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Abstract— Discriminative classification models have been suc-
cessfully applied for various computer vision tasks such as
object and face detection and recognition. However, deforma-
tions can change objects coordinate space and perturb robust
similarity measurement, which is the essence of all classification
algorithms. The common approach to deal with deformations is
either to seek for deformation invariant features or to develop
models that describe objects deformations. However, the former
approach requires a huge amount of data and a good amount
of engineering to be properly trained, while the latter require
considerable human effort in the form of carefully annotated
data. In this paper, we propose a method that jointly learns with
minimal human intervention a generative deformable model
using only a simple shape model of the object and images
automatically downloaded from the Internet, and also extracts
features appropriate for classification. The proposed algorithm
is applied on various classification problems such as “in-the-
wild” face recognition, gender classification and eye glasses
detection on data retrieved by querying into a web image
search engine. We demonstrate that not only it outperforms
other automatic methods by large margins, but also performs
comparably with supervised methods trained on thousands of
manually annotated data.

I. INTRODUCTION

Arguably, one of the problems that distinguishes computer
vision discipline from machine learning is visual objects
deformations modelling. Object deformations involve various
shape and texture variations within an object class (e.g.,
the differences between parts of human faces), as well as,
variations due to rigid or non-rigid movement of different
object parts (e.g., head pose and facial expressions).

Objects deformations render the use of standard distance
measures (such as the Euclidean distance), or kernels (such
as Gaussian Radial Basis Function (GRBF) and polynomial
kernels) not robust for measuring the similarity between
the deformed data samples. Hence, on recognition problems
involving visual data captured in unconstrained (also referred
to as “in-the-wild”) conditions, the direct application of
popular distance based classifiers, such as Support Vector
Machines (SVMs) [21], [19] and Relevance Vector Machines
(RVMs) [1], results in a significantly degraded performance.
Thus, an additional data pre-processing step is required
to deal with objects deformations before the classification
algorithm is applied.

Dealing with objects deformations has created a wealth
of research which can be roughly divided into two cate-
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Fig. 1. Given a set of unconstrained facial images retrieved by performing
the queries “Man Face” and ”Woman Face” into a web image search
engine, the proposed joint model using only the bounding boxes and a
mean face shape model, iteratively aligns the retrieved images by leaning
the deformation parameters, while extracts discriminant features and builds
a classifier.

gories: (1) methods that identify appropriate deformation
invariant features of the objects and use these in order
to train the classification algorithms and (2) methods that
define statistical or physical deformable models of the visual
objects at hand, in order to align the deformed objects
prior to feature extraction and classification. In the first
line of research fall methods that construct kernels invariant
to certain rigid image transformations [14], as well as the
family of deep learning and representation algorithms, such
as Deep Convolutional Neural Networks (DCNN) [16], [12],
[25] and Invariant Scattering Convolution Networks (ISCN)
[5]. However, invariant kernels and ISCNs can only model
simple objects transformations such as those caused by view
angle rotation [14], while DCNNs in order to be robustly
trained require huge amounts of data, and a good portion
of engineering to handle the high computational complexity
[25]. In addition, as it has been recently shown in [25], in
challenging settings such as “in-the-wild” face recognition,
DCNNs trained on millions of annotated data are unable to
reach satisfactory performance and meticulously designed
face alignment algorithms have to be applied to deal with
face deformations. Finally, most of the above deformation978-1-5090-4023-0/17/$31.00 c©2017 IEEE



invariant feature extraction algorithms are commonly com-
bined with an SVM algorithm for classification.

In the second line of research fall methods that explic-
itly model objects deformations by defining a statistical
deformable model. Notable examples include Active Appear-
ance Models [7], Active Shape Models [24], Elastic Graph
Matching [30] and Pictorial Structures [11], [32]. These
models are applied in order to first align the data which
are subsequently fed to the classifier. However, learning
visual deformable models requires considerable human effort
and still remains an expensive, tedious, labour intensive
and prone to human errors procedure. More precisely, it
requires both a careful selection of an image corpora that
can efficiently exhibit the vast amount of objects variability
and also the careful annotation of this corpora in terms of
objects meaningful parts.

In this paper, we propose a methodology that is able
to jointly learn with minimal supervision and annotation
effort, classifiers and objects deformable models using data
automatically collected from the Internet without requiring
their detailed semantic annotation. Let us consider the fol-
lowing Internet image based application, where we want
to train a facial gender classifier using the abundance of
images available in the Internet which can be retrieved by
applying a textual query (e.g., “man face” and “woman
face”) into a web image search engine such as Google
and Bing, or photo sharing websites such as Flickr. Our
application is further motivated by Figure 1. In this task we
want to automatically and simultaneously learn (a) a facial
deformable model associated with the image collection and
(b) extract appropriate features and build a classifier for facial
gender discrimination. If we merely use the obtained images
to directly extract discriminant features and train a classifier,
such as SVMs, the existence of facial deformations and
misalignment, is guaranteed to lead to inaccurate results. To
alleviate this problem we propose a joint methodology that
has an interplay between a generative statistical model and
a discriminative one, for facial image alignment and feature
extraction/classification, on the latent space of the first. In
particular, we aim to recover the deformation parameters
(e.g., via the use of object shape parameters) in order to
align the retrieved images using a generative model (i.e.
Principal Component Analysis (PCA)) and at the same time
to pursue a discriminative decomposition of the aligned data
by coupling the objective of the generative model with a
discriminative one (i.e. SVMs) that aims to separate data with
maximum margin. This can be also interpreted as developing
an SVM classifier with generative regularization terms and
deformations parameters which enables the creation of the
statistical deformable models.

The line of research that is closely related to the proposed
work is that of image congealing [17] which refers to the
problem of simultaneous aligning a set of images. However,
the majority of the rigid and non-rigid image congealing
algorithms use pure generative subspace models, such as
PCA [9] or Robust PCA (RPCA) alternatives [4], [20], [23],
[2]. On the other hand, we propose to the best of our knowl-

edge the first methodology which simultaneously learns a
subspace model that can be jointly used for deformable
models construction, discriminant features extraction and
classification 1.

Summarizing the novel contributions of the paper are the
following:
• We propose a joint discriminative generative compo-

nent analysis method which learns a subspace that
not only best reconstructs the data but also provides
low-dimensional features which can separate classes
by maximum margin. Joint models are currently quite
popular in computer vision. For instance, [18] proposes
a joint model that learns a maximum margin classifier
and extracts discriminant features in a single framework,
while [11] jointly learns the statistical deformable model
parameters and the parts locations in a discriminative
manner. In addition, deep multi-task learning networks
[31], [22] are among the state-of-the-art algorithms on
various face analysis tasks.

• We show that is feasible to incorporate a deformation
field in the proposed model, via a simple shape model,
and, hence, to jointly align the set of images while
learning the model parameters. The parameters of the
model can be used to fit a deformable model on test
images and at the same time perform classification. To
the best of our knowledge such a model has not been
presented before.

• We applied the proposed method on various recogni-
tion problems using unconstrained data, such as face
recognition on LFW database [15] or facial gender
classification and eye glass detection using data directly
collected from the Internet using Google image search
engine. We demonstrate that the proposed joint model
outperforms the traditional ones that require the separate
application of various algorithms for facial landmark
localization, image alignment, feature extraction and
classification.

II. PROBLEM FORMULATION

In this section we present the proposed joint discriminative
generative component analysis method that combines optimal
data reconstruction with classes separation by maximum
margin. We term this model Joint Discriminative Genera-
tive Model (JDGM) and develop an alternative optimization
algorithm with close form solutions for its optimization. To
facilitate our deformable model construction framework in
the following we shall assume that our data are vectorized
images. However, the presented component analysis algo-
rithm can be applied on any kind of high dimensional data.

A. Joint Discriminative Generative Model

Given a set X = {(x1, y1), ..., (xN , yN )} of N training
data pairs, where xi ∈ RF , i = 1, ..., N are the F -
dimensional input feature vectors each assigned a class label

1Our model can be also viewed as an application of the Occam’s razor
principle, which in simple terms requires to learn a model tailored to the
task at hand and not a more general one, as those learnt by PCA or RPCA.



yi ∈ {1, . . . ,K} with K denoting the total number of
classes, a multiclass SVM classifier [8] attempts to determine
a set of K separating hyperplanes W = {w1,w2, . . . ,wK}
where wp ∈ RF , p = 1, ...,K is the normal vector of the
p-th hyperplane that separates the training vectors of the p-th
class from all the others with maximum margin by solving
the following constraint optimization problem [8]:

min
wp,ξi

1

2

K∑
p=1

wT
p wp + C

N∑
i=1

ξi,

s.t.: wT
yixi −wT

p xi ≥ bpi − ξi, i = 1, . . . , N. (1)

where ξ = [ξ1, . . . , ξN ]T are the slack variables, each one
associated with a training sample, C is the term that penalizes
the training error and b is the bias vector defined as bpi =
1− δpyi , where δpyi is the Kronecker delta function.

PCA is one of the most popular components analysis
techniques that aims to find a set of orthonormal projection
bases, stacked in the columns of matrix U ∈ <F×M , such
that the data reconstruction error is minimized or equivalently
the variance of the projected samples is maximized:

Uo = arg minU

∑N
i=1 ||xi −UUTxi||22

= arg minU ||X−UUTX||22
= arg maxU ||UTX||22, s.t. UTU = IM ,

(2)

where X ∈ RF×N is the data matrix created by stacking
samples xi column-wise.

JDGM model aims to learn a subspace that best recon-
structs the data, while providing appropriate for classification
low dimensional features that can discriminate classes by
maximum margin. Thus, we combine the above constrained
optimization problems into a single objective function and
derive the following minimax optimization problem:

min
wp,ξi

max
U

1

2

K∑
p=1

wT
p wp + C

N∑
i=1

ξi +

N∑
i=1

||UTxi||22

s.t.: wT
yiU

Txi −wT
p UTxi ≥ bpi − ξi, i = 1, . . . , N

UTU = IM

where the separating hyperplane normal vector wp ∈ RM is
M -dimensional, since it separates samples in the subspace of
U, determined through the linear data projection x́i = UTxi
and IM is an M ×M identity matrix.

To solve the minimax optimization problem in (3) we
consider an alternative optimization framework where we
first compute the optimal decision hyperplanes for an initial-
ized projection matrix U and subsequently, solve (3) for U
while keeping the optimal normal vectors wp,o fixed. Thus,
to identify the optimal wp we introduce positive Lagrange
multipliers αpi and Λ ∈ RM×M = [Λi,j ] each associated
with one inequality or orthonormality constraint, respectively

and formulate the Lagrangian function L(wp, ξ,U,α,Λ):

L(wp, ξ,U,α,Λ) =
1

2

K∑
p=1

wT
p wp + C

N∑
i=1

ξi

+ Tr[XTUUTX]− Tr[Λ(UTU− IM ]

−
N∑
i=1

K∑
p=1

αpi
[(

wT
yi −wT

p

)
UTxi + ξi − bpi

]
, (3)

where Tr[.] is the matrix trace operator. To find the minimum
over the primal variables wp and ξ we require the partial
derivatives of L(wp, ξ,U,α,Λ) with respect to ξ and wp

to vanish, which yields the following equalities:

∂L
∂ξi

= 0⇒
k∑
p=1

αpi = C, (4)

∂L
∂wp

= 0⇒ wp,o =

N∑
i=1

(
αpi −

K∑
p=1

αpi δ
p
yi

)
UTxi. (5)

Substituting terms from (4),(5) into (3), expressing the
Lagrange multipliers in a vector form and performing the
substitution ni = C1yi−αi, (where 1yi is a K-dimensional
vector with all its components equal to zero except of the
yi-th, which is equal to one) the minimax problem in (3) is
equivalent to the following dual problem:

min
n

max
U

1

2

N∑
i,j

xTi UUTxjn
T
i nj +

N∑
i=1

nTi bi

+ Tr[XTUUTX]− Tr[Λ(UTU− IM )],

s.t.:
K∑
p=1

npi = 0, npi ≤
{

0 , if yi 6= p
C , if yi = p

∀ i = 1, . . . , N , p = 1, . . . ,K. (6)

Solving the above quadratic programming problem with the
linear kernel function
K(xi,xj) = xTi UUTxj for n, we subsequently obtain the
separating hyperplanes from (5).

To optimize for U we remove from (6) term
∑N
i=1 nTi bi,

since it is independent of the optimized variable and solve
the resulting trace optimization problem:

max
U

Tr[UT
N∑
i,j

nTi njxix
T
j U] + Tr[XTUUTX] (7)

− Tr[Λ(UTU− IM )].

Computing and setting the derivative with respect to U
equal to zero we derive the following generalized eigenvalue
problem: ( N∑

i,j

nTi njxix
T
j + XXT

)
U = UΛ. (8)

Thus, the projection bases of U correspond to the (N − 1)
eigenvectors of matrix

∑N
i,j nTi njxix

T
j + XXT associated

with the largest eigenvalues. Matrix
∑N
i,j nTi njxix

T
j has a

form similar to the Linear Discriminant Analysis (LDA)



between class covariance matrix, since it can be written
as
∑N
i,j nTi njxix

T
j = XLLTXT = AAT , where A ∈

RF×K and L = [n1, . . . ,nK ]T ∈ RN×K is created by
stacking the vectors of the optimal Lagrange multipliers for
each training sample row-wise. Since non-zero Lagrange
multipliers correspond to support vectors which are the
samples that reside closest to the decision boundary, matrix∑N
i,j nTi njxix

T
j is a robust estimator of the between class

scatter evaluated using only the support vectors weighted
by their associated Lagrange multiplier value. On the other
hand, matrix St = XXT is the data covariance matrix, thus
their combination enables the interplay between extracting
simultaneously generative and discriminant basis vectors.

III. JDGM WITH GENERALIZED ORTHOGONALITY
CONSTRAINTS

On deformable models construction it is usually advan-
tageous to whiten or “sphere” the data. In our model this
can be directly incorporated in the optimization problem
by the additional constraint uTk Stuk = 1, where uk is
the k-th projection base of matrix U = [u1,u2, . . . ,uM ].
Thus, to evaluate the data transformation matrix U, while
incorporating the additional orthogonality constraint, we de-
velop an optimization algorithm motivated by [6] where we
sequentially derive each projection base uk, k = 1, . . . ,M
so that it improves the objective function and at the same
time is orthogonal to the (k − 1) previously derived bases.
More precisely, to evaluate the k-th basis vector we consider
the following minimax optimization problem:

min
wp,ξi

max
uk

1

2

K∑
p=1

wT
p wp + C

N∑
i=1

ξi,

s.t.: wT
yiu

T
k xi −wT

p uTk xi ≥ bpi − ξi,
uTk u1 = uTk u2 = · · · = uTk uk−1 = 0,

uTk Stuk = 1. (9)

Deriving the dual formulation of (9) with respect to the
primal variables wp and ξi as in (6) and setting Sb =∑N
i,j nTi njxix

T
j , we obtain:

min
n

max
uk

1

2
uTk Sbuk +

N∑
i=1

nTi bi

s.t.:
K∑
p=1

npi = 0, npi ≤
{

0 , if yi 6= p
C , if yi = p

∀ i = 1, . . . , N , p = 1, . . . ,K.

uTk u1 = uTk u2 = · · · = uTk uk−1 = 0,

uTk Stuk = 1. (10)

The solution for the optimal decision hyperplanes is com-
puted by fixing the transformation bases and solving the
resulting QP problem for n as in (6). To compute the k-
th orthogonal basis uk we fix the optimal normal vectors

wp,o and consider the maximization problem:

uk = arg max
u

1

2
uTk Sbuk +

N∑
i=1

nTi bi

s.t.: uTk u1 = uTk u2 = · · · = uTk uk−1 = 0,

uTk Stuk = 1. (11)

Incorporating the constraints we develop the following La-
grangian function:

L(uk, λ,µ) =
1

2
uTk Sbuk − λ(uTk Stuk − 1)

− µ1u
T
k u1 − µ2u

T
k u2 − · · · − µk−1uTk uk−1, (12)

where computing and setting its derivative with respect to
uk equal to zero we derive the following equality:

Sbuk−2λStuk−µ1u1−µ2u2−· · ·−µk−1uk−1 = 0. (13)

Multiplying (13) from the left hand side by uTk and solving
for λ we derive:

λ =
uTk Sbuk
2uTk Stuk

, (14)

while multiplying the left hand side of (13) by u1S
−1
t ,

u2S
−1
t , . . . ,uk−1S

−1
t , summing up the resulting equa-

tions and setting U(k−1) = [u1, . . . ,uk−1], µ(k−1) =
[µ1, . . . , µk−1] and Θ(k−1) = [U(k−1)]TS−1t U(k−1) we
derive:

µ(k−1) = [Θ(k−1)]−1[U(k−1)]TS−1t Sbuk. (15)

Finally, multiplying the left hand side of (13) by S−1t and
substituting terms according to (15) we derive the general-
ized eigenvalue problem:

1

2

(
IF − S−1t U(k−1)[Θ(k−1)]−1[U(k−1)]T

)
S−1t Sbuk = λuk

(16)
We compute u1 as the eigenvector of matrix S−1t Sb
associated with the largest eigenvalue and evaluate se-
quentially the remaining (N − 1) orthogonal bases uk
as the eigenvectors with the largest eigenvalues of
1
2

(
IF − S−1t U(k−1)[Θ(k−1)]−1[U(k−1)]T

)
S−1t Sb.

IV. DEFORMATION PARAMETERS LEARNING AND IMAGE
ALIGNMENT

The proposed framework is a general method for auto-
matic deformable model construction and thus can be applied
on any deformable object. Here we explicitly focus on facial
images and on building facial deformable models, since
various annotated in-the-wild facial databases, shape models
and algorithms for facial landmark localization are available
which can facilitate our quantitative evaluation.

To automatically learn the shape deformation parameters
for image alignment we only use a shape prior and the
initialized bounding boxes. More formally, given a set of N
training images {Ii}, i = 1, . . . , N and a statistical shape
model {s,B} where s = {(x1, y1), . . . , (xL, yL)} is the
mean shape model and (xi, yi) are the coordinates of the i-
th landmark point (we consider an L = 68 landmark points



facial shape model) and matrix B ∈ <2L×(4+Ns) stores
the shape eigenvectors where the first four correspond to
the global similarity transform, while the rest are computed
performing PCA on an available set of facial shapes.

A new shape instance is generated as a perturbation of the
mean shape s by linearly combining the eigenvectors in B
weighted by the parameters p = [p1, . . . , p4+NS

]T as sp =
s + Bp. Moreover, we define a motion model as the warp
function W (x,p), (which for simplicity we denote as W (p))
that maps each point within the mean shape (x ∈ s) to its
corresponding location in a shape instance. Thus, each image
warping to the mean shape given a shape estimate of the
displayed face ({si}, i = 1, . . . , N), returns N appearance
vectors {Ii(W (pi))}, i = 1, . . . , N of size F×1, where F is
the total number of pixels that lie inside the mean shape. We
also denote as P = [p1,p2, . . . ,pN ] the (4+Ns)×N matrix
containing the shape parameters for each image. To estimate
the motion parameters pi, i = 1, . . . , N we consider the
following optimization problem where we aim to minimize
the `22 norm fitting error over all images using the generative
discriminative bases U derived by the JDGM model:

min
{pi, i=1,...,N}

N∑
i=1

||xi(W (pi))− (Uci + µ) ||22 (17)

where ci ∈ <M×1, i = 1, . . . , N are the linear combination
weights and µ ∈ <F×1 is the data mean vector. The
optimization problem in (17) is solved in an alternative opti-
mization manner as in [27], with ci = UT (xi(W (pi))−µ),
while the update of pi is performed as in [26].

The proposed algorithm optimizes the proposed cost func-
tion using a standard block coordinate optimization ap-
proach. Even though it is not feasible to provide a mathemati-
cal proof of convergence, we observed empirical convergence
in all cases. In all experiments, JDGM converged after a few
tens of iterations (around 30) without facing any convergence
issues.

V. EXPERIMENTAL RESULTS

In the experimental comparisons we demonstrate that the
proposed joint model is able to (a) correctly locate the facial
landmarks from a crude face detector so as to perform image
alignment (b) extract appropriate features for classification
by performing a discriminative decomposition of the aligned
data and (c) build a maximum margin classifier on the
identified latent space. We compare the automatic JDGM
model against the current standard approach on recogni-
tion applications involving in-the-wild facial images where
various algorithms for facial landmarks localization, image
alignment, feature extraction and finally classification are
independently treated and considered as different modules
in the pipeline of the general recognition application. To
do so, we consider three different recognition problems
on unconstrained facial data namely, face recognition on
LFW dataset and eye glasses detection and facial gender
classification on facial images collected from the Internet by
performing textual queries in Flickr and Google web image

search engine. The detailed descriptions of each dataset are
given in subsections V-A, V-B and V-C.

In our experiments the facial bounding boxes of all images
were derived by applying the Viola-Jones object detection
algorithm [29], while we employed a shape model trained
on 50 shapes of Multi-Pie database [13]. This shape model
contains Ns = 10 eigenvectors and the mean shape has a
resolution of 86 × 87 pixels, thus the initial dimensionality
of all our data is F = 7, 482.

We evaluate JDGM ability to automatically build a face
shape model (i.e. facial landmark localization accuracy)
and its feature extraction and classification performance,
comparing against three different algorithms. More precisely,
for the baseline algorithm in our comparison we directly
exploited the detected facial regions (without aligning the
images) which were anisotropically scaled to a fixed size of
86× 87 pixels, performed PCA and LDA for dimensionality
reduction and the extracted features were subsequently fed
into a linear SVM algorithm [10] for classification. A purely
automatic algorithm that we also considered in our com-
parison is the state-of-the-art image congealing “TIP-CA”
algorithm in [9] that combines PCA with AAM fitting which
we appropriately modified so as to learn the shape deforma-
tion parameters instead of the image affine transform. On
the aligned facial images derived by TIP-CA we used only
the pixels inside the resulting reference shapes, performed
PCA and LDA for dimensionality reduction and used the
same linear SVM algorithm for classification. For the third
algorithm in the comparison which we term “DRMF+SVM”,
we aligned the facial images exploiting the facial landmarks
localizations derived by applying the state-of-the-art Robust
Discriminative Response Map Fitting (DRMF) algorithm [3],
trained on thousands of manually annotated facial images and
similarly used only the pixels inside the shapes to perform
PCA and LDA and fed the low dimensional discriminant
representations to a linear SVM algorithm for classification.
Finally, except of the purely automatic JDGM model where
deformable shape fitting is initialized using the mean shape,
we also initialized our model using the landmark local-
izations derived by DRMF developing an algorithm which
we term “JDGM+DRMF”. Moreover, in all experiments
we considered the image intensity values and the Image
Gradient Orientations (IGOs) for robust subspace analysis
as demonstrated in [28].

A. Face Recognition on LFW Dataset

LFW image dataset realistically simulates the variability
evident to in-the-wild face recognition problems and is
the standard benchmark on face verification. In total LFW
consists of 13, 233 facial images depicting 5, 749 different
individuals of which 4, 069 have a single image in the
database. Thus, in order to perform face recognition, we
employed a subset of the available data considering only
the face images of those individuals that have more than 30
samples, sufficient to contribute both to the training and test
sets. The dataset we considered consists in total of 2, 310
face images from 32 individuals where for each subject a



different number of samples were available varying from 30
to 530 images. To form our testing set we randomly selected
half of the images available for each individual for training
and the remaining for testing.

To measure the landmark localization accuracy we com-
pute the point-to-point RMSE normalized with respect to
the face size. Thus, the RMSE between the fitted shape sf

and the groundtruth shape sg is evaluated as: RMSE =∑N
i=1

√
(xf

i−x
g
i )

2+(yfi −y
g
i )

2

Ns∗d , where d = (maxx sg−minx sg+
maxy sg −miny sg). Figure 2 shows the normalized RMSE
fitting curves for both appearance representation features
where the proposed automatic joint model is compared
against the TIP-CA and the state-of-the-art DRMF algorithm
which however, is trained on manually annotated data. As can
be seen, the proposed automatic JDGM method outperforms
TIP-CA method, while it achieves comparable performance
with DRMF algorithm. It is also important to highlight
that JDGM+DRMF algorithm which exploits the landmark
localizations derived by DRMF in order to initialize our de-
formable shape fitting process, achieved the best performance
as it was able to further improve landmarks localization in
images where the provided fittings were not accurate.

Table I summarizes the highest face recognition rates
achieved by each method in the comparison. The proposed
JDGM automatic model outperforms all other automatic
algorithms by large margins, while the highest performance
was achieved by JDGM+DRMF algorithm which also ob-
tained the best fitting accuracy in the database.

TABLE I
FACE RECOGNITION ACCURACY RATES IN LFW IMAGE DATASET.

Automatic Methods Requiring
Methods Landmarks Annotation

Methods Baseline TIP-CA JDGM DRMF+SVM JDGM+DRMF
Intensities 71.8% 74.6% 86.9% 88.5% 90.4%

IGOs 79.9% 84.1% 91.1% 93.3% 95.8%

B. Eye Glasses Detection
Next we consider a recognition problem using uncon-

strained images automatically collected from the Internet,
where we aim to recognize whether the depicted subjects
wear glasses or not. To do so, we created an image dataset
depicting 20 different celebrities who usually appear wearing
glasses (we considered both eye and sun glasses) and aim to
automatically build a deformable face shape model for image
alignment and also build a classifier and extract discriminant
features appropriate for the eye glasses classification prob-
lem. To create our database we performed textual queries
such as “Samuel Jackson wearing glasses” or “Samuel
Jackson without glasses” in Google images and collected for
each celerity 50 retrieved images containing approximately
equal number of samples for each class. Thus, our celebrities
image collection consists in total of 1, 000 images which
were randomly split into half to form our training and test
sets. Figure 3 shows some of the collected images where
the facial landmarks have been localized using the proposed
automatic JDGM model.

Fig. 3. Sample images of the collected celebrities dataset for the eye glasses
detection problem. Facial landmarks have been localized by the proposed
automatic JDGM model.

To further investigate the effect of the joint generative
discriminative component analysis model in AAM fitting we
computed the normalized RMSE considering only the facial
landmarks around the eyes and the eyebrows which are the
facial regions discriminant for the eye glasses classification
problem. Figure 4 plots the fitting curves for both appear-
ance features where as can be seen the proposed method
achieved smaller fittings error. It is important to highlight
that by directly comparing the fitting errors derived by TIP-
CA algorithm that combines PCA with AAM fitting and
the proposed JDGM model we verify that the discriminant
information incorporated in the learnt subspace by JDGM
significantly assists Gauss-Newton optimization algorithm
to reach a better local minimum. Table II also summarizes
the obtained classification results. JDGM+DRMF algorithm
achieved the best recognition performance, while the purely
automatic JDGM model also attained competitive perfor-
mance outperforming TIP-CA algorithm by large margins.

TABLE II
EYE GLASSES DETECTION ACCURACY RATES IN THE COLLECTED

CELEBRITIES DATABASE.

Automatic Methods Requiring
Methods Landmarks Annotation

Methods Baseline TIP-CA JDGM DRMF+SVM JDGM+DRMF
Intensities 65.2% 69.3% 82.6% 84.8% 85.2%

IGOs 73.3% 77.0% 89.6% 92.2% 93.7%

C. Facial Gender Classification in-the-wild

For our final set of experiments we considered the problem
of facial gender classification also in a set of in-the-wild
facial images collected from the Internet. In order to form our
image collection we used Flickr image sharing website where
we applied the textual queries “Man face” and “Woman
face” and collected 500 of the retrieved for each query
images. Thus, in total our dataset comprises of 1, 000 facial
images which were randomly split into half to form the
training and test sets.
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Fig. 2. Comparison of the normalized RMSE fitting curves in LFW image dataset.
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Fig. 4. Comparison of the normalized RMSE fitting curves in the collected celebrities dataset considering only the facial landmarks that correspond in
the discriminant facial areas around the eyes and the eyebrows.

Table III summarizes the obtained classification results
which are consistent with those obtained on the other
datasets. JDGM model not only outperformed the other
automatic methods but also attained competitive performance
against models trained on manual annotations which we think
is remarkable.

TABLE III
FACIAL GENDER CLASSIFICATION ACCURACY IN THE COLLECTED

DATASET.

Automatic Methods Requiring
Methods Landmarks Annotation

Methods Baseline TIP-CA JDGM DRMF+SVM JDGM+DRMF
Intensities 68.5% 71.1% 88.4% 89.6% 90.7%

IGOs 72.6% 77.4% 89.1% 91.5% 93.9%

VI. CONCLUSION

The current standard approach on recognition applications
involving in-the-wild images of deformable objects requires
the combination of various algorithms for landmarks local-
ization, image alignment, feature extraction and classification
which however, are independently treated and considered as
different modules in the pipeline of the general recognition
application. Contrary to that, we propose a model that jointly
learns a generative deformable model using only a simple
shape model of the object and a crude detector, and also
extracts features appropriate for classification. Experiments
on unconstrained facial data, some of which were directly
collected from the Internet by performing textual queries in
web image search engines, demonstrated that the proposed
automatic model not only outperforms other automatic mod-
els by large margins but also was able to achieve comparable
performance with models trained on thousands of manually
annotated data.
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