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Abstract—Laughter is clearly an audiovisual event, consist-
ing of the laughter vocalization and of facial activity, mainly
around the mouth and sometimes in the upper face. However,
past research on laughter recognition has mainly focused on
the information available in the audio channel only, mainly
due to the lack of suitable audiovisual data. Only recently
few works have been published which combine audio and
visual information and most of them deal with the problem
of discriminating laughter from speech or other nonlinguistic
vocalisations using presegmented data. There are very few
works on audiovisual laughter detection from unsegmented
audiovisual streams and have either been tested on small
datasets or use coarse visual features. As a consequence, results
are mixed and it is not clear to what extent the addition of
visual information to audio is beneficial for laughter detection.
In this work, we attempt to overcome the limitation of previous
studies and investigate the performance of audiovisual fusion
for laughter detection using audiovisual continuous streams
from the SEMAINE database. Our results suggest that there is
indeed an improvement in laughter detection with the addition
of visual information which is dependent on the performance
of the voice activity detector.

Keywords-Laughter Detection, Nonlinguistic Vocalisations,
Audiovisual Fusion

I. INTRODUCTION

Nonlinguistic vocalizations (or nonverbal vocalizations)

are very brief, discrete, nonverbal expressions of affect in

both face and voice [1]. Although information related to

human emotions is conveyed by these vocalizations research

on their automatic recognition is limited compared to fa-

cial expressions or speech recognition. One of the most

important nonlinguistic vocalizations is laughter, which is

the most frequently annotated acoustic nonverbal behaviour

in meeting corpora.

Therefore it is not surprising that previous work on non-

linguistic vocalisations has mainly focused on the detec-

tion/classification of laughter. The vast majority of these

works fall into two categories: 1) audio-only laughter de-

tection [2], [3], [4], [5], where the aim is to segment

an audio stream into laughter and nonlaughter segments,

and 2) laughter-versus-speech classification/discrimination,

[6], [7], [8], [9], where the aim is to correctly classify

presegmented episodes of laughter and speech or different

types of laughter. There have been also a few attempts to

discriminate between different non-linguistic vocalisations,

like laughter, hesitation and consent [10] based on audio

only.

The common characteristic of all these works is that they

are based on audio information only, i.e., information carried

by the facial expressions has been ignored. It has been shown

that speech and laughter become more intelligible, especially

under noisy conditions, for humans when visual information

is present [11], [12]. This finding has inspired research on

audiovisual speech and emotion recognition. However, the

lack of suitable audiovisual data has prevented research on

audiovisual laughter recognition for a long time.

Only recently, few works on audiovisual discrimination

between speech and laughter [13], [14], [15], [16], [17]

or between laughter, hesitation and consent [18] based

on presegmented episodes have been published. However,

work on audiovisual detection of laughter or other non-

linguistic vocalisations using continuous audiovisual streams

is limited. To the best of our knowledge, there are only three

works in this area. The first one is by Ito et al. [19] who used

basic geometric and appearance features like lip lengths and

cheek mean intensities in combination with MFCCs to detect

laughter. However the dataset is very small, just 3 short

dialogues (4-8 min each) were used, so the results should be

treated as preliminary. In a more recent work Escalera et al.

[20] used features based on mouth movements together with

pitch and spectral entropy to detect laughter in 18 videos of

dyadic interaction (4 min each). This is a larger dataset but

the results are not conclusive whether the combination of

audio and visual information is beneficial. In the last work

[21], a much larger dataset has been used, 2 videos of 90

min each containing 4 subjects, but the visual features are

coarse, based only on head and body movements. The results

on laughter recognition are rather inconclusive whether the

addition of visual information improves the performance or

not. Probably this happens due to the coarse visual features

that had to be used due to the nature of the data.

In this work we attempt to overcome some of the limita-

tions of the previous work by using a large dataset from the

SEMAINE database, 42 sessions with a total duration of 188
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(a) Frame 150 (b) Frame 200 (c) Frame 250 (d) Frame 350 (e) Frame 450 (f) Frame 550

Figure 1: Example of Laughter from the SEMAINE database, session 35. The 113 tracked points can also be seen.

Table I: Training, Validation and Test Sets

Training Set Validation Set Test Set

Sessions 19-22, 29-31, 40-43, 70-73, 76, 79 46-49, 77, 78, 82-85 34-37, 60, 94, 95, 106-109, 112-115

Total Duration 77.3 min 60.2 min 51.3 min

No Speech Instances 2972 2174 2081

No Laughter Instances 45 77 54

min, and more refined visual features based on 113 facial

points. Our aim is to perform audiovisual laughter detection

using unsegmented audiovisual streams and investigate if

the addition of visual information helps. We use 10 subjects

and contrary to previous works only one subject appears

both in the training and test set. So our experiments are

close to but not completely subject independent. We combine

audio and visual features on decision level and we show that

audiovisual fusion leads to improved performance, which

however depends on the performance of the voice activity

detector.

II. DATABASE

The SEMAINE database [22] is used for the experiments

in this study since it contains audiovisual recordings of

several subjects which make it suitable for detection of non-

linguistic vocalisations.

Each subject interacts with 4 agents, which have different

personalities, for approximately 5 min. The agents are played

by human operators who have become thoroughly familiar

with the agent’s personality. The aim is to evoke emotion-

ally coloured reactions from the users whose reactions are

recorded by a camera with resolution 780 x 580 at 50

frames per second (fps) and a headset microphone at 48

kHz. It should be noted that although each user has his own

microphone the voice of the agent is also recorded by it.

So even when the user is silent some background speech is

present.

The recordings have been annotated in terms of the six

basic emotions and continuous emotional dimensions. Re-

cently word level annotations including a few non-linguistic

vocalisations like laughter, breath and sigh have been added

to the database. An example is shown in Fig. 1.

III. FEATURES

A. Audio Features

Cepstral features, such as MFCCs, have been widely

used in speech recognition and have also been successfully

used for laughter detection [2], [3] and laughter-vs-speech

discrimination [13], [15]. Therefore, we use 13 MFCCs in

this study as well, which are computed every 10ms over a

window of 40ms, i.e. the frame rate is 100 fps. The MFCCs

are augmented with the addition of the ΔMFCCs, which

capture some local temporal characteristics, and this leads

to an audio feature vector with 26 dimensions. The MFCCs

and ΔMFCCs are computed using the functions provided in

[23].

B. Visual Features

Changes in facial expression are captured by tracking

113 facial points using the facial point tracker described

in [24]. This is a 3D tracker so the output is automatically

head posed normalised, i.e., rotation, translation and scale

of the face have been removed. The features we use are

facial animation parameters (FAPS) which are automatically

computed by the tracker. FAPS are defined in the ISO

MPEG-4 standard.

IV. EXPERIMENTAL PROTOCOL

A. Data Preparation

We use the subset of publicly available sessions which

contain word level annotations. Sessions that cannot be

tracked because parts of the face are not visible have been

excluded. The remaining 42 sessions, which have a total

duration of over 3 hours, are divided into three sets, training,

validation and test sets as shown in Table I. Only one subject

appears in all three sets and this is because it has been

recorded in two different sessions (34 to 37 and 76 to 79).

All other subjects appear only in one set in an effort to make

the experiments as subject independent as possible. Finally,
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breath and sighs have been excluded due to the very small

number of instances available.

Normalisation: All the audio and visual features on the

training set are normalised to a zero mean and unity standard

deviation. The features on the validation and test set are

normalised by subtracting the mean μtr and dividing by the

standard deviation σtr which are computed on the training

set only. It should be noted that the values for μtr, σtr

are computed only for the parts of the training set that the

subjects vocalises, i.e. either speaks or laughs.

Synhronisation: As described in section III the audio and

visual features are extracted at different frame rates, 100

and 50 fps, respectively. In order to synhronise them, we

upsample the visual features by linear interpolation as in

[25].

B. Training

Based on the annotations provided we segment the train-

ing sessions into sequences that contain only one class,

i.e., speech or laughter sequences. Each sequence is used

as a training example to train time delay neural networks

(TDNNs) with one hidden layer and two outputs, one for

laughter and one for speech. The resilient backpropagation

algorithm [26] is used to train the networks for 1000 epochs.

We should point out that other learning algorithms like

Hidden Markov Models (HMMs) could have been used but

the goal of this work is to investigate if the combination

of audio and visual information is beneficial for laughter

detection. As shown in [21], the performance of HMMs

and dynamic neural networks is comparable for laughter

detection.

Two networks are trained, one using the audio features

and one using the visual features and fusion is performed

on the decision level. We also tried feature-level fusion but

it performed slightly worse on the validation set, so we only

report results for decision-level fusion in this study.

The main problem is that the vast majority of training

examples belong to the speech class, given the nature of the

interaction between the user and the agent. It is well known

that highly imbalanced sets can degrade the performance of

classifiers, therefore we randomly downsample the speech

examples used for training to 100. This means that we throw

away a significant number of training speech examples, so

we repeat training 10 times. Each time we randomly select

a different subset of size 100 for speech, and we report

the mean and standard deviation of recall, precision and F1

measure, which are the performance measures used in this

study. We should emphasise that we report the performance

per frame and not per laughter/speech instance.

C. Parameter Optimisation

For each network the number of hidden neurons and the

inputs delays need to be optimised on the validation set. The

optimal number of hidden neurons found for the audio and

visual networks are 30 and 5, respectively, and the optimal

number of input delays for both networks is 4. In addition,

the decision fusion weights need to be optimised on the

validation set for each class. The optimal audio weights for

the two classes (speech, laughter) are the following: 0.9 and

0.4. Therefore the visual weights are 0.1 and 0.6.

D. Voice Activity Detection

In order to deal with the silent segments a voice activity

detector (VAD) is needed. It detects the non-silent segments

where the audio-only, visual-only and audiovisual detectors

are applied. The segments identified as silence are not used

further. In this study we use the VAD described in [27].

We also we use an ideal VAD, which is based simply on

the silence annotations provided. This is definitely not a

realistic scenario, since we make the assumption that we

have a perfect detector that does not make any mistakes.

However, we would like to investigate the influence of the

voice activity detector in segmentation. This is important,

since as described in section II, crosstalk is present and

although the subject may be silent the voice of the agent

can be clearly heard.

V. RESULTS

The performance of the audiovisual segmentation is mea-

sured on the 15 test sessions. Initially, a VAD is applied to

identify the segments where the subject vocalises. Then, the

trained TDNNs are fed with the audio/visual features of the

voice activity segments and they label each frame as speech

or laughter.

Results when the ideal VAD is used are shown in Table

II. It is obvious that the combination of audio and visual

information is beneficial for speech and laughter. The recall

rate for speech increases by 3.1%, whereas the precision rate

remains almost the same and this leads to an increase in the

F1 measure of 1.6%. Similarly, the F1 measure for laughter

increases by 8.4 %, due to a 7.9% increase in the precision

rate despite a decrease in the recall rate.

Results when the non-ideal VAD is used are shown

in Table III. The benefits of combining visual and audio

features follow the same pattern as above. The recall rate

for speech goes up by 2.6% and precision remains almost

the same and this results in a 1.1% increase in the F1 rate for

speech. The recall rate for laughter goes down by 3.4% but

at the same time the precision rate goes up by 2.7% which

leads to an increase in the F1 rate for laughter of 3.5%.

It should also be noted that silence achieves a high pre-

cision rate of 90.6% but a much lower recall rate of 66.5%.

In other words, this means that those segments labelled as

silence are indeed silence most of the time, however there

are several silent segments mislabeled as non-silence. This

is expected due to the voice of the agent being audible when

the subject does not vocalise, which is recognised as voice

activity by the detector. As a consequence, the precision rate
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Table II: Segmentation performance of the audio, video and

audiovisual classifiers on the test sessions, using an ideal

voice activity detector. The results presented are the mean

and (st. dev.) of the 10 experiments conducted. DF: Decision

Fusion, R: Recall, PR: Precision, F1: F1 measure.

R PR F1

Silence 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)

Audio
Speech 92.7 (1.6) 99.3 (0.0) 95.9 (0.8)

Laughter 46.1 (2.9) 10.6 (2.4) 17.1 (3.2)

Video
Speech 81.8 (6.9) 98.9 (0.1) 89.4 (4.2)

Laughter 31.3 (9.0) 5.9 (1.2) 9.8 (1.6)

Audiovisual (DF)
Speech 95.8 (1.2) 99.2 (0.0) 97.5 (0.6)

Laughter 43.2 (3.3) 18.5 (4.4) 25.5 (4.2)

for all classes decreases since several new segments, which

correspond to silence, are misclassified as speech or laughter.

It is also interesting to point out that the improvement in

speech detection is the result of increased recall, whereas

the improvement in laughter detection is the result of in-

creased precision. This means that visual information helps

in recognising speech frames, which had been labelled as

laughter by the audio-only classifier, more accurately. As

a consequence, the recall rate of speech increases and the

precision rate of laughter increases as well, as fewer speech

frames are confused with laughter.

We also see that the precision rate for laughter is low.

This is a consequence of the highly imbalanced test set.

Even though a small fraction of the speech examples is

misclassified as laughter, e.g., 4.2% when an audiovisual

detector is used with an ideal VAD, the actual number of

those misclassified examples is higher than the total number

of laughter examples.

An example of how the audiovisual detector works can be

seen in Fig. 2. The beginning of laughter is misclassified as

speech but the rest is correctly detected. We also notice that

there is a short false laughter and silence detection after the

end of the laughter episode. In addition, it is obvious that

the last silent segment is detected with a delay.

Overall, we see that audiovisual fusion improves the

recognition of speech and laughter, but it is affected by

the performance of the voice activity detector since it is

more pronounced in the case of the ideal voice activity

detector. We should also point out that the performance of

laughter detection is far from the performance of laughter-

vs-speech classification based on presegmented episodes

where F1 measures close to 90% are achieved [13], [15]. It

is also difficult to compare with other approaches, given the

completely different datasets and features used. For example,

an F1 measure of 63% is reported in [21] using Echo State

Table III: Segmentation performance of the audio, video and

audiovisual classifiers on the test sessions, using the voice

activity detector from [27]. The results presented are the

mean and (st. dev.) of the 10 experiments conducted. DF:

Decision Fusion, R: Recall, PR: Precision, F1: F1 measure.

R PR F1

Silence 66.5 (0.0) 90.6 (0.0) 76.7 (0.0)

Audio
Speech 87.6 (1.4) 76.6 (0.3) 81.7 (0.7)

Laughter 45.3 (2.3) 7.6 (1.5) 12.9 (2.2)

Video
Speech 76.6 (6.6) 74.9 (1.5) 75.6 (3.7)

Laughter 29.2 (8.5) 3.7 (0.7) 6.5 (1.0)

Audiovisual (DF)
Speech 90.2 (1.1) 76.5 (0.3) 82.8 (0.5)

Laughter 41.9 (2.9) 10.3 (1.7) 16.4 (2.2)

Neural Networks, but a laughter is considered as detected as

long as only a few frames are detected within the episode.

On the other hand, here we report the frame accuracy, so

by applying the same rule and then reporting performance

per episode will definitely improve the results. In an audio-

only study [3] where accuracy is reported per frame an F1

measure of less than 20% is reported on unseen subjects

which is comparable to the performance reported here.

VI. CONCLUSIONS

We presented an audiovisual approach for laughter

detection. We combined audio and visual information on

the decision level and showed that this combination leads to

improved performance over the audio-only detection. The

laughter detection performance on unsegmented streams is

significantly lower than laughter-vs-speech discrimination

using presegmented episodes which means there is a lot

of room for improvement. The need for more audiovisual

data is also evident, given the relatively low number of

laughter episodes present in the SEMAINE database, which

is expected to improve further the performance.
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