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Projected Gradients for Subclass Discriminant
Nonnegative Subspace Learning

Symeon Nikitidis, Anastasios Tefas, and Ioannis Pitas

Abstract—Current discriminant nonnegative matrix factoriza-
tion (NMF) methods either do not guarantee convergence to a sta-
tionary limit point or assume a compact data distribution inside
classes, thus ignoring intra class variance in extracting discrim-
inant data samples representations. To address both limitations,
we regard that data inside each class has a multimodal distribu-
tion, forming various subclasses and perform optimization using
a projected gradients framework to ensure limit point stationar-
ity. The proposed method combines appropriate clustering-based
discriminant criteria in the NMF decomposition cost function, in
order to find discriminant projections that enhance class separa-
bility in the reduced dimensional projection space, thus improv-
ing classification performance. The developed algorithms have
been applied to facial expression, face and object recognition,
and experimental results verified that they successfully identified
discriminant parts, thus enhancing recognition performance.

Index Terms—Face recognition, facial expression recognition,
nonnegative matrix factorization, object recognition, subclass
discriminant analysis.

I. INTRODUCTION

IT IS COMMON knowledge that the spatial image dimen-
sionality is much higher than that exploited by many

image analysis applications. This fact necessitates seeking effi-
cient dimensionality reduction methods for appropriate image
feature extraction, which not only alleviate computational
complexity but also boost performance of succeeding pro-
cessing algorithms. One such popular category of methods is
the subspace image representation algorithms which aim to
discover the latent image features by projecting linearly or
nonlinearly an image to a low dimensional subspace, where a
certain criterion is optimized.

Nonnegative matrix factorization (NMF) [1] is such a pop-
ular algorithm widely used in image processing. It is an
unsupervised data matrix decomposition method that requires
both the matrix being decomposed and the derived factors
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to contain nonnegative elements. The nonnegativity constraint
imposed by NMF on both the latent variables and the obser-
vations is especially meaningful when we operate on image
data since the underlying features are naturally nonnegative.
Moreover, in this case the semantic interpretability of the
nonnegative subspace learning is enhanced, since this con-
forms nicely to identifying appropriate basic elements which
are added to reconstruct the original image. This nonnegativ-
ity constraint distinguishes NMF from many other traditional
dimensionality reduction methods, such as principal com-
ponent analysis (PCA) [2], independent component analysis
(ICA) [3], [4] or singular value decomposition (SVD) [5].

One of the most useful properties of NMF-based methods
is that they usually produce a sparse representation of the
decomposed data. Sparse coding corresponds to a data repre-
sentation using few basic elements that are spatially distributed
and ideally nonoverlapping. However, because the sparseness
achieved by the original NMF is somewhat of a side-effect
rather than a goal, caused by the imposed nonnegativity con-
straints, different studies have attempted to control the degree
to which the derived representation is sparse. Toward this
direction, Hoyer [6] incorporated the notion of sparsity into the
standard NMF decomposition function so as the sparseness of
the representation can be better controlled, while Li et al. [7]
introduced localization constraints, leading to a parts-based
representation.

Recently, numerous specialized NMF-based algorithms have
been proposed and applied in various problems in diverse
fields. These algorithms modify the NMF decomposition cost
function, by incorporating additional penalty terms in order
to fulfill specific requirements, arising in each application
domain. In [8], projective NMF (PNMF) was introduced,
which proved to generate a much sparser and near orthog-
onal projection matrix compared to the original NMF. An
extension of NMF that is applicable on mixed sign data has
been attempted in [9], where the nonnegativity constraint on
the basis images has been relaxed, while the weights matrix
remained positively constrained. Toward improving clustering
performance, Cai et al. [10] proposed the graph regularized
NMF (GNMF) that encodes the local data geometric struc-
ture considering a nearest neighbor graph in order to exploit
local geometrical invariance between training samples when
these are mapped from the initial data space to the projection
subspace. Other approaches that exploit the data geometric
structure in order to extract discriminative information have
been also proposed in [11] and [12]. Another notable variant
of NMF which retains the manifold structure of facial space,
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is the topology preserving NMF (TPNMF) [13] specialized for
face representation and recognition.

Focusing on applications operating on facial image data,
numerous specialized NMF variants have been proposed for
face recognition [7], [13], [14], face verification [15], [16], and
facial expression recognition [17], [18]. In these approaches,
the entire facial image is considered as a feature vector and
NMF aims to find projections that optimize a given criterion.
The resulting projections are then used in order to project
unknown test facial images to a lower dimensional subspace
where the criteria under consideration are optimized. In order
to model properly the nonlinearities that are present in most
real life applications, polynomial NMF (PNMF) has been pro-
posed in [19], which projects the original data into polynomial
spaces of arbitrary degree. An extension of PNMF has been
proposed in [20], that considers projection of the training data
using arbitrary Mercer’s kernels.

A supervised NMF learning method that aims to extract dis-
criminant facial parts appropriate for face verification is the
discriminant NMF (DNMF) algorithm [15]. DNMF incorpo-
rates additional terms inspired by linear discriminant analysis
(LDA) [21] in the NMF factorization and achieves a more
efficient decomposition of the provided data in their dis-
criminant parts, thus enhancing separability between classes.
However, the considered discriminant factor possesses two cer-
tain deficiencies inherited from the LDA optimality assump-
tion. Firstly, it assumes that the data samples of each class
are generated from underlying multivariate normal distribu-
tions of a common covariance matrix but with different means.
Secondly, since this approach assumes that each class is rep-
resented by a single compact data cluster, the problem of
nonlinearly separable classes cannot be treated efficiently.
Unfortunately, in various real world applications, data distri-
bution usually does not correspond to compact sets but data
form various subclasses. This is common in face recognition
due to various factors such as pose and illumination variations
or in facial expression recognition, since there is no unique
way that people form certain expressions [22]. Moreover, sub-
classes formation is also evident on data describing human
activities, since certain actions can be performed by different
bodily manifestations.

To overcome the aforementioned limitations, we relax the
assumption that each class consists of a single compact
data cluster and regard that it is composed of various sub-
classes, where each one is approximated by a Gaussian
distribution. Consequently, we approximate the underlying dis-
tribution of each class as a mixture of Gaussians and apply
criteria inspired by the clustering-based discriminant analy-
sis (CDA) [22] to enhance discrimination between different
classes. Moreover, we extend NMF reformulating its cost
function by embedding appropriate discriminant constraints
and propose a novel algorithm, called subclass discriminant
NMF (SDNMF), which finds discriminant projections that
enhance class separability in the reduced dimensional space,
by imposing discriminant criteria that assume multimodality
of the training data. To solve the SDNMF problem, we both
consider multiplicative update rules and iterative projected gra-
dients optimization algorithms in order to exploit their well

established optimization properties [23]–[25] that ensure sta-
tionarity of the reached limit point. Finally, we derive the
nonlinear counterpart of SDNMF that projects training data to
high dimensional Hilbert spaces and propose a set of update
rules that consider polynomial projection spaces of arbitrary
degree.

In summary, the novel contributions of this paper are as
follows.

1) An NMF-based algorithm called SDNMF that assumes a
multimodal data distribution inside classes is proposed.

2) To solve SDNMF, novel update rules under two dif-
ferent optimization frameworks are proposed and their
optimization properties and proof of convergence are
exhibited.

3) The nonlinear counterpart of SDNMF algorithm that
considers a polynomial projection space is demonstrated.

4) A thorough experimental study on various image recog-
nition problems is performed, comparing the proposed
methods with current state-of-the-art linear dimension-
ality reduction algorithms.

The rest of the paper is organized as follows. The linear
and nonlinear NMF (NNMF) algorithms, as well as DNMF are
reviewed in Section II. Section III introduces the CDA inspired
discriminant criteria, the proposed SDNMF method and the
developed update rules considering two different optimization
strategies. Moreover, the nonlinear counterpart of SDNMF is
also demonstrated. Section IV presents the conducted experi-
mental study and verifies the efficiency of our algorithms for
facial expression, face, and object recognition. Finally, con-
cluding remarks are drawn in Section V. A preliminary version
of this paper can be found in [26] and [27].

II. LINEAR AND NONLINEAR NMF AND ITS

DISCRIMINANT VARIANT

Next, we briefly present the linear and nonlinear NMF decom-
position concept and also review DNMF algorithm. In the
following, without losing generality, we shall assume that the
decomposed data are images, although, the techniques that will
be described can be applied to any kind of nonnegative data.

A. NMF Basics

The basic idea of NMF is to approximate an image by a lin-
ear combination of elements, the so-called basis images, that
correspond to image parts. Let I be an image database com-
prised of L images belonging to n different classes and X ∈
RF×L+ be the data matrix whose columns are F-dimensional
feature vectors obtained by scanning row-wise each image in
the database. NMF considers factorizations of the form

X ≈ ZH (1)

where Z ∈ RF×M+ (with M � F) is a matrix containing the
basis images, while matrix H ∈ RM×L+ contains the coefficients
of the linear combinations of the basis images required to
reconstruct each original image in the database. Thus, after the
NMF decomposition the j-th image xj can be approximated
by xj ≈ Zhj, where hj denotes the j-th weight column of
matrix H.
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To measure the cost of the decomposition O(X||ZH) in
(1), commonly the matrix Frobenius norm square is used
which computes the sum of the squared Euclidean distances
between all original images in the database and their respective
reconstructed versions

O(X||ZH) � ||X − ZH||2F =
L∑

j=1

F∑

i=1

(
xi,j − [ZH]i,j

)2 (2)

where ||.||F is the Frobenius norm. Hence, NMF algorithm
factorizes the data matrix X into ZH, by solving the following
constrained optimization problem:

min
Z,H

O(X||ZH) (3)

subject to: zi,k ≥ 0, hk,j ≥ 0, ∀i, j, k.

Using an appropriately designed auxiliary function, it has been
shown in [28] that the following multiplicative rules update hk,j

and zi,k, resulting in the desired factors, while guaranteeing a
non-increasing behavior of the cost function:

h(t)k,j = h(t−1)
k,j

[Z(t−1)T X]k,j

[Z(t−1)T Z(t−1)H(t−1)]k,j
(4)

z(t)i,k = z(t−1)
i,k

[XH(t)T ]i,k

[Z(t−1)H(t)H(t)T ]i,k
. (5)

B. Nonlinear NMF

The problem of NNMF can be summarized as follows: find
a set of nonnegative weights and nonnegative, nonlinear basis
vectors such that the nonnegative nonlinearly mapped train-
ing data can be approximated as a linear combination of the
learned nonnegative nonlinearly mapped basis vectors. This
can be formulated as follows. Let φ(xi) : RF+ → H be a non-
linear mapping function that projects the input image xi to an
arbitrary dimensional Hilbert space H where NNMF considers
the following factorization:

Xφ ≈ ZφH (6)

where Xφ = [φ(xi), . . . , φ(xL)] Zφ = [φ(z1), . . . , φ(zM)] and
H ∈ RM×L+ contains the coefficients of the linear combina-
tions of the mapped basis vectors φ(zj) required to perform
the approximation. The approximation error can be similarly
measured using the Frobenius norm square

O (
Xφ ||ZφH

)
� 1

2

L∑

j=1

||φ(xj)−
M∑

k=1

hk,jφ(zk)||2F

= 1

2

L∑

j=1

(
[Kx,x]j,j − 2

M∑

k=1

hk,j[Kz,x]k,j

+
M∑

k=1

M∑

l=1

hk,jhl,j[Kz,z]l,k

)
(7)

where the kernel matrices are defined as
[
Kx,x

]
i,j = φ(xi)

Tφ(xj) ,
[
Kz,z

]
i,j = φ(zi)

Tφ(zj)
[
Kz,x

]
i,j = φ(zi)

Tφ(xj) , Kx,z = KT
z,x. (8)

Thus, NNMF solves the following optimization problem:

min
Z,H

Oφ(Xφ ||ZφH) (9)

subject to: zi,k ≥ 0 hk,j ≥ 0

where i = 1, . . . ,F, j = 1, . . . ,L and k = 1, . . . ,M. In [19],
polynomial kernels of the form k(xi, xj) = (xT

i xj)
d were

considered, where d denotes the polynomial degree and the
respective solution was found using appropriate auxiliary func-
tions of the actually minimized cost function for both variables
Z and H. Thus, the following multiplicative update rules were
proposed for minimizing (7):

H(t) = H(t−1) 	 K(t−1)
x,z(

K(t−1)
z,z H(t−1)

) (10)

Ẑ(t) = Z(t−1) 	 XḰ(t−1)
x,z

Z(t−1)�Ḱ(t−1)
z,z

, Z(t) = Ẑ(t)

S
(11)

where � is a diagonal matrix, with [�]j,j = ∑M
k=1 hk,j and

S is a normalization matrix, such that the columns of Z(t)

sum up to one. Matrices Ḱx,z and Ḱz,z contain parts of
the first order derivatives with respect to zi,k of the polyno-
mial kernels and are defined as [Ḱx,z]i,j = d(xT

i zj)
d−1 and

[Ḱz,z]i,j = d(zT
i zj)

d−1. Operators 	 and / denote element-wise
multiplication and division of matrices, respectively.

C. Discriminant NMF

DNMF [15] is an attempt to introduce discriminant con-
straints in the NMF decomposition cost function. It exploits
the well known Fisher discriminant criterion which attempts
to find a transformation matrix � that maximizes the ratio
defined by the traces of the between and within class scat-
ter matrices Śb = �TSb� and Św = �TSw� evaluated over
the projected data. DNMF cost function incorporates a similar
discriminant factor, requiring the dispersion of the projected
samples that belong to the same class around their correspond-
ing mean to be as small as possible, while at the same time
the scatter of the mean vectors of all classes around their
global mean to be as large as possible. Consequently, DNMF
minimizes the following cost function:

ODNMF(X||ZH) = OKL(X||ZH)+ αTr[Św] − βTr[Śb] (12)

where OKL(X||ZH) measures the reconstruction error using
the Kullback–Leibler (KL) divergence metric, Tr[.] is the
matrix trace operator and α, β are positive constants.

III. SUBCLASS DISCRIMINANT NONNEGATIVE MATRIX

FACTORIZATION

In this section, we first present the subclass-based discrim-
inant criteria and demonstrate how these are incorporated in
the NMF decomposition cost function resulting in the SDNMF
problem. Next, we derive the proposed update rules consid-
ering two different optimization strategies and also present
SDNMF nonlinear counterpart.
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A. Subclass Discriminant Analysis

Similar to LDA, CDA seeks to determine a transformation
matrix � that enhances classes discrimination in the projec-
tion subspace. To do so, CDA assumes a multimodal data
distribution inside classes, where each class is composed of
various subclasses and attempts to enhance classes discrimi-
nation by minimizing the scatter within every subclass, while
well separating subclasses from each other class.

To formulate the CDA criteria for the n-class image database
I, let us denote the number of subclasses composing the r-th
class by Cr, the total number of formed subclasses in the
database by C = ∑n

i Ci and the number of images belong-
ing to the θ -th subclass of the r-th class by Nr,θ . Let us also
define the mean vector for the θ -th cluster of the r-th class
by μr,θ = [μr,θ

1 . . . μ
r,θ
F ]T , which is evaluated over the Nr,θ

images, while vector xr,θ
ρ = [xr,θ

ρ,1 . . . x
r,θ
ρ,F]T corresponds to the

feature vector of the ρ-th image belonging to the θ -th cluster
of the r-th class. Using the above notations we can define the
within subclass scatter matrix SCDA

w as

SCDA
w =

n∑

r=1

Cr∑

θ=1

Nr,θ∑

ρ=1

(
xr,θ
ρ − μr,θ ) (

xr,θ
ρ − μr,θ )T

(13)

and the between subclass scatter matrix SCDA
b as

SCDA
b =

n∑

i=1

n∑

r,r 
=i

Ci∑

j=1

Cr∑

θ=1

(
μi,j − μr,θ ) (

μi,j − μr,θ )T
.

(14)

Considering that the columns of matrix H contain the pro-
jected M-dimensional feature vectors and in order to facilitate
our subsequent analysis using more compact equation forms,
we express the CDA scatter matrices in a graph Laplacian
form

�w �
n∑

r=1

Cr∑

θ=1

Nr,θ∑

j=1

(
hj − μr,θ ) (

hj − μr,θ )T = HLwHT

(15)

and

�b �
n∑

i=1

n∑

r,r 
=i

Ci∑

j=1

Cr∑

θ=1

(
μi,j − μr,θ ) (

μi,j − μr,θ )T

= HLbHT (16)

where Lw and Lb are L × L symmetric positive semidefinite
matrices defined as

Lw � IL −
n∑

r=1

Cr∑

θ=1

(
1

Nr,θ
eT

r,θer,θ

)
(17)

Lb � 2

( n∑

r=1

Cr∑

θ=1

C − Cr

N2
r,θ

eT
r,θer,θ − diag(e)

×
[

1 −
Cr∑

r=1

eT
r er

]
diag(e)

)
. (18)

Here diag(e) denotes a function that converts vector e into a
diagonal matrix, IL is an L × L identity matrix, 1 is an L × L

matrix of ones, while er,θ , er and e are L-dimensional vectors
whose i-th element is defined as

[er,θ ]i =
{

1, if xi ∈ θ -th cluster of the r-th class
0, otherwise

(19)

[er]i =
{

1, if xi ∈ r-th class
0, otherwise

(20)

[e]i = 1

Cardinality of sample xi cluster
. (21)

The trace of the within subclass scatter matrix �w can be
used as an appropriate indicator of the samples dispersion
inside subclasses. Minimizing Tr[�w] increases concentra-
tion of samples around their subclass mean. Similarly, Tr[�b]
indicates the dispersion of the mean vectors between all
subclasses that belong to different classes. Thus, maximiz-
ing Tr[�b] enhances discrimination between subclasses of
different classes.

B. SDNMF Objective Function and Its Multiplicative
Update Rules

Since we desire in the projection subspace to simultaneously
minimize Tr[�w] and maximize Tr[�b], the cost function of
the SDNMF algorithm is formulated as follows:

OSDNMF(X||ZH) � 1

2
||X − ZH||2F + α

2
Tr[HLwHT ]

− β

2
Tr[HLbHT ] (22)

where α and β are positive constants. Equivalently, (22) can
be written in a matrix trace form as follows:

OSDNMF(X||ZH) = 1

2
Tr[XXT ] − Tr[ZHXT ] (23)

+1

2
Tr[ZHHTZT ] + α

2
Tr[HLwHT ] − β

2
Tr[HLbHT ]

where we have applied properties Tr[AB] = Tr[BA] Tr[A] =
Tr[AT ] and ||A||2F = Tr[AAT ].

Consequently, the minimization problem of SDNMF is
formulated as

min
Z,H

OSDNMF(X||ZH) (24)

subject to: zi,k ≥ 0 hk,j ≥ 0, ∀i, j, k.

which requires the minimization of (23) subject to the nonneg-
ativity constraints applied on the elements of both factors H
and Z. To solve (24), we introduce Lagrange multipliers φ ∈
RF×M+ = [φi,k] and ψ ∈ RM×L+ = [ψk,j] each associated with
one of the nonnegativity constraints zi,k ≥ 0, hk,j ≥ 0, respec-
tively. Consequently, we formulate the Lagrangian function L
as follows:

L = 1

2
Tr[XXT ] − Tr[ZHXT ] + 1

2
Tr[ZHHTZT ] + Tr[ψHT ]

+ α

2
Tr[HLwHT ] − β

2
Tr[HLbHT ] + Tr[φZT ]. (25)

To minimize L, we first obtain its partial derivatives with
respect to zi,k and hk,j and set them equal to zero
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∂L
∂hk,j

= [ZTZH]k,j − [ZTX]k,j

+ α[HLw]k,j − β[HLb]k,j + ψk,j = 0 (26)
∂L
∂zi,k

= [ZHHT ]i,k − [XHT ]i,k + φi,k = 0. (27)

According to KKT conditions [29] φi,kzi,k = 0 and also
ψk,jhk,j = 0. Consequently, multiplying (26) with hk,j and (27)
with zi,k we obtain the following equalities:

(
∂L
∂hk,j

)
hk,j = [ZTZH]k,jhk,j − [ZTX]k,jhk,j

+ α[HLw]k,jhk,j − β[HLb]k,jhk,j = 0 (28)(
∂L
∂zi,k

)
zi,k = [ZHHT ]i,kzi,k − [XHT ]i,kzi,k = 0. (29)

The added discriminant factors in the SDNMF cost func-
tion are totally independent from the basis image matrix Z.
Consequently, keeping variable H fixed and optimizing for Z
results to the same optimization problem described in [28] and
to the update formulas in (5). This can be also verified by solv-
ing (29) for zi,k. Thus, we can recall the convergence proof of
conventional NMF in [28] to show that (23) is non-increasing
under the update rule in (5). Solving (28) for hk,j we derive
the proposed multiplicative update rule shown in (30), at the
bottom of the page. The detailed proof regarding the non-
increasing behavior of (23) under the proposed update rule
in (30) is derived using an auxiliary upper bounding function
which can be found in the Appendix A. Similar convergence
proofs are widely used for a variety of optimization problems
solved using multiplicative update rules [30], [31].

It should be noted that as in every NMF-based optimiza-
tion problem, the objective function in (23) is convex either
in Z or H, but non-convex in both variables. Therefore, the
proposed iterative optimization algorithm reaches a locally
optimal solution which is non-unique and is usually sensi-
tive to the initialization point. Various initialization strategies
have been proposed in the literature [32], [33], however, their
efficacy is both data and application dependant, since the addi-
tional imposed constraints in the NMF decomposition cost
function also affect the starting factors suitability. Lee and
Seung [1] exploited the random seeding approach which is
computationally efficient and has been also adopted in this
paper.

The optimization process successively updates variable Z
and H until a stopping criterion is invoked. In this paper,
we terminate the optimization process when the cost func-
tion improvement between two successive iterations is less
than 10−3, since we have strong evidence of algorithms con-
vergence. Other similar stopping criteria based on monitoring
the objective function improvement have been proposed in
the literature [25]. Finally, in order to extract the discrimi-
nant representation of an unknown test sample xj we use the

Algorithm 1 Algorithm Outline for SDNMF Optimization

1: Input: Nonnegative data matrix X = [x1, x2, . . . , xL]
along with the class label and cluster origin {yi, ci}
associated with each training facial image xi i = 1, . . . ,L.

2: Output: The basis images matrix Z ∈ RF×M+ and the
weights matrix H ∈ RM×L+ .

3: Initialize: Z(0), H(0) and t = 1.

4: repeat
5: Update H(t) given Z(t−1) using (30).
6: Update Z(t) given H(t) using (5).
7: t = t + 1.
8: until |OSDNMF(X||Z(t)H(t))− OSDNMF(X||Z(t−1)H(t−1))| ≤ 10−3

pseudo-inverse Z† = (ZTZ)−1ZT as x́j = Z†xj. The iterative
optimization process for the SDNMF problem is summarized
in Algorithm 1.

C. Dividing Classes Into Subclasses

Regarding the optimal division of each class into subclasses,
various criteria have been proposed in the literature [34],
[35]. In our implementation, we have considered the nearest-
neighbor (NN)-based clustering algorithm presented in [34]
which is a good compromise between computation speed and
clustering accuracy. Moreover, as it has been shown in [34]
various other clustering methods can be used but they do not
affect the overall classification performance significantly. This
can be attributed to the fact that only first and second order
statistics of each cluster are used in the optimization crite-
ria and, thus, precise clustering is not crucial, as long as the
location and dispersion of each cluster is robustly estimated.

According to NN clustering, we first construct a sorted set
{xr,1, . . . , xr,Nr } for every r-th class with its Nr training sam-
ples arranged as follows: samples xr,1 and xr,Nr are the two
most distant feature vectors of the r-th class in the initial
high dimensional image space (i.e., those that maximize the
Euclidean distance argmaxxi,xj

||xi−xj||2). The rest of the sam-
ples are then ordered, so that xr,2 is the sample closest to xr,1,
while xr,Nr−1 is the sample closest to xr,Nr . This procedure
results in an ordered set, where the sample ranked in the j-th
position is the (j−1)-th closest sample to xr,1, and at the same
time, the (Nr−j)-th more distant sample to the other extremum
xr,Nr . Subsequently, we divide data samples belonging to the
r-th class into Cr subclasses, by partitioning the ordered set
into Cr equally sized parts.

D. Projected Gradients Subclass Discriminant Nonnegative
Matrix Factorization (PGSDNMF)

The derived multiplicative update rules for the evaluation
of the optimal factors lack of convergence results since they

h(t)k,j = h(t−1)
k,j

[Z(t−1)T X]k,j + β[H(t−1) ∑n
r=1

∑Cr
θ=1

C−Cr
N2

r,θ
eT

r,θer,θ ]k,j

[Z(t−1)T Z(t−1)H(t−1)]k,j + α[H(t−1)Lw]k,j + β
[
H(t−1)diag(e)

(
1 − ∑Cr

r=1 eT
r er

)
diag(e)

]

k,j

(30)
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only guarantee a non-increasing behavior of the cost func-
tion in (23) and do not ensure that optimization converges to
a limit point that is also stationary [23], [24]. Moreover, as
it has been shown in [24], update rules derived using pro-
jected gradients attain faster convergence compared to their
multiplicative counterparts. In order to exploit these merits
we employ projected gradients for SDNMF optimization. To
do so, we formulate two subproblems O1(Z) and O2(H)
from (23), by keeping either H or Z fixed and performing
optimization for the other variable

min
Z

O1(Z) subject to: zi,k ≥ 0, ∀i, k (31)

min
H

O2(H) subject to: hk,j ≥ 0, ∀k, j. (32)

1) Optimization of Z Solving the Subproblem (31): The
performed optimization is an iterative steepest descent process
that at a given iteration round t the following update rule is
applied:

Z(t) = P[Z(t−1) − αt∇O1(Z(t−1))] (33)

where operator P[.] = max [., 0] guarantees that no negative
values can be assigned to the updated elements of matrix Z
and αt is the learning step parameter for the t-th iteration.
To set the learning step parameter αt, we use the Armijo
rule as in [24]. According to this strategy the learning step
is computed as αt = βgt , where gt is the first nonnega-
tive integer value found, such that the following inequality is
satisfied:

O1(Z(t))− O1(Z(t−1)) ≤ σ 〈∇O1(Z(t−1)),Z(t) − Z(t−1)〉 (34)

where operator 〈., .〉 is the Frobenius inner product, while
parameters β and σ have been set to β = 0.1 and σ = 0.01
which is an efficient parameter selection, as has been verified
in other studies [24], [36].

Since O1(Z) is quadratic in terms of Z it can be expanded
near Z(t−1) as follows:

O1
(
Z(t)

) = O1
(
Z(t−1)

) + (
Z(t) − Z(t−1)

)T ∇O1
(
Z(t−1)

)

+ 1
2

(
Z(t) − Z(t−1)

)T ∇2O1
(
Z(t−1)

) (
Z(t) − Z(t−1)

)
.(35)

By replacing (35) into (34), we derive the actually
checked condition, which is less computationally expensive
than (34)

(1 − σ)
〈
∇O1(Z(t−1))Z(t) − Z(t−1)

〉
(36)

+1

2

〈
Z(t) − Z(t−1),∇2O1(Z(t−1))(Z(t) − Z(t−1))

〉
≤ 0.

By iterating the update rule in (33), a sequence of min-
imizers {Z(t)}∞t=1 of O1(Z) is generated and according to
Bertsekas [37], it is guaranteed that a stationary point is found
among its limit points. Thus, in order to verify if the currently
reached limit point is stationary or not, we examine whether
the following condition is satisfied:

||∇PO1(Z(t))||F ≤ eZ||∇PO1(Z(1))||F (37)

where ∇PO1(Z(t)) is the projected gradient of O1(Z(t)), with
respect to Z, with its (i, k)-th element defined as

[∇PO1(Z(t))]i,k =
{

[∇O1(Z(t))]i,k, if zi,k > 0
min

(
0, [∇O1(Z(t))]i,k

)
, if zi,k = 0

(38)

and eZ is a predefined stopping tolerance set to eZ = 10−3.
2) Optimization of H Solving the Subproblem (32): In order

to find a stationary limit point for O2(H), a similar proce-
dure is applied. Initially, the learning step parameter αt is
determined and the weights matrix H is updated as follows:

H(t) = P[H(t−1) − αt∇O2(H(t−1))] (39)

until the function O2(H) is sufficiently decreased and the fol-
lowing inequality resulting by performing the expansion near
H(t−1) considering up to quadratic terms holds:

(1 − σ)
〈∇O2(H(t−1)),H(t) − H(t−1)

〉
(40)

+ 1
2

〈
H(t) − H(t−1),∇2O2(H(t−1))(H(t) − H(t−1))

〉 ≤ 0.

The update procedure is repeated, until the limit point of
the sequence {H(t)}∞t=1 becomes stationary which is similarly
determined to (37).

The minimization of subproblems in (31) and (32) involves
the calculation of the first and second order gradients of the
two optimized functions O1(Z) and O2(H). Using the formu-
lation of the subclass scatter matrices provided in (15) and
(16), the partial derivatives are evaluated as follows:

∇O1(Z) = ZHHT − XHT (41)

∇2O1(Z) = HHT (42)

∇O2(H) = ZTZH − ZTX + αHLw − βHLb (43)

∇2O2(H) = ZTZ ⊗ IL + αIM ⊗ Lw − βIM ⊗ Lb (44)

where ⊗ denotes the Kronecker product operation. Con-
sequently, inequality (40) that drives the evaluation of the
optimum learning step parameter αt during the optimization
of the weights matrix H can be rewritten as

(1 − σ)Tr[∇O2(H(t−1))T(H(t) − H(t−1))]

+ 1

2
vec(H(t) − H(t−1))T∇2O2(H(t−1))

× vec(H(t) − H(t−1)) ≤ 0 (45)

where vec(.) denotes an operator that converts a matrix into a
vector by stacking its columns.

E. Solving SDNMF With Nesterov’s Optimal Gradient
Method and Unifying With NPAF Framework

To avoid the costly line search in the Armijo rule, which
requires the evaluation of the large matrices IM ⊗ Lw and
IM ⊗ Lb in (44), we optimize SDNMF exploiting the effi-
cient NeNMF solver in [25]. NeNMF employs the Nesterov’s
optimal gradient method and at each iteration obtains the
approximate solution by computing the projected gradient
on a search point identified by linearly combining the two
latest approximate solutions. Moreover, NeNMF determines
the appropriate step size by the Lipchitz constant which is
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less computationally expensive than the line search. To solve
SDNMF problem similarly to NeNMF, we express its cost
function in (22) as follows:

OSDNMF(X||ZH) = 1

2
||X − ZH||2F + α

2
Tr[H(Lw − β

α
Lb)HT ]

(46)

The optimization of (46) with respect to Z is similar to the
methodology presented in [25]. To optimize (46) for H we con-
sider the subproblem generated by fixing variable Z, compute
its gradient which is given by (43) and determine the Lipchitz
constant L as a linear combination of each Lipchitz constant
of each part of (46), thus L = ||ZTZ||F + α||Lw − β

α
Lb||F .

By replacing L and ∇O2(H) in Algorithm 1 in [25] we can
solve SDNMF using Nesterov’s optimal gradient method. We
call this algorithm NeSDNMF in the rest of the manuscript.

In [12] a unified framework for various NMF-based meth-
ods called Nonnegative patch alignment framework (NPAF)
has been proposed, that uses a fast gradient descent opti-
mization algorithm. NPAF framework considers NMF-based
optimization problems of the following form:

ONPAF(X||ZH) � OKL(X||ZH)+ α

2
Tr[HLHT ] (47)

where L is a symmetric positive semidefinite patch align-
ment matrix, different for each specialized algorithm. To unify
SDNMF in the NPAF framework we replace in (47) the align-
ment matrix L that encodes the discriminative information
by the considered in SDNMF discriminant term Lw − β

α
Lb.

Since matrices Lw and Lb are symmetric and positive semidef-
inite SDNMF can be directly incorporated into the NPAF
framework and optimized by the proposed in [12] generative
multiplicative or fast gradient descent update rules.

F. Subclass Discriminant Kernel NMF Algorithm (SDKNMF)

In order to model nonlinearities in the extracted image
features, we derive SDNMF nonlinear counterpart called
SDKNMF. The problem at hand can be summarized as fol-
lows: approximate a set of nonlinear nonnegative training
sample vectors mapped on a polynomial feature space, using
a linear combination of appropriately weighted nonlinear non-
negative basis vectors mapped on the same polynomial feature
space in a discriminant manner. Next, we shall only demon-
strate the optimization of the SDKNMF problem, considering
projections of the available training data to polynomial feature
spaces, exploiting arbitrary degree polynomial kernel functions
of the form k(xi, xj) = (

xT
i xj

)d
. However, it is straightfor-

ward to extend SDKNMF, such as to exploit different Mercer’s
kernels, using the methodology presented in [20].

The optimization problem for the polynomial SDKNMF
algorithm is formulated as follows:

min
Z,H

O (
Xφ ||ZφH

) + α

2
Tr[HLwHT ] − β

2
Tr[HLbHT ] (48)

subject to: zi,k ≥ 0 and hk,j ≥ 0 ∀i, j, k

which is solved using projected gradients in order to ensure
limit point stationarity. It should be noted that the previously
presented methodology for the optimization of PGSDNMF

algorithm is valid only for linear kernels of the form
k(xi, xj) = xT

i xj since in this case the cost function in (48)
is quadratic in terms of Z. In the general case when d ≥ 2,
the expansion performed around the current solution estimate
Z(t−1) in (35), considering up to quadratic terms, is not valid.

We similarly consider two subproblems from (48) where
for each one either variable Z or H is kept fixed. The iterative
process for optimizing with respect to H applies the update
rule in (39) where the involved first and second order partial
derivatives of the cost function are evaluated as

∇O (
Xφ ||ZφH

) = Kz,zH − Kz,x + αHLw − βHLb (49)

∇2O (
Xφ ||ZφH

) = Kz,z ⊗ IL + αIM ⊗ Lw − βIM ⊗ Lb.

(50)

The learning step parameter αt is similarly determined using
(45) and a stationarity condition check step is performed in
order to verify that the projected gradient at the reached limit
point is sufficiently close to zero.

Respectfully, optimization for Z is performed by iterat-
ing the update rule in (33), while the optimal learning step
parameter is now determined using (34) instead of (36), since
the cost function for different Mercer’s kernels is no longer
quadratic in terms of Z and thus inequality (36) is not valid.
Considering polynomial kernel functions of arbitrary degree
the involved in (34) first order partial derivative with respect
to Z, is evaluated as

∇O (
Xφ ||ZφH

) = Z
(

HHT 	 K̀z,z

)
− X

(
H 	 K̀z,x

)T
. (51)

As can be observed, all involved calculations can be per-
formed using the so-called kernel trick. Details regarding the
derivation of the first order partial derivative with respect
to Z, when considering polynomial kernel functions for the
nonlinear mapping are available in Appendix B.

IV. EXPERIMENTAL STUDY

We compare the proposed algorithms against various
NMF-based methods, such as NMF, PGNMF [24], DNMF,
PGKNMF [20], NDLA [12], and GNMF [10]. Moreover, we
also include in our experimental comparison linear subspace
learning methods such as CDA, LDA, PCA, LPP [38], and the
marginal fisher analysis (MFA) [39], which is an appropriate
LDA variant that overcomes the Gaussian distributed data sam-
ples optimality assumption. For our experiments, we consider
facial expression recognition on the Cohn–Kanade (CK) [40]
and the Binghamton University 3-D facial expression database
(BU-3DFE) [41], face recognition on the CMU-PIE [42], and
Multi-PIE [43] datasets, and object recognition on the ETH-
80 [44] image set. Fig. 1 shows example images from the CK
dataset, depicting the seven recognized facial expressions.

A. Preprocessing of Facial Expression Data

To form our data collections from CK and BU-3DFE
datasets we only acquired a single video frame from each
video sequence, depicting a subject performing a facial expres-
sion at its highest intensity level. To do so, face detection
was performed using the OpenCV [45] face detector and the
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Fig. 1. Sample images from the Cohn–Kanade database depicting the recog-
nized facial expressions arranged in the following order: anger, fear, disgust,
happiness, sadness, surprise, and the neutral emotional state.

Fig. 2. Mean images derived from the two more distant subclasses inside each
expression class. The diverge illumination conditions during facial expressions
capture in the Cohn–Kanade database are evident.

resulting facial regions of interest were manually aligned with
respect to the eyes position and anisotropically scaled to a
fixed size of 40 × 30 pixels. Finally, each gray scale facial
image was scanned row-wise, so as to form a feature vector.

To measure the facial expression recognition accuracy, we
randomly partitioned the available samples into five-folds and
a cross validation has been performed by feeding the projected
discriminant facial expression representations to a linear SVM
classifier. This resulted into such a test set formation where
some expressive samples of an individual were left for testing,
while his rest expressive images (depicting other facial expres-
sions) were included in the training set. This fact significantly
increased the difficulty of the expression recognition problem,
since identity-related issues arose.

B. Cohn–Kanade Dataset

CK is among the most popular databases for benchmarking
facial expression recognition algorithms. Our data collection
comprised of 407 images depicting 100 subjects, posing in
seven different emotional states. As can be seen in Fig. 1,
CK database images depict subjects of different ethnic groups
under severe illumination variations. Consequently, the data
sample vectors do not necessarily correspond to compact facial
expression classes. To verify this, we have considered that each
class is composed of three subclasses and computed the mean
expressive image for every cluster of each class. Fig. 2 shows
the mean image for each facial expression considering the two
more distant clusters of each class. Clearly the illumination
variations are captured during clustering.

Table I summarizes the highest performance achieved by
each examined method and the respective projection subspace
dimensionality. All subclass discriminant algorithms (linear
and nonlinear) were found to outperform in this comparison.
Moreover, the superiority of the projected gradients optimiza-
tion framework is also demonstrated, since both PGNMF
and PGSDNMF outperformed their multiplicative counter-
parts. The highest measured recognition accuracy rate is
72.9% achieved by SDKNMF algorithm, considering classes

partitioning into two subclasses and a second order polyno-
mial kernel function. Regarding the baseline algorithms PCA
outperformed all linear subspace methods achieving a recog-
nition rate of 68.8%. Moreover, MFA, which does not make
any assumption on the data distribution of each class, out-
performed all discrimination enhancing subspace methods.
Finally, NDLA which also does not assume a Gaussian data
distribution inside classes outperformed DNMF. On the other
hand, GNMF although it forms similar discriminant criteria
to NDLA algorithm, it is specialized for clustering prob-
lems and thus it could not provide competitive classification
performance.

Fig. 3 compares the basis images produced from training on
the CK database PGNMF and PGSDNMF algorithms, consid-
ering for the latter partitioning of each expression class into
two subclasses. Both methods have been trained to find the
optimal projection matrix to a subspace of equal dimension-
ality. As can be seen, the basis images extracted by PGNMF
are less sparse and have a rather holistic appearance, compared
to those generated by PGSDNMF. More precisely, PGSDNMF
produced a few holistic basis images that highlight facial parts,
common across all classes, which remain unaltered across
any facial expression formation and correspond to facial areas
around the nose, the forehead, and the cheeks. These bases as
we have experimentally verified significantly affect the recon-
struction error. The majority of PGSDNMF bases are sparse
and localized around mouth, eyes, and eyebrows and highlight
characteristic facial parts unique for each facial expression,
such as the mouth shape at surprise expression or the raised
or lowered lip corners characteristic of the happiness or sad-
ness facial expression, respectively. These bases although do
not influence the reconstruction error, however, they signifi-
cantly affect the added discriminant terms since they possess
valuable information for facial expression discrimination. This
observation reveals that the proposed method successfully
decomposed each facial image into its discriminant parts,
which justifies its superior recognition performance.

C. BU-3DFE Dataset

The dataset we generated from BU-3DFE contains 700
images, depicting 100 subjects performing seven facial expres-
sions. In the original data collection except of the neutral
emotional state, each of the six performed facial expressions
involves four intensity levels. In our experimental evaluation,
we have included only the facial images at expressions apex.

Table II presents the best average measured expression
recognition accuracy rate and the respective projection sub-
space dimensionality, achieved by each examined method. As
it can be seen the derived results are similar to those reported
in the CK database. SDKNMF attained the best performance
across all examined subspace methods reaching 66.4% when
considering two subclasses per each expression class.

D. Face Recognition on PIE Dataset

The CMU-PIE face database contains in total 41 368
facial images depicting 68 different subjects captured under
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TABLE I
BEST AVERAGE EXPRESSION RECOGNITION ACCURACY RATES (%) IN COHN–KANADE DATABASE

Fig. 3. Basis images derived from training in the Cohn–Kanade database
algorithms (a) PGNMF and (b) PGSDNMF with Cr = 2.

variations in pose, illumination, and expression. For this exper-
iment, we used 170 facial images for each individual captured
under five near frontal poses (poses identified as C05, C07,
C09, C27, and C29) under four different expressions and 43
different illumination conditions. The considered facial images
were cropped, scaled to a fixed size of 32×32 pixels and gray
scaled according to [10]. We randomly selected half facial
images of each individual for training, while the rest were
used for testing. As can be seen in Table III the proposed
algorithms are more robust under mild variations in pose and
expression for face recognition. PGSDNMF considering par-
titioning of each class into five subclasses attained the highest
recognition rate, 97.7% marginally outperforming its nonlin-
ear variant. The best recognition rates for LDA, PCA, NMF,
DNMF, and SDNMF are 94.9%, 95.7%, 96.1%, 96.7%, and
97.1%, respectively.

E. Face Recognition on Multi-PIE Dataset

We also performed experiments for face recognition on the
Multi-PIE dataset [43] which is collected in a setting sys-
tematically simulating the effects of pose, illumination, and
expression variations and enabled us to examine the ability of
the proposed methods to perform on less constrained condi-
tions. The subset of the Multi-PIE dataset that we used in our
experimental comparison contains face images from 147 sub-
jects, captured under three different view points (i.e., −15◦,
0◦ and 15◦), five different illumination conditions randomly
selected for each subject, and six different facial expressions
captured during four recording sessions. In total, we used
22 050 facial images which have been aligned and scaled
to a fixed size of 40 × 30 pixels using the facial landmark
annotations of [46]. To form our training set we randomly
selected 25% of the facial images available for each subject,
while the rest were used for testing. The large differences

that exist between the samples of Multi-PIE span a large intra
class variation and thus favor subclasses formation. Table IV
summarizes the obtained results. The proposed PGSDNMF
algorithm considering partitioning of each class into four
subclasses attained the highest recognition rate 91.8%.

It should be noted that although PIE and Multi-PIE datasets
exhibit variations in the recording settings, they both have
been captured in controlled conditions and do not simulate
realistically unconstrained conditions for “in-the-wild” face
recognition. In realistic conditions, such as these encountered
in LFW dataset [47], facial images exhibit extreme pose,
illumination and background variations, occlusions, and also
inaccurate alignment. In such settings NMF-based methods
that exploit the image intensity domain as the underly-
ing decomposition and classification features, are extremely
sensitive since they are based on the minimization of a
distance metric (e.g., Euclidean distance or the KL diver-
gence) between the decomposed data and the derived factors.
Consequently, due to the fact that all these parameters dis-
turb these distances arbitrarily NMF-based algorithms fail to
perform robustly.

F. Object Recognition on ETH-80 Dataset

ETH-80 image dataset contains 3280 images depicting 80
objects divided into eight different classes, where for each
object 41 images have been captured from different view
points. For this experiment, we used the cropped and scaled
to a fixed size of 128 × 128 pixels binary images contain-
ing the contour of each object. In order to form our training
set we randomly picked 25 binary images of each object,
while the rest were used for testing. Since each category
includes images depicting 10 different objects captured from
various view angles, data samples inside classes span large
in-class variations, forming various subclasses. As can be
seen in Table V, PCA outperformed all linear subspace learn-
ing algorithms, while SDKNMF considering five subclasses
per each object class produced the best results. The object
recognition rates for LDA, PCA, CDA, DNMF, GNMF, and
SDKNMF were 75.7%, 85.9%, 81.2%, 80.1%, 77.4%, and
87.1%, respectively.

To demonstrate the data clustering effect in SDNMF algo-
rithms performance, we recorded the attained recognition
rate for different parameter Cr values. As it can be seen in
Fig. 4 SDNMF efficacy initially increases as we partition
each class from 2 up to 5 subclasses, where our algorithm
attained its best performance, while further partitioning classes
results in reduced recognition accuracy. This is attributed to
the fact that since training samples per subclass are limited
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TABLE II
BEST AVERAGE EXPRESSION RECOGNITION ACCURACY RATES (%) IN BU-3DFE DATASET

TABLE III
BEST FACE RECOGNITION ACCURACY RATES (%) IN PIE IMAGE DATABASE

TABLE IV
BEST FACE RECOGNITION ACCURACY RATES (%) IN MULTI-PIE DATABASE

TABLE V
BEST OBJECT RECOGNITION ACCURACY RATES (%) IN ETH-80 IMAGE DATABASE

Fig. 4. Object recognition rate on ETH-80 dataset versus the number of
subclasses each object category is partitioned to.

subclass covariance matrices evaluated on few examples are
poorly estimated which affects the correctness of the identified
projection directions [34], [48].

G. Algorithms Computational Complexity and Convergence

To investigate the ability of the proposed SDNMF and
PGSDNMF algorithms to minimize the considered cost func-
tion in (23), with respect to the performed iteration rounds, we
have applied both algorithms to factorize a dense data matrix

composed of all expressive images in the CK dataset, con-
sidering two subclasses partitioning of each expression class
and setting the projection subspace dimensionality equal to 50.
Moreover, parameters α and β were set to 0.5 and 0.9, respec-
tively, while both algorithms were initialized using the same
randomly generated matrices. Fig. 5 shows the objective func-
tion value reduction per iteration, denoting the quality of the
approximation, for each algorithm. As it can be observed
PGSDNMF reduces the objective function in each iteration
round more aggressively and converges in fewer iterations than
its multiplicative counterpart.

Convergence to a stationary point of the objective function
is also crucial since it determines the quality of the reached
solution as well as algorithms execution time. This can be
tested by checking the KKT conditions for the optimization
problem in (24). The KKT conditions for the basis images
matrix Z can be written as

min (Z,∇O1(Z)) = 0 (52)

which states that both Z and ∇O1(Z) should be component-
wise nonnegative and at least one of them is allowed to be zero
(similarly we can form the KKT conditions for the weights
matrix H). Consequently, the KKT residual norm which can
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Fig. 5. Objective function value versus the number of iterations for the
SDNMF and PGSDNMF algorithms.

TABLE VI
CONVERGENCE PERFORMANCE OF SDNMF, PGSDNMF, AND

NESDNMF ALGORITHMS ON COHN–KANADE DATASET

be defined as the �l norm of (52) should tend to zero. We
have investigated the convergence performance to a stationary
point of the SDNMF, PGSDNMF, and NeSDNMF optimiza-
tion algorithms using the data samples of CK dataset, while
initialized all algorithms using the same randomly generated
matrices and set to all the same parameter values. To investi-
gate stationarity of the reached limit point we added the KKT
residual norms computed for each optimized variable per iter-
ation for each algorithm. Table VI summarizes the obtained
results showing the total KKT residual and the number of
iterations performed by each algorithm. As it can be seen the
KKT residual norms of the PGSDNMF and the NeSDNMF
algorithms are significantly smaller than that of the SDNMF.
This demonstrates that the reached solution of both algorithms
is closer to the stationary point of (22). Moreover, NeSDNMF
using Nesterov’s optimal gradient method demonstrated the
best convergence performance.

To reveal the computational requirements of each method
we measured the computational complexity per iteration for
the derived update rules in (30) and (39) by counting the
number of arithmetic operations required and summarized
the results using the big O notation. Since the multiplicative
updates operate on each matrix element, while the projected
gradients updates perform optimization on a matrix level, in
order to perform a fair comparison we measure the compu-
tational cost required by the two methods in order to update
matrix H for a single iteration.

For both algorithms the computational cost for data cluster-
ing using the NN clustering algorithm is O(L2F). Moreover,
we require LC floating point operations to compute each
graph Laplacian matrix Lw and Lb. Based on the update rule
in (30) for each iteration the required cost for the SDNMF
algorithm is O(FLM). Consequently, requiring ρ iterations
till convergence the overall cost is O(ρFLM + L2F + LC).
For PGSDNMF based on the alternative projective gradi-
ent approach and applying [24, Algorithm 4] to determine

TABLE VII
TRAINING TIME IN SECONDS REQUIRED BY NMF, PGNMF, SDNMF,

PGSDNMF, AND PCA ON COHN–KANADE DATASET

properly the learning rate parameter αt the complexity is
O(FLM2 + t × rML2) where t is the number of iterations per-
formed for the minimization of the subproblem in (32) and r
is the average number of iterations performed for finding an
appropriate αt. Consequently, the cost for a single update of
the PGSDNMF algorithm is more expensive than that required
by the SDNMF. However, the number of iterations required
are significantly less. The overall cost till convergence for
PGSDNMF is O

(
ρ(FLM2 + t × rML2)+ L2F + LC

)
.

In Table VII we show the recorded in MATLAB CPU train-
ing time, measured in seconds, required by NMF, PGNMF,
SDNMF, PGSDNMF, and PCA algorithms. As expected, PCA
attained the shortest training time since it solves a gener-
alized eigenvalue problem, while all NMF-based algorithms
are iterative optimization methods, which are computation-
ally expensive. Moreover, the difference in the training time
between PGSDNMF and PGNMF algorithms is attributed to
the involved Kronecker product operation that significantly
increases the size of matrices involved in the computations
of the first method.

H. Parameters Selection

The proposed update rules involve parameter Cr that affects
the imposed discriminant factors and also α and β that reg-
ulate their contribution in the cost function. Although there
are various methods proposed in the literature that attempt to
determine the optimal data clustering setting by optimizing a
specific formed criterion [49], [35], in this paper since we are
interested in enhancing classes discrimination, thus increas-
ing classification performance, we employ a similar approach
to [34] and seek to determine Cr as well as parameters α and
β with respect to the reached classification accuracy. Thus, we
seek the Cr, α and β values for which SDNMF achieves the
highest recognition rate. To do so, we performed cross vali-
dation where first we determined the optimal Cr value, while
considering equal contribution of the discriminant factors set-
ting α = β = 1, and subsequently, we identified the optimal
α and β values for that clustering setting. More precisely, to
determine Cr, we exploited the training set in order to train our
algorithms considering different values for Cr (ranging from 2
to 5 for the face databases and from 2 to 10 for the ETH-80).
The range of the examined Cr values was selected such as
to guarantee that the number of samples per subclass is suffi-
ciently large (more than 10). Unfortunately, searching for all
possible number of subclasses is computationally infeasible.
Thus, in order to burden the computational cost we performed
validation assuming that each class is composed of the same
number of subclasses. Subsequently, the reached classification
accuracy for each examined Cr value was measured on the
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Fig. 6. SDNMF mean expression recognition rate in Cohn–Kanade database
after five random starts versus the parameters α and β.

training set and the highest performing subclass partitioning
setting was selected.

Parameters α and β were similarly determined through a
validation stage performing a grid search, while considering
the optimal clustering setting identified during the previous
step. More precisely, for the facial expression recognition
experiments on the CK database we trained SDNMF con-
sidering Cr = 2, which was identified during the previous
step and set values to parameters α and β in the range [0, 1].
Fig. 6 shows the average reached expression recognition rates
of SDNMF in CK after five random starts for each different set
of parameters value. As it can be seen SDNMF performs better
when α is varying within [0, 0.5] and β within [0.6, 1]. The
highest achieved recognition rate was attained for α = 0.5
and β = 0.9 which were also the parameters value applied
in experiments on both facial expression databases. A similar
procedure was also applied for the ETH-80 and PIE databases,
where for the first, setting in our algorithm Cr = 5, α = 0.4
and β = 0.6 resulted to the best performance, while for the
latter the selected parameter values were Cr = 5, α = 0.2,
and β = 0.9. DNMF parameters have been similarly selected
using cross validation and performing a grid search in the
range [0.1, 0.5] according to [15]. Thus, in DNMF we set
α = 0.1 and β = 0.1 on all experiments on facial image
data, while on ETH-80 dataset we set α = 0.1 and β = 0.3.
Finally, the optimal projection subspace dimensionality for the
proposed algorithms as well as, for all competing algorithms
in the experimental comparison has been similarly determined
during validation. To do so, we have performed a grid search
in the interval [50 , 300] and the subspace dimensionality, that
resulted to the best recognition rate on the validation set, were
subsequently adopted for the test set.

V. CONCLUSION

In real world applications data distribution usually does not
correspond to a compact set per class, but data form vari-
ous subclasses. Inspired by this observation, we investigated
the use of CDA-inspired discriminant constraints in the NMF
cost function, resulting in the SDNMF algorithm. SDNMF
addresses the general problem of finding discriminant pro-
jections that enhance class separability by minimizing the
scatter within every subclass. To solve the SDNMF minimiza-
tion problem, we developed novel multiplicative update rules
that consider not only sample class labels but also their sub-
class origin. Moreover, optimization was performed using a

projected gradients framework, in order to exploit its strong
optimization properties. Finally, the nonlinear counterpart of
the proposed method considering projections in nonlinear
polynomial feature spaces has been also investigated. We com-
pared the performance of the proposed algorithms with that of
various state-of-the-art linear subspace learning methods for
facial expression, face, and object recognition verifying their
effectiveness.

APPENDIX A
PROOF OF CONVERGENCE

Theorem 1: The objective function in (23) is non-increasing
under the element-wise update rule in (30).

To prove Theorem 1, we define an appropriate auxiliary
function G which bounds the objective function from above
and also satisfies the condition G(H,H) = OSDNMF(H). Using
such an auxiliary function G we can show that the update rule

H(t) = arg min
H

G(H,H(t−1)) (53)

will never increase the objective function, since the following
inequality holds:

OSDNMF

(
H(t)

)
≤ G

(
H(t),H(t−1)

)

≤ G
(

H(t−1),H(t−1)
)

= OSDNMF

(
H(t−1)

)
. (54)

Lemma: G(h, h(t−1)
k,j ) is an auxiliary function for Fhk,j , which

is the part of (23) that is only relevant to hk,j

G(h, h(t−1)
k,j ) = Fhk,j(h

(t−1)
k,j )+ F′

hk,j
(h(t−1)

k,j )(h − h(t−1)
k,j )

+
[ZT ZH]k,j+α[HLw]k,j+β[HE(1−

Cr∑

r=1

eT
r er)E]k,j

2h(t−1)
k,j

(h − h(t−1)
k,j )2

(55)

where E ∈ �L×L is a diagonal matrix containing vector e on
its main diagonal defined as E = diag(e).

Proof: Let us denote with F′
hk,j

and F′′
hk,j

the first and second
order derivatives of Fhk,j with respect to hk,j evaluated as

F′
hk,j

= [ZTZH]k,j − [ZTX]k,j + α[HLw]k,j − β[HLb]k,j

(56)

F′′
hk,j

= [ZTZ]k,k + α[Lw]j,j − β[Lb]j,j (57)

Obviously, according to the definition of the auxiliary func-
tion in (55) it holds G(h, h) = Fhk,j(h). Consequently, we only

need to show that G(h, h(t−1)
k,j ) ≥ Fhk,j(h). To do so, we com-

pare G(h, h(t−1)
k,j ) with the up to second order Taylor series

expansion of Fhk,j(h) defined as

Fhk,j(h) = Fhk,j(h
(t−1)
k,j )+ F′

hk,j
(h − h(t−1)

k,j )

+1

2
F′′

hk,j
(h − h(t−1)

k,j )2. (58)

Substituting (57) into (58) and comparing it with (55), we
derive that instead of showing that G(h, h(t−1)

k,j ) ≥ Fhk,j(h) we
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can equivalently prove that

[ZT ZH]k,j+α[HLw]k,j+β[HE(1−
Cr∑

r=1

eT
r er)E]k,j

h(t−1)
k,j

≥ F′′
hk,j

. (59)

To prove inequality (59) we compare separately each term

[ZTZH]k,j =
L∑

l=1

[ZTZ]k,kh(t−1)
k,l ≥ [ZTZ]k,kh(t−1)

k,j (60)

α[HLw]k,j = α

M∑

l=1

h(t−1)
k,l [Lw]l,j ≥ αh(t−1)

k,j [Lw]j,j. (61)

To complete the proof we need to show that

[
HE(1 −

Cr∑

r=1

eT
r er)E

]
k,j ≥ −h(t−1)

k,j [Lb]j,j ⇔

[
HE(1 −

Cr∑

r=1

eT
r er)E

]
k,j ≥ −h(t−1)

k,j

[ n∑

r=1

Cr∑

θ=1

C − Cr

N2
r,θ

eT
r,θer,θ

]
j,j

(62)

since
[
E(1 − ∑Cr

r=1 eT
r er)E

]
j,j = 0 given that matrix

[ ∑Cr
r=1 eT

r er
]

j,j is block diagonal with all its diagonal elements
equal to one. Consequently, inequality (62) is simplified to

M∑

l=1

h(t−1)
k,l

[
E(1 −

Cr∑

r=1

eT
r er)E

]
l,j

+ h(t−1)
k,j

[ n∑

r=1

Cr∑

θ=1

C − Cr

N2
r,θ

eT
r,θer,θ

]
j,j ≥ 0 (63)

which is valid since

[∑n
r=1

∑Cr
θ=1

C−Cr
N2

r,θ
eT

r,θer,θ

]

j,j
≥ 0, since

C ≥ Cr and also
[
E(1 − ∑Cr

r=1 eT
r er)E

]

l,j
≥ 0. Summing up

all the above inequalities completes the proof.
Proof of Theorem 1: Consequently, (55) is an auxiliary func-

tion of (23) and OSDNMF is non-increasing under the update
in (30).

APPENDIX B
FIRST ORDER PARTIAL DERIVATIVES WITH RESPECT TO Z

CONSIDERING ARBITRARY DEGREE POLYNOMIAL

KERNELS

The first order partial derivative of O (
Xφ ||ZφH

)
with

respect to zk,l considering H fixed, is evaluated as follows:

∂O (
Xφ ||ZφH

)

∂zk,l
=

L∑

i=1

(
−hl,i

∂k(zl, xi)

∂zk,l

+
⎛

⎝
M∑

j=1

hl,ihj,i × ∂k(zi, zl)

∂zk,l

+
M∑

j 
=l

hl,ihj,i
∂k(zj, zl)

∂zk,l

⎞

⎠

⎞

⎠ . (64)

Considering a polynomial kernel its partial derivative with
respect to zk,l is

∂k(zj, zl)

∂zk,l
=
∂

(∑F
i=1 zi,jzi,l

)d

∂zk,l
= dzk,j

(
zT

j zl

)d−1
. (65)

Consequently, replacing (65) into (64) we derive
∇O (

Xφ ||ZφH
)

as

∂O (
Xφ ||ZφH

)

∂zk,l
= −

L∑

i=1

hl,ixk,id
(
xT

i zl
)d−1

+
L∑

i=1

M∑

j=1

hl,ihj,izk,jd
(

zT
j zl

)d−1
(66)

which in matrix form can be written as

∇O (
Xφ ||ZφH

) = Z
(

HHT 	 K̀z,z

)
− X

(
H 	 K̀z,x

)T
.

(67)
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