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Abstract

Given the facial points extracted from an image of a face
in an arbitrary pose, the goal of facial-point-based head-
pose normalization is to obtain the corresponding facial
points in a predefined pose (e.g., frontal). This involves in-
ference of complex and high-dimensional mappings due to
the large number of the facial points employed, and due
to differences in head-pose and facial expression. Most
regression-based approaches for learning such mappings
focus on modeling correlations only between the inputs (i.e.,
the facial points in a non-frontal pose) and the outputs (i.e.,
the facial points in the frontal pose), but not within the in-
puts and the outputs of the model. This makes these models
prone to errors due to noise and outliers in test data, often
resulting in anatomically impossible facial configurations
formed by their predictions. To address this, we propose
Shape-constrained Gaussian Process (SC-GP) regression
for facial-point-based head-pose normalization. Specifi-
cally, a deformable face-shape model is used to learn a
face-shape prior, which is placed on both the input and the
output of GP regression in order to constrain the model pre-
dictions to anatomically feasible facial configurations. Our
extensive experiments on both synthetic and real image data
show that the proposed approach generalizes well across
poses and handles successfully noise and outliers in test
data. In addition, the proposed model outperforms previ-
ously proposed approaches to facial-point-based head-pose
normalization.

1. Introduction

Head-pose normalization (i.e., canceling the effect of
head rotation) is a crucial pre-processing step for computer-
vision applications such as person identification and facial
behaviour analysis. These, in turn, are an integral part of
many real-world technologies including smart-rooms inter-

Figure 1. Outline of the method: SC-GP regression maps the
locations of 39 facial landmark points (X) extracted from a facial
image in a non-frontal view to the corresponding points (Y ) in
the frontal pose by means of the structured prediction based on
deformable shape models (learned independently for the input and
output, and described by the first k deformable modes).

faces, user-adaptive tutoring systems, etc., where the as-
sumption of having non-movable subjects is unrealistic.
However, due to differences in head-pose, large variation
in appearance of facial expressions across different poses,
and difficulty in decoupling these two sources of variation,
head-pose normalization of expressive facial data poses a
significant research challenge.

The main aim of facial-point-based head-pose normal-
ization is to generate a ‘virtual’ pose, that is, to normalize
facial points localized in the input image by mapping them



to the corresponding facial points in a predefined pose (e.g.,
frontal), before further analysis is conducted. A common
approach to this problem in computer vision is to use a 3D
or 2D face-shape model. Blanz et al. [3] proposed a mor-
phable model to reconstruct a 3D face-shape from an input
image, based on seven facial points. Wang and Lien [18] ap-
plied an affine transformation to learn back-projection from
locations of twenty-one facial points, localized in the input
image, to a 3D virtual face model. Zhu and Ji [19] proposed
a normalized singular value decomposition algorithm to
separate head pose from facial expressions through param-
eterization of a 3D-Point Distribution Model (PDM), based
on twenty-eight 2D facial points. Dornaika and Orozco [8]
proposed an online Active Appearance Model (AAM), with
the 3D Candide model (as the underlying 3D-Active Shape
Model (ASM)), which encodes information about head pose
and facial actions. In general, all these methods can be used
to achieve facial-point-based head-pose normalization: the
3D face-shape, estimated from 2D facial points in an ar-
bitrary pose, is first rotated to the frontal pose, and then
the target 2D points in the frontal pose are obtained from
the 3D face-shape. Nevertheless, estimating 3D face-shape
from 2D facial points is by no means a trivial task since it
involves inference of complex, high-dimensional, and mul-
timodal mappings. Moreover, these models employ com-
putationally expensive fitting techniques, based on gradi-
ent optimization algorithms, which may fail to converge,
hence, resulting in an inaccurate 3D face-shape [8]. This,
in turn, will inevitably impair the head-pose-normalization
achieved by these models.

The 2D face-shape-based methods for head-pose-
normalization have also been proposed [6, 9]. Cootes et
al. [6] proposed pose-based AAMs, where the face-shapes
in each pose are learned by means of 2D-PDM, based on the
sixty-five facial points. The facial points in the frontal pose
are obtained by mapping non-frontal face-shapes to the cor-
responding frontal face-shapes by using linear regression.
In [9], the authors employ a 2D face-shape model, based on
sparse face-meshes composed of sixty-two facial points ex-
tracted from training images, to identify the parameters of
the model responsible for the head-pose. Given a test im-
age and its associated mesh, the pose parameters are then
set to typical values of frontal faces, thus, obtaining a vir-
tual frontal mesh, i.e., the locations of the facial points in
the frontal pose. However, these methods deal only with
expressionless facial images, hence, avoiding the elaborate
task of decoupling the head-pose and facial expression.

Another approach to facial-point-based head-pose nor-
malization that does not rely on face-shape models has been
proposed by Rudovic et al. [14, 13]. In this approach,
the authors proposed a GP regression model for learning
complex and high-dimensional mappings between 2D fa-
cial points, extracted from expressive facial images in non-

frontal poses, and corresponding facial points in the frontal
pose images. However, the standard GP regression used
in this approach accounts for correlations only between the
input and the output dimensions, but not within the input
and the output dimensions of the model. This may result in
an anatomically impossible facial configuration formed by
the predictions of this model. The method we propose in
this paper addresses the aforementioned limitations of stan-
dard GP regression, and, to the best of our knowledge, is the
first one capable of dealing with expressive faces in various
poses, and in the presence of noise and outliers in test data.

The outline of the proposed method is shown in Fig.1.
The method maps the locations of 39 facial points extracted
from a facial image in a non-frontal pose to the correspond-
ing facial points in the frontal pose. To learn the target
mappings so that only anatomically feasible solutions arise
from the model, we propose a novel GP regression model,
which attains structured prediction based on a face-shape
model. Here, structured prediction refers to exploiting both
dependencies between inputs and outputs, and internal de-
pendencies within inputs only and within outputs only. This
is in contrast to standard GP regression, which learns only
input–output dependencies. We learn the internal depen-
dencies within inputs (outputs) by means of a face-shape
model - 2D-PDM - and include them in the model through
a face shape prior, defined for both the input and the out-
put of the model. Therefore, the newly proposed GP re-
gression, coined as Shape-constrained GP (SC-GP) regres-
sion, prevents anatomically impossible solutions (that may
be caused by noisy and outlying data) through constraints
enforced by the face-shape prior.

The rest of the paper is organized as follows. Section 2
summarizes the basics of GP regression. In Section 3 we
describe the utilized deformable face-shape model. Sec-
tion 4 presents the proposed SC-GP regression. Note that
the proposed structured prediction in a probabilistic regres-
sion framework could also be attempted by alternative GP-
based models including Twin GP [4], Dependent Output
GP [5], and Sparse Convolved GP [1] for multi-output re-
gression. However, the latter two models are too complex
for the target problem given the high output dimensionality
of the model (39 × 2 dimensions), and so the only alterna-
tive left is Twin GP regression. Therefore, in Section 5 we
present results for the head-pose normalization attained by
the proposed SC-GP regression, and by standard GP regres-
sion, Twin GP regression and 3D-face-shape-based meth-
ods. Section 6 concludes the paper.

2. Gaussian Process Regression
Gaussian Process (GP) regression has become popular

because it is simple to implement, flexible (i.e., it can learn
complex mappings through a simple parameterization), and
fully probabilistic - which enables us to compare different



models based on their likelihood, and to obtain uncertainty
in their predictions [12, 16].

Given a training set D = {(Xi, Yi)|i = 1, ..., N}1,
composed of multi-dimensional inputs Xi = [x1i ...x

D
i ] ∈

<N×D and outputs Yi = [y1i ...y
D
i ] ∈ <N×D, where D

is the dimension, the goal of regression is to learn the map-
ping between the inputs and outputs. From the weight-space
view of GP [12] regression, this mapping is described as

Y = 1(N×1) µY + wφ(X) + ε, (1)

where µY is the mean of the training outputs, φ(X) is the
projection of the inputsX to the feature space of basis func-
tions φ(·), w are the weights, and ε is noise on the outputs.
The prior distribution over w and ε is Gaussian, and it is
given by

p(w) = G(w|0, αI), p(ε) = G(ε|0, βI), (2)

where the parameters α and β represent the variance of the
distribution. Accordingly, the marginal distribution of the
training outputs Y is given by

p(Y ) = G(Y |µY ,K), (3)

where K is N ×N covariance matrix with entries

Kij = αφ(Xi)
Tφ(Xj) + βδij , (4)

and δij is the Kronecker delta function, which is one iff
i = j, and zero otherwise. By applying the kernel trick [2],
the occurrences of the inner product

〈
φ(Xi)

T , φ(Xj)
〉

in
Kij can be replaced with a kernel function evaluated at
the input pairs (Xi, Xj). We use the Gaussian kernel,
k(Xi, Xj) = exp(−θ ‖Xi −Xj‖2), since it constraints
nearby inputs to have highly correlated outputs [4]. The
parameters (θ, β) of the covariance function in Eq.(4) are
estimated by minimizing the negative log-likelihood

L =
D

2
ln |K|+ 1

2
tr(K−1Y Y T ) + const., (5)

using the conjugate gradient algorithm [12].
Inference of a test input X∗ is done by computing the

parameters of the predictive distribution p(Y∗|Y ), where the
estimated output Y∗ is conditioned on the observed outputs
Y . Since this distribution is also Gaussian with mean and
covariance function given by

m(X∗) = µY +KT
∗ K

−1(Y − 1(N×1) µY ), (6)

σ2(X∗) = K∗∗ −KT
∗ K

−1K∗, (7)

where K∗ = K(X,X∗) denotes N × 1 matrix of the co-
variances evaluated on the training data X and test datum
X∗. The entries of K = K(X,X) and K∗∗ = K(X∗, X∗)
are computed in the same way, and the the mean m(X∗) is
used as the target output Y∗.

1The inputs are linearly rescaled to have zero mean and unit variance
on the training set.

3. Deformable Face-shape Model
In this section, we describe a deformable face-shape

model used later in Sec.4.1 to learn the face-shape prior. In
general, deformable shape models offer a unique and pow-
erful approach to face analysis that is capable of accommo-
dating different sources of variation (e.g. facial expressions,
identity, etc.). To learn a deformable face-shape model from
training dataX (defined in Sec.2), we follow standard shape
representation where the vector Xi is approximated as

Xi ≈ µX + cXi
BTX , (8)

where µX is the mean face computed from training data
X , cXi

= [c
(1)
Xi
, ..., c

(k)
Xi

] ∈ <1×k are the shape parameters
corresponding to k (k < D) deformable modes, which are
stored in BX = [b

(1)
X , ..., b

(k)
X ] ∈ <D×k. Thus, the vector

Xi can be reconstructed using the deformable shape model
with the parameters SXi

= (µX , BX , cXi
). These parame-

ters are learned by means of standard Principal Component
Analysis (PCA) [2]. Although the deformable shape model
with parameters obtained in this way is relatively robust to
noise in test data, it is highly sensitive to outliers in test data
(e.g., caused by occlusions, erroneous hand labelling of the
facial points, and/or inaccurate automatic facial point lo-
calization), due to the least-squares formulation of standard
PCA. Hence, in the presence of outliers, we employ Ro-
bust PCA [7] proposed by De La Torre and Black. In both
standard PCA and Robust PCA, mean µX and deformable
modesBX are learned off-line2 from training dataX , while
the shape parameters cX∗ for a test input X∗ are obtained
on-line, as explained in [2, 7].

4. Shape-constrained GP (SC-GP) Regression
In this section, we describe the proposed SC-GP regres-

sion for facial-point-based head-pose normalization. We il-
lustrate the method on the task of learning the mapping be-
tween 2D locations of the facial points (see Fig.1) in one
of non-frontal poses (e.g., (0◦,−45◦)), denoted as X ∈
<N×D, and the corresponding points in the frontal pose
(0◦, 0◦), denoted as Y ∈ <N×D. In what follows, we first
describe the face-shape prior that is placed on both the in-
put and the output of GP regression in order to constrain
the estimated output to anatomically possible facial config-
urations. We then describe the optimization procedures for
training and inference in the proposed method.

4.1. Face-shape Prior

In standard GP regression, described in Sec.2, the out-
put dimensions are assumed to be independent. How-

2We select the number of the deformable modes such that RMSE< η,
where RMSE (as defined in Sec.5) is computed between the original and
PCA-reconstructed training data, and η is set to one pixel measured in the
registered image plane.



ever, in most cases, modeling complex internal depen-
dences within multi-dimensional inputs and outputs im-
proves regression[4]. Specifically in our case, modeling
the spatial correlations between the positions of the fa-
cial points is essential as their constellation should sat-
isfy certain anthropomorphic constraints in order to rep-
resent an anatomically feasible facial configuration. For-
tunately, these geometric constraints can be automatically
learned by the deformable face-shape model explained in
Sec.3. Hence, we incorporate the information about face-
shape into standard GP regression using the deformable
face-shape model. Formally, this is attained by defining
a face-shape prior that acts as the weight prior in Eq.(2),
which is a zero mean Gaussian with the covariance α given
by

α(Si, Sj) = p(SXi
, SXj

)p(SYi
, SYj

), (9)

where the covariance α(Si, Sj) is data-driven and it mea-
sures similarity of the input-output data pairs (i, j), based
on the corresponding facial shapes (Si, Sj), defined in
Sec.3. The goal of the face-shape prior is to enforce the
training data pairs (i, j), with similar input face-shapes,
(SXi

, SXj
) (learned from (Xi, Xj)), to have similar output

face-shapes, (SYi , SYj ) (learned from (Yi, Yj)). The joint
probabilities in the above equation are defined as

p(SXi , SXj )
= exp(− 1

2 (cXi
− cXj

)T−1
X (cXi

− cXj
)T ),

(10)

p(SYi , SYj )
= exp(− 1

2 (cYi
− cYj

)T−1
Y (cYi

− cYj
)T ),

(11)

and they quantify the distance between two face-shapes.
The entries of the scaling matrices TX = diag(τ1X , ..., τ

k
X)

and TY = diag(τ1Y , ..., τ
k
Y ) are learned as explained in

Sec.4.2.
SC-GP regression is then defined by placing the above-

defined face-shape prior on the covariance function from
Eq.( 4). The entries of the covariance function in SC-GP
regression then become

Kij = α(Si, Sj)(k(Xi, Xj) + βδij), (12)

where the kernel function k(·, ·) and noise β are already
defined in Sec.2. This covariance function ensures that, in
the case of test data corrupted by high levels of noise (or
outliers), the model relies more on the face-shape prior than
on the noisy inputs.

4.2. SC-GP: Training

The training in SC-GP regression is carried out as
follows. First, we learn the deformable models in-
dependently for the inputs X and outputs Y , and the
number of deformable modes Eb is selected so that
max(‖X −Xpca‖ , ‖Y − Y pca‖) < η, where η is set

manually3. Second, we learn Eb pairs of deformable mod-
els, SkX = {BkX , CkX , µkX} and SkY = {BkY , CkY , µkY } with
the number of deformable modes from 1 to Eb. Third,
we use these deformable models along with the train-
ing data X and Y to learn Eb SC-GP regression mod-
els (each time with different pair of deformable mod-
els) by minimizing Lk(X,Y,CkX , C

k
Y , hp

k) (see Eq.5)
w.r.t. hyper-parameters hpk = (τkX , τ

k
Y , θ, β) defined in

Sec.4.1. Finally, to select the optimal number of the de-
formable modes kopt to be used during inference of the
test data, we compare the learned SC-GP regression mod-
els, and select kopt= min

k=1..Eb

(Lk(X,Y,CkX , C
k
Y , hp

k) cor-

responding to the most likely SC-GP regression model.
The parameters used for the inference mode are stored as
{Skmin

X , Skmin

Y , X, Y, hpkmin}.

4.3. SC-GP: Inference

Inference in standard GP regression model is straightfor-
ward: we compute a weight matrix based on a test input
X∗, and use it to estimate the output Y∗, which is obtained
as a weighted combination of the training output data Y .
However, in SC-GP regression, to estimate the output Y∗
(defined in Eq.(6)), that is given by

Y∗ = µY +K∗(cY∗ , cX∗)TK−1Y, (13)

we need both shape parameters cX∗ and cY∗ . While the
parameters cX∗ are obtained from the test input X∗ (as ex-
plained in Sec.3), cY∗ are unknown since they depend on the
output to be estimated, Y∗. Thus, this is a chicken-and-egg
problem: to estimate the output Y∗ we need the shape pa-
rameters cY∗ , and the other way around. We approach this
problem by using the following two strategies:

1) Direct approach: we learn a set of linear ridge re-
gressors (LRRs) independently trained for each output di-
mension. For a test input X∗, we first obtain an estimate of
the output, Ŷ∗, using LRRs. Then, we estimate the shape
parameters ĉY∗ from the initial guess Ŷ∗. The final output
Y∗ is obtained by evaluating Eq.(13) usingX∗, cX∗ and ĉY∗ .

2) Iterative approach: we first apply LRRs to obtain
an initial estimate of the output, Ŷ 0

∗ , and the corresponding
shape parameters, ĉ0Y∗

. We then reconstruct the initial es-
timate Ŷ 0

∗ , either by standard PCA or Robust PCA, using
the shape parameters ĉ0Y∗

, in order to obtain Y pca∗ . Next, we
search for the shape parameters ĉY∗ so that the output of SC-
GP regression given by Eq.(13), and Y pca∗ are as close as
possible. In this way, we iteratively examine the best candi-
date output shapes until convergence and, based on that, we
update the SC-GP-predicted facial landmarks in the frontal

3Although we select the same number of deformable modes for both
the input and output deformable models, in general, a different number of
modes can be chosen for these two.



view. To this end, we minimize L2-norm of the cost func-
tion

L(cY∗) = K∗(cY∗)TK−1Y T − Y pca∗ , (14)

w.r.t. the unknown shape parameters

cY∗ = arg min
c
(i)
Y∗

∥∥∥L(c
(i)
Y∗

)
∥∥∥ . (15)

This non-linear optimization problem is solved using a sec-
ond order quasi-Newton optimizer with cubic polynomial
line search for optimal step size selection, which uses the
gradient of the objective function at c(i)Y∗

, given by

∂L(cY∗)

∂c
(i)
Y∗

=
L(cY∗)

‖L(cY∗)‖
·

(
∂K∗(cY∗)

∂c
(i)
Y∗

)T
K−1Y T , (16)

where the gradient of the test covariance K∗ (defined in
Sec.2) at c(i)Y∗

is given by

∂K∗(cY∗)

∂c
(i)
Y∗

=


− 1

τ
(i)
2

(c
(i)
Y∗
− c(i)Y1

)K∗1

...
− 1

τ
(i)
2

(c
(i)
Y∗
− c(i)YN

)K∗N ,

 (17)

and the initial shape parameters c0Y∗
are set to ĉ0Y∗

.

5. Experiments

We validated our approach using synthetic data from the
BU-3D Facial Expression (BU3DFE) database [17], and
two real-image datasets: the CMU Pose, Illumination and
Expression Database (MultiPie) [10] and a multi-pose fa-
cial expression database recorded in our lab. All data were
first registered per pose by applying an affine transforma-
tion learned using the three facial points: the nasal spine
point and the inner corners of the eyes which were chosen
since they are stable facial points, and are not affected by
facial expressions. The registered data was then used to
learn the regression models independently for each target
pair of poses (a non-frontal and the frontal pose). The ac-
curacy of the pose-normalization was measured using the

Root-Mean-Square-Error (RMSE) defined as
√

1
d ‖∆p‖

2,
where ∆p is the difference between the predicted pixels’
positions of the facial landmarks in the frontal pose and
the ground truth (the manually annotated landmarks in the
frontal pose images). If not stated otherwise, in each of
the presented experiments, the datasets were partitioned in
a person-independent manner and used in a 5-fold cross val-
idation procedure.

In experiments that follow, we compared the perfor-
mance of the proposed SC-GP regression to that obtained

Table 1. RMSE (per expression) of head pose normalization at-
tained by GP, direct SC-GP, iterative SC-GP, Twin GP, and 3D-
PDM, trained on the BU3DFE data in 12 training poses and tested
on the BU3DFE data in 70 test poses

Method Expression Av.Neutral Surprise Disgust Joy Anger Fear Sadness
GP 1.45 2.51 2.31 2.31 2.12 1.97 1.73 2.04

SC-GP (dir.) 1.38 2.22 2.03 1.82 1.64 1.52 1.61 1.75
SC-GP (iter.) 1.32 2.03 1.86 1.71 1.48 1.40 1.62 1.64

Twin-GP 1.13 2.15 1.97 1.57 1.27 1.20 1.40 1.52
3D-PDM 2.12 2.83 2.58 2.55 2.25 2.39 2.07 2.40

by standard GP regression4 and the state-of-the-art Twin GP
regression5 [4]. We also compared SC-GP method to: (1)
the nonlinear 3D Point Distribution Model (3D-PDM)[19],
and (2) the Candide model, being the ASM part of the on-
line AAM [8] we used to localize the facial landmarks in
real images (see Sec.5.2).

5.1. Performance on Synthetic Data

In the experiments with the synthetic data, we rendered
2D multi-view expressive images from the BU3FE dataset
at pan angles from 0◦ to −45◦, and tilt angles from 0◦ to
30◦ with the step of 5◦, which resulted in 70 poses in to-
tal. Only 12 poses (i.e., the poses sampled with the step of
15◦), were used to train the models, while all the 70 poses
were used for testing. The data in each pose included ex-
pressive images of 50 subjects (54% female), showing six
basic facial expressions (joy, sadness, anger, surprise, fear,
and disgust, sampled at four different levels of intensity)
plus neutral, which resulted in 1250 images per pose. For
each of those images, we extracted 2D locations of 39 fa-
cial landmarks illustrated in Fig.1, based on the 3D facial
points provided by the database creators. These 2D facial
points were further used as the features in our experiments.
For SC-GP regression, we used the first 16 principal com-
ponents (deformable modes) computed using the standard
PCA, as described in Sec.4.2. In the case of 3D-PDM, we
selected 18 deformable modes. Note that the evaluated re-
gression models were trained independently for each pair of
a non-frontal pose and the frontal pose, and tested by using
the model in the closest training pose (if test data did not be-
long to any of the training poses). As can be seen from Ta-
ble 1, in the case of noise-free data, SC-GP regression per-
formed better than GP regression and 3D-PDM. Twin GP
outperformed SC-GP regression on average, although iter-

4We chose GP regression for head pose normalization as the baseline
method for comparison since it has been shown to outperform other regres-
sion models, including Linear regression and Support Vector regression,
and to perform comparably to Relevance Vector regression on the target
task [14, 15]. Also, the recently proposed Coupled GP regression outper-
forms the baseline GP but it does so only in the case of missing data [13],
which is beyond the scope of this paper. Hence, no comparison to this
model has been included.

5The implementation of Twin GP regression has been obtained from
the authors’ webpage: http://ttic.uchicago.edu/ blf0218/software/TGP.htm



Table 2. Influence of different levels of noise and outliers on head-pose normalization (in terms of RMSE) attained by GP, direct SC-GP,
iterative SC-GP, Twin GP, and 3D-PDM. The regression models were trained on the BU3DFE noise-free data in 12 training poses, and
tested on the BU3DFE data in 70 test poses corrupted by different levels of uniformly distributed noise UNIF ∼ [−α, α], with α = 0..5
pixels (α = 5 is 10% of interoccular distance for the registered average frontal-pose face in the BU3DFE dataset), and by different levels
of bias, β = 0..25 pixels, added to the locations of 3–5 randomly selected facial points

Method α β
0 1 2 3 4 5 0 5 10 15 20 25

GP 2.04 2.10 2.21 2.31 2.72 3.10 2.09 2.36 2.88 3.56 3.90 3.99
SC-GP (dir.) 1.75 1.80 1.92 2.04 2.22 2.35 1.84 2.12 2.41 2.63 2.81 2.95
SC-GP (iter.) 1.64 1.70 1.82 1.92 2.05 2.14 1.73 1.99 2.35 2.51 2.68 2.79

Twin-GP 1.52 1.53 1.85 2.22 2.60 3.09 1.55 2.11 2.70 3.20 3.38 3.62
3D-PDM 2.40 2.70 2.81 2.93 2.97 2.99 2.45 2.61 2.78 2.95 3.20 3.37

ative SC-GP outperformed Twin-GP in the cases of facial
expressions of Surprise and Disgust (the errors shown in
bold). These two expressions are more challenging to nor-
malize than the other expressions due to the high variation
of their facial landmarks. In addition, note that in real-world
applications, where automatic point detectors and trackers
are applied, noise-free data (corresponding to highly accu-
rate point detection and tracking) cannot be attained by the
existing methods (e.g.,[11]).

In order to investigate the robustness of SC-GP regres-
sion to noise and outliers in test data, we ran two sets of ex-
periments: on noisy data and outlying data. First we evalu-
ated the performance of the models in the presence of noise
in the BU3DFE test data corrupted by adding five levels
of uniformly distributed noise. As can be seen from Ta-
ble 2 (RMSE values for α), SC-GP regression clearly out-
performs GP regression and 3D-PDM. Although Twin GP
performs better than SC-GP in the case of low noise lev-
els (α < 2), the results clearly suggest that SC-GP is more
robust to higher levels of noise. The robustness of SC-GP
regression to noise comes from the shape regularization at-
tained by the face shape prior (as explained in Sec.4.1),
resulting in effective recovery of shape details from very
noisy observations. In addition, iterative SC-GP regression
outperformed direct SC-GP regression by iteratively exam-
ining the best candidate shapes and updating the predicted
facial landmarks in the frontal pose.

In realistic applications, the input data may contain un-
desirable artifacts due to occlusions, changes in illumina-
tion, or inaccurate face/facial point detection/tracking, re-
sulting in outlying observations deviating markedly from
majority of the training samples. Hence, we evaluated the
performance of SC-GP regression in the presence of out-
liers using the BU3DFE test data corrupted by adding dif-
ferent levels of bias to locations of 3–5 randomly selected
facial points. In this experiment, within SC-GP regression,
we used the first 20 deformable modes computed by Ro-
bust PCA, as described in Sec.4.2. To attain a fair basis for
comparison with alternative methods, the test data was pre-
processed first by Robust PCA, in order to reduce the effect
of the outliers. Otherwise, the results of the directly applied
alternative methods to the corrupted data were very poor.

Figure 2. RMSE (per pose) obtained by the regression models
trained on the BU3DFE noise-free data in 12 training poses, and
tested on the BU3DFE data in 70 test poses corrupted by the noise
level α = 2 (left) and bias level β = 10 (right)

Figure 3. Number of iterations required for iterative SC-GP,
Twin-GP and 3D-PDM, trained on the BU3DFE noise-free data in
12 training poses, to converge when tested on the BU3DFE data
in 70 test poses, corrupted by noise levels α (left) and bias levels
β (right)

For example, in the case of β = 10, the average RMSE is
3.9 for GP, 3.6 for Twin GP, and 4.2 for 3D-PDM, where
for iterative and direct SC-GP is 2.4 and 2.5, respectively.
However, as can be seen from Table 2 (RMSE values for β),
even in the case of the preprocessed outlying data, standard
GP regression, Twin GP regression, and 3D-PDM were all
outperformed by SC-GP (applied directly to unprocessed
data). In this case, the robustness of SC-GP regression to
outlying data comes from the fact that the model relied al-
most solely on the face shape prior. As before, and for the
same reasons, iterative SC-GP outperformed its direct coun-
terpart.

Fig.2 shows the generalization ability of the models
across 70 poses (only 12 of which were used for training)
in the presence of the intermediate noise level (α = 2),
and outliers (β = 10). In the case of noise (Fig.2(left)),
all the models except 3D-PDM were able to generalize well
across the poses. More specifically, SC-GP and Twin-GP
regression perform comparably (with SC-GP outperform-



Table 3. RMSE (per expression) of head pose normalization
attained by GP, direct SC-GP, iterative SC-GP, and Twin GP,
trained/tested using the MultiPie data in the four discrete poses

Method Expression Av.Neutral Surprise Disgust Joy
GP 1.84 2.47 2.25 2.23 2.20

SC-GP (dir.) 1.41 1.91 1.74 1.57 1.67
SC-GP (iter.) 1.45 1.80 1.66 1.52 1.61

Twin-GP 1.52 2.08 1.92 1.76 1.82

ing Twin-GP in poses further away from frontal), while both
outperform the head pose normalization attained by stan-
dard GP regression. The poor performance of 3D-PDM in
poses towards (+30,−45) is due to the occlusion of certain
facial points in 2D face-images that occurs in those poses.
However, in Fig.2 (right) we see that, in the case of out-
liers, the performance of 3D-PDM improves because of the
use of Robust PCA, as the preprocessing step. We also see
that Twin-GP is very sensitive to outliers in the test inputs.
This is due to the fact that KL distance minimized in Twin-
GP regression is not robust to the inputs with non-Gaussian
distribution. Fig.3 shows performance of SC-GP regression,
Twin-GP regression, and 3D-PDM in terms of the number
of iterations required by these models to converge when
tested on noisy/outlying data. Both iterative SC-GP and
Twin-GP regression converged considerably faster than 3D-
PDM. Specifically, these models converged, on average, in
9.6, 10.3 and 34 iterations in the case of noise, and 11.6, 9.5
and 39 iterations in the case of outliers, respectively.

5.2. Performance on Real Data

In experiments on real image data, we used the MultiPie
dataset: images of 50 subjects (22% female) displaying 4
facial expressions (neutral, disgust, surprise, and joy) cap-
tured at 4 pan angles (0◦,−15◦,−30◦ and −45◦), resulting
in 200 images per pose. These images were annotated in
terms of 39 hand-labeled landmark points. For SC-GP re-
gression, we used the first 7 deformable modes computed
by standard PCA. As can be seen from Table 3, in the
case of real image data, both SC-GP and Twin-GP regres-
sion clearly improve standard GP regression, while SC-GP
outperforms Twin GP. Although the facial landmarks were
manually annotated, this does not guarantee a ‘perfect’ an-
notation, especially in cases were some of the points are not
clearly visible in the image due to the head pose. Hence, er-
rors in annotation must be expected, introducing additional
non-linearities in the mapping to be learned, which, evi-
dently, cannot be well handled by standard GP nor by Twin
GP regression.

We also performed experiments on real image sequences
recorded in our lab. This dataset contains image sequences
of 3 persons (33% female) displaying six basic facial ex-
pressions and neutral while rotating their head in front of the
camera (starting from frontal pose), comprising the poses at
pan angles from 0◦ to −45◦. The locations of the 39 fa-
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Figure 4. Our Database: Sample images (with the automatically
tracked facial points) from two image sequences depicting Fear
(top) and Surprise (bottom) while the head-pose is changing from
(0◦, 0◦) to (0◦,−45◦). The corresponding frame numbers are
given below each image.

cial landmark points were obtained by applying the online
AAM [8] (see Fig.4). The Candide model from this AAM
was also used to attain head pose normalization by rotating
it to the frontal pose in order to obtain the 2D-image coor-
dinates. The regression models were trained/tested as ex-
plained above, and, for each sequence, the Candide model
was manually fitted in the first frame, and the corresponding
2D points obtained from this model were used as the ground
truth when computing the RMSE. Table 4 summarizes the
average RMSEs per expression computed for all the image
sequences. As can be seen, SC-GP outperforms Twin GP
regression for all facial expressions.

Fig.5 summarizes the computed RMSEs per frame for
two image sequences shown in Fig.4. Note that in poses
being far from frontal, the utilized tracker [8] estimates the
locations of the facial points less accurately than in near-
frontal poses, which resulted in GP and Twin-GP being out-
performed by SC-GP regression. The superior performance
of SC-GP is due to the use of deformable face-shape model
learned per training pair of poses, which enables handling
the tracking errors. Note also that all the regression models
achieved better results compared to those obtained by the
Candide model. This is mainly due to the fact that, during
the tracking, the 2D points in non-frontal poses were diffi-
cult to align accurately to the corresponding 3D face shape
(i.e., the Candide model).

5.3. SC-GP vs. Twin GP

We briefly comment here on the difference between SC-
GP and Twin GP. Twin GP is devised to capture correla-
tions within the output dimensions by minimizing the KL
divergence between two GP, modeled as normal distribu-
tions over training and test data [4]. Yet, when noise and/or



Figure 5. RMSE (per frame) of head pose normalization for two
image sequences (Fear – left and Surprise – right), shown in Fig.4,
attained by GP, direct SC-GP, iterative SC-GP, Twin-GP, and the
Candide model utilized by the tracker [8]. The models were
trained using data of the other two subjects from Our Database

outliers exist in test data (e.g., due to the use of automatic
facial point localization), the Gaussian assumption in KL
divergence is violated by the data. Hence, for the problem
at hand, minimizing KL divergence, as done in Twin-GP,
cannot guarantee that the output, i.e., the pose-normalized
facial points, will form an anatomically feasible facial con-
figuration. By contrast, in the proposed SC-GP, we implic-
itly impose the constraints, which are determined by the de-
formable face-shape model, on the input and the output of
GP, which, in turn, enforces an anatomically feasible facial
configurations in the output of the model. This is the main
reason why our model performs better than Twin GP, in the
case of noise and outliers in test data, and in the case of
real-image data, where automatic facial point localization
is applied.

To ensure that improvement in the RMSE of SC-
GP(iter.) is statistically significant compared to that of Twin
GP, we run t-test (p = 0.05%) for the results obtained in Ta-
ble 2, 3 and 4, i.e., when SC-GP is expected to outperform
Twin-GP, as explained above. For the results in Table 2, the
difference in the RMSE of the proposed SC-GP (iter.) and
Twin GP is statistically significant in the case of alpha>=3,
and theta>=10. For the results in Table 3, we run the sig-
nificance tests per expression, and altogether. All the dif-
ferences are statistically significant except for the Neutral,
which is also expected. Similarly, for the results in Table 4,
we find that all the differences are statistically significant.

Table 4. RMSE (per expression) of head pose normalization at-
tained by GP, direct SC-GP, iterative SC-GP, Twin GP, and Can-
dide model, trained/tested in the subject independent manner using
the data from Our Database

Method Expression Av.Neutral Surprise Disgust Joy Anger Fear Sadness
GP 2.38 4.44 3.80 3.48 3.23 2.85 3.26 3.35

SC-GP (dir.) 2.04 3.22 3.11 2.46 2.34 2.15 2.47 2.60
SC-GP (iter.) 2.00 3.07 2.83 2.59 2.24 2.12 2.49 2.48

Twin-GP 2.40 3.47 3.26 3.07 2.59 2.70 2.91 2.91
Candide 3.28 4.36 4.00 4.18 3.45 3.52 3.38 3.74

6. Conclusion
In this paper, we have proposed a novel GP regres-

sion model for facial-point-based head-pose normalization.
We have shown that the proposed method generalizes well
across poses, handles successfully noise and outliers in test
data, and is computationally efficient. The proposed model
outperforms standard GP regression, 3D-PDM and AAM
on the target task. In addition, the proposed model performs
comparable to or better than the state-of-the-art Twin GP re-
gression.
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