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ABSTRACT

Nonrigid image registration is a widely used technique in medical

imaging. While most methods work very well on images without

pathologies or artefacts, there is a high need for improved robustness

on images from pathological subjects and acquisitions with artefacts

such as intensity inhomogeneity. In this paper, we propose a novel

similarity measure based on normalised gradients for nonrigid reg-

istration, which is robust on images with intensity inhomogeneities

or pathologies. We provide both theoretical and experimental proof

of the robustness and evaluate the approach on manually segmented

and simulated pathological images. Compared to normalised mutual

information and to an alternative similarity also based on normalised

gradients, we obtain significant overlap improvements for images

with intensity inhomogeneities. We further confirm improved ro-

bustness on images with simulated tumours.

1. INTRODUCTION

Nonrigid image alignment is a crucial requirement in a variety of

applications in medical imaging, including automatic segmentation,

motion tracking and morphometric analysis. A large number of dif-

ferent successful approaches have been proposed to the problem of

nonrigid image registration [1]. However, since most of the research

focuses on registration of images with differences that can always

be matched, there is a significant need for improved robustness on

images with structures that appear just in one of the images, such as

pathologies, and on images with acquisition artefacts like intensity

inhomogeneity.

In medical imaging, several methods have been proposed for

registration of images with mismatches, focusing on robustness [2],

tumour models [3] or bayesian models [4]. However, all these meth-

ods need a prior knowledge of what a “mismatch” is in order to de-

tect and/or ignore them. Aditionally, a number of methods based

on mutual information have been proposed to reduce the effect of

intensity inhomogeneities in the registration [5, 6, 7].

The concept of normalised image gradients was introduced to

the field of medical image registration by Pluim et al. [8]. In this

work, normalised mutual information (NMI) [9] is weighted voxel-

wise by the normalised image gradients in order to incorporate spa-

tial information. After this initial work, the first similarity based

solely on normalised gradients was proposed by Haber et al. [10].

Since its introduction, this measure has been successfully utilised

[11, 12, 13]. However, as we show in this paper, this cost functional

is less robust to image inhomogeneities and is affected when gross

outliers, such as lesions or tumours, are present in the images.

To the best of our knowledge, there is no previously proposed

similarity measure in nonrigid image registration that is robust to

both imaging artefacts such as intensity inhomogeneities caused by

bias fields and outliers in the images, e.g. in form of pathology.

To this end, we utilise a simple, but effective similarity measure

based on the angle between gradient orientations, which are ob-

tained from the normalised image gradients. A similar approach has

been recently successfully applied for the robust affine alignment

of facial images [14] and shown to be robust towards occlusions

and changes in illumination. Specifically, we employ this similarity

measure within a widely and successfully used nonrigid registration

framework based on free-form deformations (FFD) [15]. We pro-

vide theoretical evidence of its robustness and evaluate on manually

segmented data. We obtain favourable overlap measures for images

with intensity inhomogeneities. We also confirm robustness of the

proposed similarity measure on simulated pathological data from a

tumour database.

2. METHOD

2.1. Proposed similarity measure

Image registration can be regarded as an energy minimisation prob-

lem. A typical energy functional E is composed of a data term ED

and a regularisation term ER. ED measures the degree of alignment

of a target (fixed) image I0 and a source (moving) image I . ER

imposes smoothness on the deformation field that aligns the images.

Hence, E = ED + λER, where the parameter λ ≥ 0 is the weight

of the regularisation.

In [10], the authors use the observation that a target and a source

image come into alignment when the square of the cosine of the

angle between the target and warped source gradient orientations is

maximised. In contrast, we propose to adopt the similarity measure

introduced by Tzimiropoulos et al. [14], which corresponds to only

the cosine (not squared) between gradient orientations, and introduce

it into the problem of nonrigid medical image registration. Hence,

we propose to utilise the following data energy functional

ED(T ) = −
∑

k∈Ω cos φ(∇I0(k), (T ◦ ∇I)(k)). (1)

Here, Ω is the set of indices corresponding to the target image sup-

port, φ(·, ·) is the angle between two gradient orientations, T is the

current spatial transformation, and T ◦∇I denotes the warped source

gradient, which is obtained by applying the spatial transformation T

independently on the x, y and z components of ∇I . Our proposed

data energy term in (1) can be expressed in terms of the dot product

〈·, ·〉 between gradients

ED(T ) = −
∑

k∈Ω
〈∇I0(k),(T◦∇I)(k)〉

||∇I0(k)|| ||(T◦∇I)(k)||
(2)

2.2. Numerical stability

As discussed in [10], it is not possible to use normalised gradient

fields directly due to discontinuities in the differentiation. We thus
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compute the data energy term using regularised normalised gradient

fields as presented in [13]

ED(T ) = −
∑

k∈Ω
〈∇I0(k),(T◦∇I)(k)〉̺,τ

||∇I0(k)||̺ ||(T◦∇I)(k)||τ
, (3)

where 〈·, ·〉̺,τ = 〈·, ·〉 + ̺τ and || · ||∗ =
√

〈·, ·〉∗,∗. In this work,

̺ and τ are not user-defined parameters as in [13]. Intstead, they are

computed following an automatic choice based on total variation

̺ = η

VI0

∑

k∈ΩI0
|∇I0(k)|, τ = η

VI

∑

k∈ΩI
|∇I(k)| (4)

where η > 0 is a parameter for noise filtering and V∗ is the volume

of interest in the image domain Ω∗.

2.3. Robustness of the proposed similarity measure

2.3.1. Robustness against intensity inhomogeneities

A significant advantage of normalised gradient-based methods is

their invariance towards low frequency intensity changes, as we now

demonstrate. Consider an image signal M with no intensity inho-

mogeneities and a multiplicative, non-negative bias field B which

is assumed to be smooth, i.e., constant in the small neighborhood

N (k) = (∆kx,∆ky,∆kz). This means B(p) ≈ B(k),∀p ∈
N (k). We have for ∆kx

IBIAS(k) = M(k)B(k)
IBIAS(k +∆kx) = M(k +∆kx)B(k +∆kx),

(5)

and given that B(k) is constant within the neighborhood

∂IBIAS(k)
∂x

= lim∆kx→0
IBIAS(k+∆kx)−IBIAS(k)

∆kx

≈ lim∆kx→0
B(k)(M(k+∆kx)−M(k))

∆kx

= B(k) ∂M(k)
∂x

.

(6)

Using this result, we now show that the proposed cost function is

indeed robust to locally constant bias fields using the normalisation

scheme in (3). If the contributions of ̺ and τ are disregarded, we

have
∂IBIAS(k)

∂x
√

(

∂IBIAS(k)
∂x

)2
+
(

∂IBIAS(k)
∂y

)2
+
(

∂IBIAS(k)
∂z

)2
. (7)

By using equation (6) we obtain

B(k)
∂M(k)

∂x
√

(

B(k)
∂M(k)

∂x

)2
+
(

B(k)
∂M(k)

∂y

)2
+
(

B(k)
∂M(k)

∂z

)2
. (8)

Here we observe that B(k) vanishes, yielding

∂M(k)
∂x

√

(

∂M(k)
∂x

)2
+
(

∂M(k)
∂y

)2
+
(

∂M(k)
∂z

)2
. (9)

Equations (5)-(9) are analogous for ∆ky and ∆kz . This leads to

∇IBIAS(k)
||∇IBIAS(k)||

= ∇M(k)
||∇M(k)||

, (10)

demonstrating the invariance of normalised gradient-based similar-

ities with respect to B. Nevertheless, as suggested by our results,

squaring the dot product as in [10], accentuates the contribution of

the normalisation factors ̺ and τ , yielding a slightly lower perfor-

mance.

(a) (b) (c)

Fig. 1. Axial view of one of the T1-weighted brain images utilised.

(a): Original. (b): With simulated bias field. (c): Rainbow-coded

bias field

Fig. 2. Mean similarity index and standard deviation over cortical

and subcortical labels for all 34× 33 = 1122 registrations.

2.3.2. Robustness against general mismatches

As we later show in our results, the similarity measure presented

in [10], is not robust against general mismatches. This is because

cos2φ has strictly positive values. Therefore, in the region of mis-

matches Ω0 we have
∑

k∈Ω0
cos2 φ(∇I0(k), T (∇I(k))) ≫ 0.

Consequently, the total cost function can be arbitrarily biased by

the presence of outliers. In contrast, the histogram of the inner

product of the normalised gradients taken from Ω0 has a distribu-

tion of zero mean. Hence,
∑

k∈Ω0
cosφ(∇I0(k), T (∇I(k))) ≈ 0,

which means that the presence of outliers do not bias the proposed

similarity measure.

3. RESULTS

As previously mentioned, we incorporate the proposed measure into

a B-Spline FFD approach [15]. For comparison, we also incorporate

the cosine squared similarity [10] and normalised mutual informa-

tion (NMI) [9] into our framework. In all the conducted experiments,

we utilise the bending energy of the deformation field as regularisa-

tion term ER and we set the noise filtering parameter η to 0.01. We

also set λ = 0.01 for registrations optimising NMI and λ = 0.0001
for registrations optimising gradient-based similarities. We further

regularise the forces for the gradient-based methods using a gaus-

sian kernel with σ equal to 4 times the (isotropic) voxel size.

3.1. MR images with intensity inhomogeneities

Here, we evaluate the performance of our similarity against inten-

sity inhomogeneities. This relaxes the necessity of an explicit inten-

sity correction step in the registration pipeline, which can be time
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Table 1. Images with pathology: Overlap measures for white mat-

ter (WM), gray matter (GM) and cerebrospinal fluid (CSF) labels

propagated using the proposed similarity and Haber et al. [10]. Bold

means statistically significant with p = 0.001
WM GM CSF Overall

Proposed similarity 79.2 78.3 62.0 73.2

Haber et al. [10] 77.0 77.2 61.0 71.7

consuming and a potential source of errors, especially for non-brain

images.

For this experiment, we employ 34 T1-weighted MR brain im-

ages, which have been manually segmented by experts1 into 134

anatomical structures. We perform the 34×33 = 1122 pairwise reg-

istrations with control point spacings of 20, 10, 5 and 2.5mm, using

the original images. We subsequently introduce different smooth in-

tensity inhomogeneities individually to all the images using a MAT-

LAB tool2 and perform the same registrations again using the origi-

nal images as target and the affected ones as source. Figure 1 shows

an example image with and without bias field.

We compare the gradient-based similarity measures against NMI

in their ability to produce a deformation field able to accurately prop-

agate the manual segmentation labels. We measure the registration

accuracy using the similarity index (SI), both for the original images

and the images with bias field. We compute the mean and standard

deviation of the SI values calculated on the propagated and refer-

ence labels for all 1122 propagations. We differentiate between 98

cortical and 36 subcortical labels. We observe that NMI performs

good when there is no intensity inhomogeneities in the images. On

the contrary, it is severely affected by the presence of intensity inho-

mogeneities. Conversely, both gradient-based similarities show sim-

ilar performances for registrations with and without intensity inho-

mogeneities, demonstrating their robustness. Nevertheless, the pro-

posed similarity performs better that cosine squared. As we mention

in section 2.3.1, this difference in performance might be caused by

the increased infuence of the normalisation factors when squaring

the dot product. Detailed results are shown in Figure 2.

It is important to note that in the case where no intensity inho-

mogeneities are present, the proposed method has a lower perfor-

mance than NMI. The conducted analyses suggest that, when using

normalised gradient fields, the registration of MR images is more

difficult than the alignment of scans from other imaging modalities

as in [11, 12, 13]. We observe that in the particular case of MR brain

images, the discrimination between noise- and structure-related gra-

dients is very challenging, especially in cortical areas. This also ren-

ders the choice of the noise parameter η more difficult and demands

an aggressive regularisation of the force field.

3.2. MR images with pathologies

Registration of images depicting pathology is a challenging proce-

dure, since the images may exhibit strong structural differences that

cannot be matched. Here, we show that our similarity measure is

capable of handling images with areas of mismatches, e.g., areas of

pathology, without any prior knowledge nor any subsequent correc-

tion step.

For this experiment, we take 10 brain images with simulated

tumours from the BraTS MICCAI challenge image database. Half

1provided by Neuromorphometrics, Inc. under academic subscription.
(www.neuromorphometrics.com)

2bigwww.epfl.ch/algorithms/mri-reconstruction

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Reference and propagated labels. (a)-(c): Reference. (d)-

(f): Propagated using proposed similarity. (g)-(i): Propagated using

Haber et al. [10]. Boundaries of the tumours and image are provided

for visualisation.

Fig. 4. Histograms of cosφ and cos2φ between a healthy subject

and the BraTS simulated images in the tumour areas. The means are

0.002 and 0.330, respectively.

of these images show high grade gliomas and the other half has low

grade ones. These images are labelled into white matter (WM), gray

matter (GM), cerebrospinal fluid (CSF) and 2 further labels for the

tumour areas. For a quantitative evaluation, a labelled image of a

healthy subject that was used to simulate the tumours is registered

to the 10 BraATS images. We measure the registration accuracy

using SI over the three labels WM, GM and CSF. We ignore the

two available tumour labels as there is no equivalent in the healthy

scan. A good ovelap for non-tumour labels means that the similarity

measure is not biased by the presence of pathology. Table 1 shows

the overlaps obtained by the proposed method compared to cosine
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(a) (b)

Fig. 5. Axial view of deformation fields produced by (a) NMI

(1.26% of voxels with negative jacobian) and (b) proposed method

(0.13% of voxels with negative jacobian).

squared. We observe better overall alignment, thus demonstating

increased robustness against the presence of tumours. Visual results

are shown in Figure 3. The main areas where the registration is

affected by the tumour presence are highlighted by a red circle. This

effect is further supported by the experimental evidence that for the

tumour areas, the histogram of the cosine values has a distribution

with zero mean, as shown in Figure 4. Hence, the sum of these

values has an expected value of zero. On the contrary, the histogram

for cosine squared demonstrates that the distribution of its values in

the tumour areas has a strictly positive value, thus biasing the energy

computation.

Another interesting fact is that with the proposed similarity mea-

sure and regularisation, a smoother (hence, more plausible) defor-

mation in the tumour area than with NMI is obtained, as shown in

Figure 5.

4. CONCLUSION

In this work, we have proposed a similarity measure for medical

image registration that is robust towards bias fields and outliers in

form of pathologies. We demonstrate the effectiveness and robust-

ness of our similarity measure on images with simulated bias fields

and on simulated pathological images, showing superior robustness

in these scenarios compared to NMI and the cosine squared measure

of Haber et al. [10].

The main contribution of this paper is that our similarity mea-

sure, relaxes the need of using preprocessing steps like bias field

correction, which can be time consuming and prone to errors. Also,

it can be utilised to register images in the presence of pathologies,

since it does not rely on any particluar deformation model and does

not require segmentations of the outliers.

As future work, we plan to investigate possible extensions to

the proposed method, in order to be able to deal with multimodal

registrations tasks such as T1-T2 MRI registration.
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and Sébastien Ourselin, Eds., 2009.

[12] T. Lange, N. Papenberg, S. Heldmann, J. Modersitzki, B. Fis-

cher, H. Lamecker, and P.M. Schlag, “3D ultrasound-CT reg-

istration of the liver using combined landmark-intensity infor-

mation.,” International journal of computer assisted radiology

and surgery, vol. 4, no. 1, pp. 79–88, Jan. 2009.
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