.

B. Multi Appearance Model Tracking

Building on change detection, we now propose a tracking
framework that detects likely areas of drift. Although many
tracking applications benefit from online learning [9], [11],
[12], susceptibility to drift is a challenging problem [11]. One
of the reasons drift can occur is the prolonged exposure to
corrupted data,e.g.caused by occlusions, appearance changes
or pose variations. Typically these instances harm the tracking
system over time, as learned appearances are forgotten about
in the online appearance model. One technique to suppress
drift in tacking is the combination of multiple trackers n a
unifying framework [38], [39]. In [40] an event-driven tracking
system is introduced. These methods are, however, outside the
scope of this paper. In our work, we want to understand the
benefit of incremental SFA and its change detection algorithm
to improve upon a simple tracking framework.

In [12] we introduce the direct incremental KPCA tracker
(DIKT) which builds on online PCA learning as observation
model. In particular, DIKT’s PCA subspace of the target is
updated incrementally after every5th frame. The update is
composed of the tracked particles. We refer to [12] for details.
We now incorporate change detection to DIKT. Figure 3
summarizes our setup. We start with one initial online model
that is used for the tracking mechanism. Once a change is
detected, the current version of the knowledge base is copied
to create an active online model, and a dormant offline model.
The online model now performs the tracking and receives
updates, while the offline model is unchanged. After further
changes, we create an offline and online model for each
version of the appearance description and tracking is donevia
a combination of all online methods. The most similar models
are merged, to satisfy the online requirements.

The following summarizes DIKT’s tracking procedure and
the proposed tracking with multiple appearance models. Our
change detection and merging algorithm are then presented.

1) Existing Tracking Procedure:We explain DIKT’s
existing tracking procedure [12] as a probabilistic frame-
work. First, let us consider the framework under linear fea-
tures that do not require a kernel representation. LetAt =
{

A1
t , . . . ,AP

t

}

be the set ofP affine transformations extracted
by a particle filter at timet, andIt =

{

I1
t , . . . , IP

t

}

be the
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Offline Model

Offline Model Offline Model

Offline Model

Online Model

Offline Model Online Model

Model

Model

copy copy

merge merge

change

change

change

Fig. 3. Tracking with multiple appearance models, using change detection.
The models are copied into an offline and online model each time a change
is detected. The online models are used to generate the tracking results, while
the offline models remain dormant until further changes are detected. Most
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subspace, while the internal distance is the displacement between the sample’s
projection and the mean.

corresponding observations. We find the probability ofAp
t

givenIt as

p(Ap
t |It) = p(Ap

t |Ip
t ) ∝ p(Ip

t |Ap
t )p(Ap

t ). (59)

Hence, the system is composed out of an observation model
p(Ip

t |Ap
t ) and a transformation modelp(Ap

t |Ap
t−1).

The transformation model is a mixture of Gaussian
P ′

∑

p′=1

p(Ap′

t−1|Ip′

t−1)N (Ap′

t−1,Ξ)|Ap
t

(60)

where the likelihood of previous time-steps,p(Ap′

t−1|Ip′

t−1),
acts as weight, andΞ is an independent covariance matrix,
which represents the variance in horizontal and vertical dis-
placement, rotation, scale, ratio and shew [9], [12]. Notice, the
transformation model remains unchanged in this paper.

Let us consider the observation model. Probabilistic PCA
[41] allows us to formulate the likelihood of a sample as [9]

p(x) =
(

(2π)d‖U(Λ
1
2 − σ2I)UT + σ2I‖

)− 1
2

e
− 1

2σ2 (x−µ)T(I−UU
T)(x−µ) (61)

e−
1
2
(x−µ)TUΛ

−
1
2 U

T(x−µ) (62)

wherex corresponds to the features inIp
t , U is the PCA’s

subspace,Λ
1
2 contains the PCA’s eigenvalues,µ represents

the mean of the training data,d is the dimensionality ofx,
‖.‖ computes the determinant of a matrix, andσ2 controls
the spread. Hence, the probability of a sample being from a
single PCA is explained by the reconstruction error (eq. (61))
and the inner subspace distance (eq. (62)). The PCA for the
appearance model is update after every 5th frame [12].

With kernelized data, the model is commonly not a well
defined probability distribution. Nonetheless, as illustrated in

figure 4 and in [42], we may still base our cost function on the
internal and external distance of the PCA. Hence, the internal
distance is given, as before, by

(x − µ)∗U|Λ|− 1
2U∗(x− µ) (63)

and the external distance is given by the kernel (eq. (2))) as

(x−UU∗x)∗(x −UU∗x). (64)

The most probable sample is chosen and used as update.
2) Tracking with Multiple Models:As multiple active

tracking models are produced, their knowledge is to be com-
bined.

Let us assume a model withN PCAs. We take the prob-
ability of a sample as the average of multiple Gaussians.
Therefore, the probability for linear data is written as

p(x) =
1

N(2π)
d
2

N
∑

n

(

σRn−d
n

Rn
∏

r=1

λ
− 1

4
nr (65)

e
− 1

2σ2
n
(x−µn)

T(I−UnU
T

n)(x−µn) (66)

e−
1
2
(x−µn)

T
UnΛ

−
1
2

n U
T

n(x−µn)

)

(67)

whereUn, Λn, µn andRn correspond to thenth PCA, λnr

is the rth eigenvalue of thenth PCA, and the determinant is
expressed as the product of the matrix’s eigenvalues (eq. (65)).

For the kernel version, we employ eq. (63) and eq. (64) as
before. Again, the most probable sample is used for the update
of all active PCA models. Offline models are unchanged.

3) Change Detection for Tracking:We utilize the
change ratiort from eq. (58) to detect likely areas of sudden
variations, which we believe are indications of appearance
changes.

In particular, a single instance of online SFA is run along
side the tracking system. Its input data consists of the best
tracked warped image particles as provided by the observation
model (the same features as for tracking are employed). DIKT
computes its PCA update after each5th frame. We update SFA
at the same time. The delay not only enables more stable learn-
ing, it also allows us to impose a median filter to improve the
change detection. Finally, we enforce nonconsecutive detection
of changes to prevent multiple detections at a single change
over several video frames.

4) Merging Appearance Models:At each change detec-
tion, we copy all previously generated PCA models to create
one offline and one online version each. Corruptions only alter
half of the appearance models, allowing the other half to stay
uncorrupted. In such framework, however, the number of PCA
models doubles at each change. Thus appearance models need
to be merged for such setup to satisfy a memory budget. We
detail this procedure in the following.

Let there be two data-setsX1 = [φ(z11) · · · φ(z1N1
)] and

X2 = [φ(z21) · · · φ(z2N2
)] that make up two different PCAs.

Their eigendecomposition of the kernel matrices are given by

K̃2
1 =

(

1

N1
X̃∗

1X̃1

)2

= Ω1Λ
2
1Ω

H

1 (68)

K̃2
2 =

(

1

N2
X̃∗

2X̃2

)2

= Ω2Λ
2
2Ω

H

2 . (69)
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Fig. 5. Change ratio (column 2), final slow features (column 3), and learning time (column 4) are shown for online SFA (IKSFA), SFA with a reduced set
of 60 elements (Q = 10) (R-IKSFA), direct online SFA (D-IKSFA), and batch KSFA.

The PCAs to be merged are the most similar PCAs, as given
by the smallest angle difference [43]

e(U1,U2) = max(R1, R2)−
R1
∑

r1=1

R2
∑

r2=1

|u∗
1r1

u2r2
| (70)

where U1 =
[

u11 · · · u1R1

]

and U2 =
[

u21 · · · u2R2

]

are the tested PCAs’ subspaces.
The combination of both PCAs is quite similar to the

update of the whitening projection for the PCA part of SFA
in eq. (25). Thus, we find the new, combined eigenspectrum
using the decomposition of

K̃2 = Ω̌

[

1
2 |Λ1| ΩH

1 X̃
∗
1X̃2Ω2

ΩH
2 X̃

∗
2X̃1Ω1

1
2 |Λ2|

]

Ω̌. (71)

Notice, we introduce weighted eigenvalues to give both PCAs
similar importance, especially in conjunction with further
future updates. The number of samples in the combined PCA
is N = N1+N2

2 and the mean is updated accordingly.
After combining two PCAs, a single PCA model is produced

which contains the knowledge base of both instances. An
online and an offline version is stored to continue the tracking
in conjunction with all other active models.

V. EVALUATION

As a proof of concept, we apply the proposed incremental
SFA to temporal video segmentation and tracking.

A. Change Detection with Synthetic Data

We test the general properties of incremental SFA for
the case of change detection with synthetic data. In partic-
ular, we compare batch KSFA, which incorporates all data
points at once, with incremental KSFA which learns at each
time-step. As in [1], we assume an input signalxn =
[

sin(yn) + cos(11yn)
2 cos(11yn)

]T
where yn is taken

from 2000 equally distributed values in the range[0, 4π]. The
corresponding slow features are to be found. With a quadratic
kernel, the solution ison =

[

sin(yn) cos(11yn)
]T

[1].
Three versions of incremental KSFA are tested (figure 5).

IKSFA uses the full data set as support – it grows larger over

time. R-IKSFA employs a reduced set expansion for learning
with constant memory. D-IKSFA exploits the direct equivalent
mappings of the quadratic kernel (i.e. a(xn) = b(xn) =
[

xn(1) xn(2) xn(1)xn(2) xn(1)
2 xn(2)

2
]T

).
Finally, we consider KSFA as ground truth, as in this setup,
the complete sequence is knowna priori.

All methods converge towards the same slow features.5

However, they differ in their execution. IKSFA is most stable
for change ratio estimation. With a reduced set, noisy results
are encountered at the beginning of the sequence, when learned
by R-IKSFA. D-IKSFA performs similarly to IKSFA. In terms
of running time, IKSFA performs worst as the complete set of
samples is required for the kernel trick at each time-step. R-
IKSFA’s reduced support set improves execution by a factor
of 9, while D-IKSFA squeezes the learning time to3.9s –
more than11 times faster than IKSFA, and 3 times faster than
the batch version of KSFA. Notice, as preimages are easily
computed for the quadratic kernel, R-IKSFA is also fast.

B. Change Detection with Real Data

We evaluate the quality of online SFA and change detection
with real data. Our data set consists of the expressions in the
MMI Facial Expression Database (MMI) [44]. We concatenate
all videos and employ our tracker in [12] to extract aligned
images (40×40 pixel) of 60 activities. The resulting sequence
consists of 4182 frames, cropped to the subject’s face.

We analyze the proposed framework with different ker-
nels. The original image data input are lexicographical
pixel intensities in [0, 1]. We utilize the direct input fea-
tures (Linear), the quadratic kernel (Quadratic), the standard
Gaussian kernel (Gaussian) and our Krein space kernel in
[12] (Krein). The deviation of the Gaussian is fixed to

1
N(N−1)

∑N
n=1

∑N
n′=1 ||xn − xn′ ||2, whereN is the number

of samples [45], and the parameters of Krein follow [12].
1) Incremental Learning Behavior:To quantitatively

measure the learning behavior of online SFA, we compare it
to its offline equivalent. In particular, we compute the angle

5As in standard PCA, the sign of the components is irrelevant.
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Fig. 6. Angle error between the batch learned and incrementally learned subspaces for different number of components inthe PCA (R) with varying number
of slow features. No reduced set, or forgetting factor is applied.
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Fig. 7. Angle error between the batch learned and incrementally learned subspaces for reduced set representation of 260preimages (prefix R) and direct
mappings (prefix D). Results are shown for different sequence sizes and a PCA of 25 components.

difference between the offline and online subspaces [43]

e(F ) = F −
F
∑

f1=1

F
∑

f2=1

|v∗
1f1

v2f2
| (72)

whereF is the number of slow features evaluated, andv1f1
and v2f2

are the individual slow feature projections of the
compared SFAs.

Figure 6 shows the angle error with different numbers
of components in the PCA and varying number of slow
features. Here, the kernel versions with complete support
set are employed, and the forgetting factor is set to1 (no
forgetting) to facilitate comparison. The Linear, Quadratic and
Krein kernel perform equally well. The Gaussian kernel has a
slightly increased error rate. In general, all perform withlow
errors and they are independent of the number of components
in the PCA stage of SFA.

Next, we evaluate the incremental SFA with reduced sets
(prefix R) or direct mapping (prefix D). We fix the number of
components in the PCA toR = 25 and request a budget of
260 preimages in the reduced set,i.e. Q = 10. In figure 7 we
show the angle error when learning is performed on different
sequence lengths. The algorithms work well for short videos
(about 500 frames). Nonetheless, approximation errors in the
reduced set representation seem unavoidable and introduce
lower performance in longer sequences. Here the algorithms
with direct mapping are more suitable, as low errors are
achieved for any sequence length.

2) Change Detection:We now apply the change detec-
tion algorithm of section IV-A to our dataset. MMI consists
of facial expressions, labeled by onset, apex and offset. The
onset and offset indicate the start and end of an expression

Fig. 8. False positive over false negative rate of differentkernel setups. The
batch version of Krein learns from the whole sequencea priori, while Window
Krein performs the lerning as batch in a window.

respectively. We utilize these labels as ground truth as they
mark the frames in which the activity in the video changes.
The equal error rate of false negatives over false positivesthen
reveal the performance of individual setups.

Linear, Quadratic, Gaussian and Krein are compared. We
optimize with respect to the number of PCA componentsR,
the forgetting factorw and the number of slow featuresF .
A median filter of 8 frames is applied to the output and
direct mappings are used where possible. The Gaussian kernel
function receives a fixed budget ofQ = 10. All methods
perform best withw = 0.996 (≈ 250 frames), andF = 3.
However, the ideal number of PCA components varies for each
method (R = 15 for Linear,R = 30 for Quadratic,R = 50
for Gaussian,R = 10 for Krein). We also include the batch
version of Krein (Batch Krein), for which we compute the
change ratio withall samples known a priori– i.e. we learn
the slow features from the complete sequence. Finally, a batch
algorithm from a sliding window of 250 frames (equivalent to
the forgetting factor) is compared against (Window Krein).
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Fig. 10. The 3 slowest features after900 frames using the linear kernel.
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The eigenvalues after PCA learning are visualized in the bottom row.

The false negative over false positive rates are shown in
figure 8. The quadratic expansion has a slightly better equal
error rate than linear features, while the Gaussian kernel is the
most performant positive definite setup. The best results are
achieved by the direct version of incremental SFA with Krein
kernel (D-Krein). The advantage of our Krein kernel stem
not only from its domain-specific design, its direct mappings
are fast to compute (in linear complexity) and less PCA
components are required to outperform other systems. For
example, as comparison, the direct mapping of the quadratic
expansion is polynomial, and 30 PCA components are em-
ployed. Figure 9 shows an excerpt from the results for Krein.

The batch version of Krein (Batch Krein) performs with
reduced results to its online or windowed equivalent. The
online version is advantaged as the forgetting factor allows the
system to adapt to different parts of the video. Similarly, with
a sliding window, only recent frames are used. To visualize
the difference, we show the top 3 projections after frame900
for the Linear kernel (i) as batch setup, (ii) withw = 1 (no
forgetting), and (iii) withw = 0.996 (the best forgetting value)
in figure 10. Here Linear is chosen to aid visualization, as the
projections remain in the original space. We compare (i) to
(ii). The resulting projections are virtually equivalent,which
validates our update procedure. With forgetting, the effect of w
becomes apparent, as the projections are most relevant to later
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Fig. 11. False positive over false negative rate comparisonfor optical flow
(Flow), intensity values (Linear) and our kernel (Krein) asPCA and SFA.

expressions. Notice, the smile around frame 530 and visible
for (i) and (ii) is no longer in the subspace.

In contrast to Window Krein, our proposed D-Krein uses
a forgetting factor and incremental learning. Hence, our ap-
proach is much faster, as it uses the previously learned model
from the frames before. On the other hand, Window Krein
resets the complete optimization at each time-step. Notice
also, the forgetting factor only reduces the weight of previous
frames – it does not remove them – allowing for significant
components to be retained.

We conclude this part of the evaluation with a selection of
videos from different scenarios. Figure 12 shows the temporal
segmentation of 2 yoga sequences, taken from YouTube (http:
//www.youtube.com/watch?v=ziVctQnyvwE) and 2 examples
from the ballet dataset in [46]. Note, our algorithm finds the
visually distinct partitions.

3) Comparison to Optical Flow and PCA:In the final
part of the experiments for change detection, we analyze our
framework in comparison to alternative methods. A typical
approach to finding drift in many tracking frameworks is the
distance between the current frame and the learned eigenspace.
Similarly, this can be applied to change detectionvia the
reconstruction error given by

e(R) = ‖x−URU
H

Rx‖2 (73)

where UR is the reduced eigenspace of previous samples,
and x denotes the tested input. The eigenvectors can be
incrementally learned by the methods in [9], [12].

Additionally, let us consider another feature input, known
as optical flow. Optical flow has proven advantageous for
describing the dynamics of a video sequence [47]. While the
computation of such features is expensive (sub-realtime with
the source code of [47]), we will compare it to our SFA with
Krein space kernel in this section.

We use the following setups in our experiment: PCA learn-
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Fig. 12. Frames of the segmentation for yoga and ballet scenes. SFA’s change detection finds the visually distinct parts of the videos. Our Krein kernel with
direct mapping is used with the same parameters as before.

ing with intensity values (PCA-Linear), optical flow (PCA-
Flow) and our kernel (PCA-Krein), which are compared to
SFA with intensity values (SFA-Linear), optical flow (SFA-
Flow) and our kernel (SFA-Kernel). Figure 11 illustrates the
results. Notice, change detection solely based on PCA without
the added temporal information (i.e. PCA-Linear and PCA-
Krein) is inferior to other methods. Less efficient PCA-Flow
on the other hand is competitive in terms of equal error
rate. SFA inherently incorporates temporal information asthe
derivative scatter matrix is considered in its optimization.
Indicative of this is the good performance of SFA-Linear and
SFA-Krein. SFA-Flow is less performant, as optical flow is
less valuable to SFA.

Figure 10 visualizes the learned subspaces of SFA and PCA.
Notice, while SFA finds the important features, which change
slowest over time. In contrast, PCA computes the features that
best describe the samples, without the temporal information.
For instances, the eyebrows and contours around the nose of

the subject are more prominently modeled with PCA.

C. Tracking with Change Detection

In our final experiment, we evaluate our tracking frame-
work with change detection (CD-DIKT), as proposed in
section IV-B. Here, we focus on the analysis of the gain,
that change detection using SFA brings to adaptive tracking.
Hence, we use DIKT [12] as base line comparison.

The performance is tested on the9 videos also used in [12].
These videos contain drastic changes of the targets appearance,
including pose variation, occlusions, and nonuniform illumina-
tion. All videos have3-7 fiducial points which allow for quan-
titative performance evaluation. We use the root mean square
(RMS) errors between the true and the estimated locations of
these points as performance indication. Our choice of param-
eters follows [12]. For all videos, we fix the translation model
of the particle filter tracking framework to the values provided
by DIKT’s source code at http://www.doc.ic.ac.uk/∼sl609/dikt.
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The parameters of the change detection in CD-DIKT are set
for each video specifically, as the thresholds of the change
ratio vary video-dependently. All other parts of DIKT and CD-
DIKT are identical. See videos in supplement.

TABLE III
MEAN RMS ERRORS FORDIKT AND DIKT WITH CHANGE DETECTION.

Vid1 Vid2 Vid3 Vid4 Vid5 Vid6 Vid7 Vid8 Vid9
DIKT 4.44 2.77 2.58 (lost) (lost) 3.79 2.19 2.75 (lost)

CD-DIKT 4.15 2.60 2.34 5.95 (lost) 3.68 2.18 2.68 6.70

Table III lists the mean RMS errors for each video. Con-
sistently, CD-DIKT improves upon DIKT. While the RMS
error is only marginally better, CD-DIKT is more robust. In
particular, CD-DIKT is capable of tracking Vid4 and Vid9
successfully as it utilizes previously seen appearances. Finally
we note that CD-DIKT is highly parallelizable due to its
independent set of appearance modules and the additional
online SFA. Hence, a similar execution time to DKT can be
achieved, utilizing multiple threads.

Figure 13 shows an example of Vid4. Not visible in the
figure, the first change splits the initial model into an active
model (A), and a dormant offline model (O). In frame 415 a
change is detected, which reactivates the dormant model (O-
A) and the already active model is split into offline and online
versions, A-O and A-A respectively. The tracker consults both
active models,i.e. O-A and A-A, during the occlusion. Notice
however, the more naı̈ve O-A is favored during the occlusion
as it knows less about the face. Around frame 435 the face
is fully visible again, and model A-A kicks in for a short
period of time. Finally, after the second change detection in
frame 505, initially model A-O-A provides most confidence.
This model consists of data before the occlusion, and was idle
during the input of corrupted data. Finally O-O-A is favored
thereafter, as this model is significantly trained from dataafter
the corruptions in frame 415 to 505.

VI. CONCLUSION

In is paper, we proposed an exact kernel slow feature anal-
ysis (KSFA) framework for arbitrary Krein space kernels. We
formulated general online KSFA which employs a reduced set
expansion to fulfill budget requirements. Finally, by utilizing
a special kind of kernel family, we formulated an exact online
KSFA for which no reduced set is required.

We apply our online SFA and develop the first SFA-based
change detection algorithm for stream data. This framework
is employed for temporal video segmentation and tracking.
When applied to synthetic and real data streams, our method
successfully segments the input using change detection. Com-
bined with an online learning tracking system, change detec-
tion improves upon systems without such detection, in our
evaluation.
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