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A B S T R A C T

Computer Vision has recently witnessed great research advance towards automatic facial points detection.
Numerous methodologies have been proposed during the last few years that achieve accurate and efficient
performance. However, fair comparison between these methodologies is infeasible mainly due to two issues.
(a) Most existing databases, captured under both constrained and unconstrained (in-the-wild) conditions
have been annotated using different mark-ups and, in most cases, the accuracy of the annotations is low. (b)
Most published works report experimental results using different training/testing sets, different error met-
rics and, of course, landmark points with semantically different locations. In this paper, we aim to overcome
the aforementioned problems by (a) proposing a semi-automatic annotation technique that was employed
to re-annotate most existing facial databases under a unified protocol, and (b) presenting the 300 Faces In-
The-Wild Challenge (300-W), the first facial landmark localization challenge that was organized twice, in
2013 and 2015. To the best of our knowledge, this is the first effort towards a unified annotation scheme
of massive databases and a fair experimental comparison of existing facial landmark localization systems.
The images and annotations of the new testing database that was used in the 300-W challenge are available
from http://ibug.doc.ic.ac.uk/resources/300-W_IMAVIS/.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

During the last decades we notice a wealth of scientific research
in computer vision for the problem of facial landmark points localiza-
tion using visual deformable models. The main reason behind this are
the countless applications that the problem has in human-computer
interaction and facial expression recognition. Numerous methodolo-
gies have been proposed that are shown to achieve great accuracy
and efficiency. They can be roughly divided into two categories:
generative and discriminative. The generative techniques, which aim
to find the parameters that maximize the probability of the test
image being generated by the model, include Active Appearance
Models (AAMs) [1,2], their improved extensions [3–10] and Pictorial

� The contribution of the first two authors on writing this paper is equal, with
Christos Sagonas being the main responsible for the implementation and execution of
various steps needed to run 300-W successfully including data annotation, annotation
tool development, and running the experiments.
�� This paper has been recommended for acceptance by Richard Bowden, PhD.
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Structures [11–13]. The discriminative techniques can be further
divided to those that use discriminative response map functions,
such as Active Shape Models (ASMs) [14], Constrained Local Models
(CLMs) [15–17] and Deformable Part Models (DPMs) [18], those that
learn a cascade of regression functions, such as Supervised Descent
Method (SDM) [19] and others [20–22], and, finally, those that
employ random forests [23,24].

Arguably, the main reason why many researchers of the field
focus on the problem of face alignment is the plethora of publicly
available annotated facial databases. These databases can be sepa-
rated in two major categories: (a) those captured under controlled
conditions, e.g. Multi-PIE [25], XM2VTS [26], FRGC-V2 [27], and
AR [28], and (b) those captured under totally unconstrained condi-
tions (in-the-wild), e.g. LFPW [29], HELEN [30], AFW [18], AFLW [31],
and IBUG [32]. All of them cover large variations, including different
subjects, poses, illumination conditions, expressions and occlusions.
However, for most of them, the provided annotations appear to have
several limitations. Specifically:

• The majority of them provide annotations for a relatively small
subset of images.

http://dx.doi.org/10.1016/j.imavis.2016.01.002
0262-8856/© 2016 Elsevier B.V. All rights reserved.
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• The annotation mark-up of each database consists of differ-
ent number of landmark points with semantically different
locations.

• The accuracy of the provided annotations in some cases is
limited.

The above issues are due to the fact that manual annotation of
large databases is a highly time consuming procedure that requires
enormous workload and a trained expert. Moreover, factors like
fatigue and lack of concentration are among the reasons why, in
some cases, annotations are inaccurate. This highlights the need of
creating a (semi-) automatic annotation tool.

Furthermore, by going through the published works of the last
years, one can easily notice that the setup of the experiments is
not always correct. Researchers employ different databases, exper-
imental protocols and performance metrics, which lead to unfair
comparisons between existing methods. Some characteristic such
examples are the following:

• Authors compare their techniques against other state-of-the-
art, but they do so by using, in many cases, completely different
databases for training compared to the ones that the other
methods were originally trained on.

• Authors compare their techniques on specific databases
by replicating the originally presented curves and not the
experiment.

• In some cases, authors report results on databases from which
only a part can be used by the community, as some of the
training/testing images are no longer publicly available.

Evidence shows that there is a lack of access to properly evaluate
existing methods. Even though there exist open-source implementa-
tions of various state-of-the-art techniques (the most characteristic
example is Menpo [33]), researchers still do not employ a unified
benchmark. Since we are unaware of the achieved performances, it
is impossible to investigate how far we are from attaining satisfac-
tory performance. Therefore, a new evaluation needs to be carried
out, using a unified experimental protocol.

Various methods have been proposed in the literature for the
task of landmark localization under semi-supervised or weakly-
supervised settings [34–37]. However, there are two major limita-
tions of these methods. Firstly, most existing methodologies require
additional information regarding the input images. Specifically,
Jia et al. [34] employ the corresponding facial mask for each of the
training images. The purpose of these masks is to indicate which pix-
els belong to the facial area and the only way to produce them is
by manually annotating each image. In [35], the training procedure
requires as input the orientation of each face depicted in the train-
ing images. Secondly, and most importantly, existing methods, such
as [36] and [37], have only been applied on images that are captured
under controlled conditions. The aforementioned issues, make the
existing methods incapable for the task of semi-automatic annota-
tion of large databases with in-the-wild images (most of the images
are downloaded from the web with simple search queries), which is
a much more challenging task.

Semi-automatic annotation systems can greatly benefit from the
employment of generative models. Let us assume that we have
cohorts of both annotated and non-annotated images. By training a
generative model, such as AAMs, using the annotated images, we get
a parametric model that describes the facial shape and appearance.
Most importantly, the model can naturally generate novel instances
of human face, by combining the shape and appearance variance of
the training annotated images. This could enable the generation of
instances that resemble accurately with the shape and appearance
of the subjects in the non-annotated images. For instance, by train-
ing a model using images from one view (e.g. pose 15◦) with neutral

expression and images from another view (e.g. pose 0◦) with a non-
neutral expression, one can fit the model to an instance that has the
non-neutral expression with pose of 15◦. However, the fitting proce-
dure of a generative deformable model is a very tedious task, mainly
because many of the models that have been proposed till now do
not generalize well to unseen images. One of the AAM variants that
has satisfactory generalization properties is Active Orientation Mod-
els (AOMs) [3,5]. AOMs are shown to be robust in cases with large
variations, such as occlusions and extreme illumination conditions,
and outperform discriminative methodologies, such as CLMs [16],
DPMs [18] and SDM [19].

Motivated by the success of AOMs in generic face alignment, we
propose, in this paper, a semi-automatic technique for annotating
in a time efficient manner massive facial databases. We employed
the proposed tool to re-annotate all the widely used databases, i.e.
Multi-PIE [25], XM2VTS [26], FRGC-V2 [27], AR [28], LFPW [29],
HELEN [30] and AFW [18]. The resulting annotations1 are, in many
cases, more accurate than the original ones and employ a unified
mark-up scheme, thus overcome the limitations explained above.

Furthermore, in order to offer to the research community the abil-
ity to carry out rational comparisons between existing and future
proposed methods, we organized two versions of the 300 Faces In-
The-Wild Challenge (300-W), the first automatic facial landmark
detection in-the-wild challenge. The first challenge2 was organized
in 2013 in conjunction with the IEEE International Conference on
Computer Vision (ICCV’13) [32]. The second conduct3 of the chal-
lenge was completed in the beginning of 2015. In both conducts,
the training set consisted of the XM2VTS, FRGC-V2, LFPW, HELEN,
AFW and IBUG databases that were annotated using the proposed
semi-automatic procedure. Additionally, we collected and annotated
a new challenging in-the-wild database that was used for testing.4

The 300-W database consists of 300 Indoor and 300 Outdoor images
downloaded from the web, thus captured under totally uncon-
strained conditions. The performance of the submitted methods was
evaluated using the same fitting accuracy metric. The major differ-
ence between the two conducts of the challenge is that in the first
version we provided the bounding boxes of the testing images to be
used as initializations, while in the second version the participants
were required to submit systems that performed both face detection
and alignment. Additionally, contrary to the first version, in the sec-
ond one the submitted methods were also compared with respect to
their computational costs.

The contribution of this paper can be summarized as follows:

1. We propose a semi-automatic methodology for facial landmark
points annotation. The proposed tool was employed in order
to re-annotate large facial databases and overcome the major
issues of the original annotations.

2. We present and analyze the results of the 300 Faces In-The-
Wild Challenge (300-W), the first facial landmark localization
challenge, that was conducted twice, in 2013 and 2015. The
challenge is the first attempt towards a fair comparison of
existing methods using a unified experimental protocol.

3. We make the very challenging 300-W dataset publicly available
to the research community. It was employed as testing set in
both conducts of the 300-W competition.

1 The annotations of XM2VTS, FRGC-V2, LFPW, HELEN, AFW and IBUG are publicly
available from http://ibug.doc.ic.ac.uk/resources/facial-point-annotations/.

2 The first conduct of the 300-W challenge (2013) is available in http://ibug.doc.ic.
ac.uk/resources/300-W/.

3 The second conduct of the 300-W challenge (2015) is available in http://ibug.doc.
ic.ac.uk/resources/300-W_IMAVIS/.

4 The 300-W database is publicly available from http://ibug.doc.ic.ac.uk/resources/
300-W_IMAVIS/. We provide the images along with the corresponding bounding
boxes.

http://ibug.doc.ic.ac.uk/resources/facial-point-annotations/
http://ibug.doc.ic.ac.uk/resources/300-W/
http://ibug.doc.ic.ac.uk/resources/300-W/
http://ibug.doc.ic.ac.uk/resources/300-W_IMAVIS/
http://ibug.doc.ic.ac.uk/resources/300-W_IMAVIS/
http://ibug.doc.ic.ac.uk/resources/300-W_IMAVIS/
http://ibug.doc.ic.ac.uk/resources/300-W_IMAVIS/
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The rest of the paper is organized as follows: Section 2 gives an
overview of the available facial databases. Section 3 presents the
proposed semi-automatic methodology for facial landmark points
annotations along with the re-annotated databases. The 300-W
challenge and the results are described in details in Section 4. Finally,
Section 5 summarizes the results of this work and draws conclusions.

2. Overview of existing facial databases

There exist numerous facial databases which partially justifies the
research advances for the task of face alignment. These databases
exhibit large variations in resolution, image quality, identity, head
pose, facial expression, lighting conditions and partial occlusion. As
mentioned before, the existing databases can be split in two major
categories. The first category includes databases that are captured
under controlled conditions, normally within special indoor labora-
tories/studios in which the camera position and the lighting source
and intensity can be controlled. In most of these databases, each
subject is asked to perform a posed facial expression, thus we find
more than one images per subject. The most popular such databases
are Multi-PIE [25] (used for face recognition,expression recognition,
landmark points localization), FRGC-V2 [27] (used for face recog-
nition), XM2VTS [26] and AR [28] (both used for face recognition
and landmark points localization). The facial databases of the sec-
ond major category consist of images that are captured under totally
unconstrained conditions (in-the-wild). In most cases, these images
are downloaded from the web by making face-related queries to var-
ious search engines. The most notable databases of this category are
LFPW [29], HELEN [30], AFW [18], AFLW [31] and IBUG [32] (all used
for facial landmark points localization).

The majority of the aforementioned databases provide annota-
tions for a relatively small subset of images. Moreover, as shown
in Fig. 1, they all have different annotation schemes between them,
leading in different numbers of points with semantically different
locations. There are also cases in which the accuracy of the provided
annotations is limited. Sections 2.1 and 2.2 and Table 1 provide an
overview of the characteristics of all the commonly-used existing
databases.

2.1. Facial databases under controlled conditions

2.1.1. Multi-PIE
The CMU Multi-Pose Illumination, and Expression (Multi-PIE)

Database [25] contains around 750,000 images of 337 subjects cap-
tured under laboratory conditions in four different sessions. For each
subject, there are available images for 15 different poses, 19 illumi-
nation conditions and 6 different expressions (neutral, scream, smile,
squint, surprise, disgust). The accompanying facial landmark anno-
tations consist of a set of 68 points (Fig. 1a) for images in the range
[−45◦, 45◦].

2.1.2. XM2VTS
The Extended Multi Modal Verification for Teleservices and Secu-

rity applications (XM2VTS) [26] database contains 2360 frontal
images of 295 different subjects. Each subject has two available
images for each of the four different sessions. All subjects are cap-
tured under the same illumination conditions and in the majority
of images the subject has neutral expression. Facial landmark anno-
tations of the whole database are available, where 68 points are
provided for each image (Fig. 1b). However, the accuracy of the anno-
tations in some cases is limited and the locations of the provided
points do not correspond to ones of Multi-PIE.

2.1.3. FRGC-V2
The Face Recognition Grand Challenge Version 2.0 (FRGC-V2)

database [27] consists of 4950 facial images of 466 different sub-
jects. Each subject session consists of images captured under well-
controlled conditions (i.e., uniform illumination, high resolution) and
images captured under fairly uncontrolled conditions such as non-
uniform illumination and poor quality. The provided annotations
consist of 5 landmark points (Fig. 1c) only.

2.1.4. AR
The AR Face Database [28] contains over 4000 images corre-

sponding to 126 subjects (70 males, 56 females). The images were
captured in two sessions per subject and have frontal pose with vari-
ations in facial expressions, illumination conditions and occlusions
(sunglasses and scarf). The images are annotated using 22 landmark
points (Fig. 1d).

2.2. Facial databases under in-the-wild conditions

2.2.1. LFPW
The Labeled Face Parts in the Wild (LFPW) database [29] con-

tains 1287 images downloaded from the internet (i.e., google.com,
flickr.com, and yahoo.com). This database provides only the web
URLs and not the actual images. We were therefore able to down-
load only a subset of 811 out of 1100 training images and 224 out of
300 test images, due to broken links. These images contain large vari-
ations in pose, expressions, illumination conditions and occlusions.
The provided ground truth annotations consist of 35 landmark points
(Fig. 1e) and low accuracy is observed in several cases.

2.2.2. HELEN
The HELEN [30] database consists of 2330 images downloaded

from flickr.com web service, that contain a broad range of appear-
ance variation, including pose, illumination conditions, expression,
occlusion and identity. The approximate face size of each image is
500 × 500 pixels. The provided annotations are very detailed and
contain 194 landmark points (Fig. 1f), but the accuracy is limited.

2.2.3. AFW
The Annotated Faces in-the-wild (AFW) [18] database consists of

250 images with 468 faces, that is, more than one faces are annotated
in each image. The images exhibit similar variations with those in the
aforementioned in-the-wild databases. Facial landmark annotations
are available for the whole database, but the annotation mark-up
consists of only 6 points (Fig. 1g).

2.2.4. AFLW
The Annotated Facial Landmarks in the Wild (AFLW) [31]

database consists of 25,993 images gathered from Flickr, exhibit-
ing a large variety in appearance (e.g., pose, expression, ethnicity,
age, gender) as well as general imaging and environmental condi-
tions. However, the employed annotation scheme only includes 21
landmark points (Fig. 1h).

2.2.5. IBUG
The IBUG database was released as part of the first version of the

300-W challenge [32]. It consists of 135 images downloaded from
the web, with large variations in expression, illumination conditions,
and pose. The provided facial landmark annotations are produced by
employing the annotation scheme of Multi-PIE (Fig. 1a).

3. Semi-automatic annotation tool

In this section, we propose a technique for semi-automatic anno-
tation of large databases, which takes advantage of the good gener-
alization properties of AOMs [3,5].
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(a) MultiPIE/IBUG (b) XM2VTS (c) FRGC-V2 (d) AR

(e) LFPW (f) HELEN (g) AFW (h) AFLW

Fig. 1. Landmark configurations of existing databases. Note they all have different numbers of landmark points with semantically different locations.

3.1. Active orientation models

AOMs is a variant of AAMs [2]. Similar to AAMs, they consist of
parametric statistical shape and appearance models, and a deforma-
tion model. However, the difference is that AOMs employ kernel PCA
based on a similarity criterion that is robust to outliers. Specifically,
the appearance model of AOMs consists of the principal components
of image gradient orientations [38], which makes them generalize
well to unseen face instances.

Let us assume that we have a set of D training images, {I1, . . . , ID},
annotated with N landmark points that represent the ground truth
shape of each image. A shape instance is defined as the 2N × 1 vector
s = [x1, y1, . . . , xN, yN]T, where (xi, yi) are the coordinates of the
i-th fiducial point. The shape model is constructed by first aligning
all training shapes using Generalized Procrustes Analysis in order to
remove global similarity transformations and then applying Principal
Component Analysis (PCA) on the aligned shapes to retrieve:

{
s̄, US ∈ R

2N×NS
}

, (1)

Table 1
Overview of the characteristics of existing facial databases.

Database Conditions # of faces # of subjects # of points Pose

Multi-PIE ∼ 750, 000 337 68 [−45◦ , 45◦]
XM2VTS Controlled 2360 295 68 0◦

FRGC-V2 4950 466 5 0◦

AR ∼ 4000 126 22 0◦

LFPW 1035 35
HELEN 2330 194
AFW In-the-wild 468 – 6 [−45◦ , 45◦]
AFLW 25,993 21
IBUG 135 68

where s̄ is the mean shape and US consists of the first NS eigenvectors
with the highest variance. A novel shape instance can be generated
as:

s = s̄ + USp, (2)

where p = [p1, . . . , pNS ]T denotes the NS × 1 vector of shape param-
eters. The deformation model consists of a warp function, denoted as
W(p), which maps all the pixels that belong into a shape instance
generated from Eq. (2) with parameters p to their corresponding
locations in the mean shape s̄. We employ the Piecewise Affine Warp,
which evaluates the mapping using the barycentric coordinates of
the triangles extracted with Delaunay triangulation.

The appearance model of an AOM is based on normalized gradi-
ents [38]. Let us denote an image in vectorial form as i with size L×1,
thus L is the number of pixels. Moreover, we denote gx and gy to be
the image gradients and 0 =arctan(gx/gy) the corresponding gradi-
ent orientation vector. The normalized gradient extraction function
is defined as:

Z(i) =
1√
L

[cos0T , sin0T ]T , (3)

where cos 0 = [cos 0(1), . . . , cos 0(L)]T and sin 0 =
[sin 0(1), . . . , sin 0(L)]T. By employing the deformation model, we
can define the shape-free normalized gradients of an image i as the
2LZ × 1 vector:

z(p) ≡ Z(i(W(p))), (4)

where LZ is the number of pixels that belong to the mean shape s̄,
which has the role of the reference shape. By applying PCA on the
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Fig. 2. Flowchart of the proposed tool. Given a set of landmarked images V with various poses and expressions, we aim to annotate a set of non-annotated images Q (1) with the
same subjects and different poses and expressions, or (2) with different subjects but similar pose and expressions.

warped normalized gradients of the training images, i.e. {z1, . . . , zD},
we construct an appearance model of the form:

UZ ∈ R
2LZ×NZ , (5)

where UZ stores the first NZ eigenvectors with the highest variance.
Note that in order to preserve the robust property of the normal-
ized gradient kernel, we don’t subtract the mean appearance vector
from the training set, so it ends up as the first eigenvector. A novel
appearance instance can be generated as:

z = UZc, (6)

where c = [c1, . . . , cNZ ]T denotes the NZ × 1 vector of appearance
parameters.

Given a testing image t in vectorized form and the trained shape,
appearance and deformation models, the fitting procedure aims to
minimize:

arg min
p,c

‖z(p) − UZc‖2, (7)

where z(p) denotes the normalized gradients of t, as defined in
Eq. (4). This optimization can be efficiently solved in an inverse
compositional alternating manner, as shown in [3,5,39].

3.2. Method

The main idea behind the proposed tool is to take advantage
of the generalization qualities of AOMs by building a model using
annotated images with various poses and expressions and gener-
ate the annotations on images with different poses and expressions.
Specifically, let us denote a database that consists of Nsubj subjects as
DB. We assume that for each subject, images with different expres-
sions {Ej}, j ∈ {1, 2, . . . , Nexp}, and poses {Pk}, k ∈ {1, 2, . . . , Npos} are
available. Let V be a subset of annotated images and Q a subset of
non-annotated images of DB. The goal of our tool is to (1) generate
annotations for the subjects in Q which appear in V with different
expressions and poses, and (2) generate annotations for the subjects
of Q that are not included in V . For example, in Multi-PIE, the anno-
tations for subjects with expressions “disgust” at 0◦ and “neutral” at
15◦ are provided and we want to produce the annotations for sub-
jects with expression “disgust” at 15◦. In this case the annotated and
non-annotated subsets are defined as V = {Disgust, 0◦, Neutral, 15◦}
and Q = {Disgust, 15◦}, respectively.

In order to annotate the images in Q, we first train an AOM using
the images in V . The trained model is employed within an iterative
fitting procedure which aims to augment the set of correctly anno-
tated images in V and build a more powerful AOM. Specifically, we fit
the trained AOM to each image in Q and manually classify the fitting
results into two sets: Good denoted as Q and Bad denoted as W =
Q\Q. After this procedure is completed, the initial set of annotated
images is augmented with Q, i.e. V ← V∪Q, a new AOM is built using

the updated V and the fitting procedure is repeated. This iterative
process is repeated until the cardinality of the subset W has not
changed between two consecutive iterations i.e., |Wt|−|Wt−1| == 0,
thus we end up with fitting results for all the images in Q. Note that
we employ DPMs [18] to estimate the initial landmark locations for
the first iteration of the above procedure.

In case Q has multiple images per subject (e.g. Multi-PIE,
XM2VTS, FRGC-V2, AR), the above method can be extended to further
improve the generated annotations. Specifically, let us assume that
we have a subset of images for each subject Qp ⊆ Q with Np number
of images each, where p ∈ {1, 2, . . . , Nsubj}. For each such subset, we
build and fit a Person Specific Model (PSM) [40] in an “one-vs-rest”
manner, that is we fit each image i ∈ Qp using the PSM trained on the
rest Np − 1 images. This person-specific adaptation further improves
the results, especially since we employ person-specific AOMs. The
generated annotations of the images in Q can be further manually
improved, as a final step, although the above methodology ensures
that minor corrections will be required. Fig. 2 and Algorithm 1
present the flowchart and pseudocode, respectively, of the proposed
semi-automatic annotation technique. Finally, the above method can
be readily applied to annotate a database DB1 using an already
annotated database DB2 by setting V = DB2 and Q = DB1.

3.3. Annotations

In this section, we present how the proposed tool was used
in order to re-annotate the databases presented in Section 2. The
advantages of the generated annotations1 are twofold: (1) They all
have the same landmark configuration, i.e. the one employed in
Multi-PIE (Fig. 1a), and (2) in many cases they are more accurate than
the original ones.

Algorithm 1 Semi-automatic database annotation tool
Require: Annotated subset V , Non-annotated subset Q
Ensure: Annotations of Q

1: Initialize landmarks locations of Q.
2: Initialize Q1 = ∅, V1 = V , and W1 = Q.
3: t = 1.
4: repeat
5: Train an AOM using Vt .
6: Fit the AOM to Wt .
7: Manually classify the fittings to Qt (Good) and Wt+1 = Wt �Qt (Bad).
8: Update Vt+1 ← Vt ∪ Qt .
9: t → t + 1.

10: until|Wt | − |Wt−1| == 0
11: if multiple images per subject in Q. then
12: for each subject p = 1, 2, . . . , Nsubj do
13: Qp ⊆ Q is the subset with the Np images of the subject.
14: for each image i ∈ Qpdo
15: Train a person-specific AOM using Qp � {i}.
16: Fit the person-specific AOM to the image i.
17: end for
18: end for
19: end if
20: Check and manually correct, if necessary, the generated annotations of Q.
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3.3.1. Multi-PIE
The available Multi-PIE annotations cover only the neutral

expression with pose [−45◦, 45◦] and multiple non-neutral expres-
sions with pose 0◦. We employed the proposed tool to annotate
12,570 images for 6 expressions, all 337 subjects and poses in range
[−30◦, 30◦].

3.3.2. XM2VTS
The images of XM2VTS’s first session were semi-automatically

annotated by setting V to be the subjects of Multi-PIE with neu-
tral expression and [−15◦, 15◦] poses. Subsequently, the annotated
images of the first session were employed to annotate the images
of the second session, and so on for all four available sessions. This
procedure resulted in annotating 2360 images.

3.3.3. AR
A procedure similar to the one used for XM2VTS was used to gen-

erate annotations for the neutral images of AR. For images having a
specific expression Ej, we used the annotated neutral images of AR

and the images with the corresponding expression and frontal pose
from the Multi-PIE.

3.3.4. FRGC-V2
In the case of FRGC-V2, we first annotated a subset consisting of

two images per subject with two different illumination conditions.
This subset was annotated by employing images from Multi-PIE with
six expressions and [−15◦, 15◦] poses as V . The rest of FRGC-V2 was
annotated using this initial subset.

3.3.5. LFPW
Since LFPW database does not provide information regarding

pose and expression characteristics for any image, we manually clus-
tered the images in different poses {Pk} in the range [−30◦, 30◦]. The
images of each such pose cluster were semi-automatically annotated
using images from Multi-PIE with the same pose.

3.3.6. HELEN, AFW, IBUG
The rest of in-the-wild databases were annotated using a com-

mon procedure. Specifically, Q consisted of the non-annotated

(a) Multi-PIE (b) XM2VTS

(c) AR (d) FRGC-V2

(e) LFPW (f) HELEN

(g) AFW

Fig. 3. Examples of the annotated images. For each database, the image on the left has the original annotations and the one on the right shows the annotations generated by the
proposed tool. Note that in the case of Multi-PIE, even though the original and generated annotations have the same configuration, the generated ones are more accurate.
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database DBi, and V was set equal to all the rest annotated in-the-
wild databases DBj, j = {1, 2, . . . , i − 1}.

Fig. 3 shows examples for each database with the original anno-
tations and the annotations produced using the proposed semi-
automatic methodology.

3.4. Efficiency

In order to assess the efficiency of the semi-automatic tool, we
conducted the following experiment. We used the testing set of
Helen database (330 images) as the annotated subset V while the
non-annotated set Q was formed by randomly selecting 1450 images
from the training set of the same database. Note that the selected
images exhibit significant variations in pose, illumination conditions,
and occlusion. Then, we applied the proposed semi-automatic tool
in order to generate the annotations. Fig. 4 visualizes the cardinality
of W and V at each iteration until the termination of the proce-
dure. The tool managed to generate annotations of good quality for
1393 out of 1450 images. The annotations for the rest 57 images
were not adequately good mainly due to the existence of extreme
poses, occlusions and illumination conditions. Given that an expert
human annotator needs around 5 min to manually annotate from
scratch one image, we have to spend 7250 min in order to annotate
all the images. Instead, by using the proposed tool we dropped the
requirement time for the creation of annotations in 1671 min. More
specifically, we spent 820 min for the manual classification of fit-
tings in Good and Bad, 549 min in order to refine the automatically
created 1393 annotations, and 285 min for the manually annotation
of the rest 57 images.

3.5. Discussion

In order to assess the variance of the manually annotated land-
marks, we considered the simplest case of annotating images with
frontal faces without any occlusion or expression. To this end, we
selected such images of N = 80 different subjects with frontal pose
from the Multi-PIE database. All these images were manually anno-
tated by three expert annotators. Fig. 5 plots the variance of the
manual annotations for each landmark point using an ellipse. Note
that the ellipses are colored based on the standard deviation of the
annotations, normalized by the size of the face.

This experiment shows that the agreement level among the anno-
tators is high for the landmarks that correspond to the eyes and
mouth. This is due to the fact that these landmarks are located to
facial features which are very distinctive across all human faces.

Instead, the standard deviation is high for landmarks that do not
have a clear semantic meaning. The chin is the most characteristic
example of this category, as it demonstrates the highest variance.
Finally, the result of this experiment suggests that it is more reli-
able to report the performance of landmark localization techniques
using the 51-point mark-up (after removing the points of the face’s
boundary), as done in both 300-W competitions.

4. 300 Faces In-The-Wild Challenge

In this section, we present the 300 Faces In-The-Wild Challenge
(300-W), the first facial landmark localization challenge that was
held twice, in 2013 and 2015. The ultimate goal of the challenge
is to provide a fair comparison between different automatic facial
landmark detection methods. To this end, the 300-W database was
collected and annotated using the same unified annotation scheme
described in Section 3, in order to be used as testing set. Section 4.1
gives more details about the database and Sections 4.2 and 4.3
analyse the results of the two conducts of the competition.

4.1. 300-W database

The 300-W database4 is a newly-collected challenging dataset
that consists of 300 Indoor and 300 Outdoor in-the-wild images. It
covers a large variation of identity, expression, illumination condi-
tions, pose, occlusion and face size. The images were downloaded
from google.com by making queries such as “party”, “conference”,
“protests”, “football” and “celebrities”. Compared to the rest of in-
the-wild datasets, the 300-W database contains a larger percentage
of partially-occluded images and covers more expressions than the
common “neutral” or “smile”, such as “surprise” or “scream”. We
annotated the images with the 68-point mark-up of Fig. 1a, using the
semi-automatic methodology presented in Section 3. The images of
the database were carefully selected so that they represent a char-
acteristic sample of challenging but natural face instances under
totally unconstrained conditions. Thus, methods that achieve accu-
rate performance on the 300-W database can demonstrate the same
accuracy in most realistic cases. Consequently, the experimental
results on this database indicate how far the research community is
from an adequately good solution to the problem of automatic facial
landmark localization.

Table 2 summarizes the characteristics of the database. Many
images of the database contain more than one annotated faces (293
images with 1 face, 53 images with 2 faces and 53 images with [3, 7]
faces). Consequently, the database consists of 600 annotated face
instances, but 399 unique images. Finally, there is a large variety
of face sizes. Specifically, 49.3% of the faces have size in the range
[48.6k, 2.0M] and the overall mean size is 85k (about 292 × 292)
pixels.

4.2. 300-W challenge: first conduct (2013)

The first conduct of the 300-W challenge2 was held in conjunc-
tion with IEEE International Conference on Computer Vision (ICCV)
in 2013 [32].

4.2.1. Training
LFPW, AFW, HELEN, XM2VTS and FRGC-V2 were provided for

training, along with the corrected annotations produced with the
semi-automatic annotation tool (Section 3). The fact that only a
very small proportion of images in LFPW and HELEN have expres-
sions different than “smile” motivated us to collect and annotate
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Fig. 5. Each ellipse denotes the variance of each landmark point with regard to three expert human annotators. The colors of the points rank them with respect to their standard
deviation normalized by the face size. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

the IBUG database. It consists of 135 images with highly expressive
faces under challenging poses and was provided to the participants
as an additional option for training. Furthermore, we computed the
bounding boxes of all the aforementioned databases by using our
in-house face detector, the one that is also employed in [17], which
is a variant of [18]. Both the annotations and the bounding boxes
were made publicly available at the challenge’s website2. Note that
the participants were encouraged but not restricted to use only the
provided training sets and annotations.

4.2.2. Testing
To ensure a fair comparison between the submitted methodolo-

gies, participants did not have access to the 300-W testing database.
They were requested to send us the compiled (binary) files of their
pre-trained systems. On our behalf, we extracted the face’s bound-
ing box for each of the testing images using the same methodology
as the one employed for the training images4. These bounding boxes
were passed in to the submitted executables as initializations. The
accuracy of the fitting results was measured by the point-to-point
RMS error between each fitted shape and the ground truth anno-
tations, normalized by the face’s interoccular distance, as proposed
in [18]. Specifically, by denoting the fitted and ground truth shapes

as s f = [xf
1, yf

1, . . . , xf
N , yf

N]T and sg = [xg
1, yg

1, . . . , xg
N , yg

N]T respectively,
then the error between them is computed as:

RMSE =

∑N
i=1

√(
xf

i − xg
i

)2
+

(
yf

i − yg
i

)2

douterN
, (8)

Table 2
Overview of the characteristics of the 300-W database.

Indoor Outdoor

# of faces 300 300
# of images 222 177
Image size (range in pixels) [20.3k, 17.3M] [27.2k, 21.0M]
Face size (range in pixels) [5.0k, 0.8M] [4.7k, 2.0M]
Interoccular distance (range in pixels) [42, 477] [39, 805]

where douter is the interoccular distance computed as the Euclidean
distance between the outer points of each eye, as shown in Fig. 6.
For the employed landmark configuration of Fig. 1a, the interoccular

distance is defined as douter =

√(
xg

37 − xg
46

)2
+

(
yg

37 − yg
46

)2
.

Fig. 6. The 51-point mark-up is a subset of the 68-points one after removing the
17 points of the face’s boundary. The interoccular distance is defined between the
outer points of the eyes.
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(a) Indoor + Outdoor, 68 points (b) Indoor + Outdoor, 51 points

stniop15,roodnI)d(stniop86,roodnI)c(

(e) Outdoor, 68 points (f) Outdoor, 51 points

Fig. 7. Fitting results of the first conduct of the 300-W challenge in 2013. The plots show the Cumulative Error Distribution (CED) curves with respect to the landmarks (68 and
51 points) and the conditions (indoor, outdoor or both).

4.2.3. Participants
In total, there were six participants in this version of the chal-

lenge. Below is a brief description of the submitted methods:

• Baltrusaitis et al. [41] propose a probabilistic patch expert tech-
nique that learns non-linear and spatial relationships between
the pixels and the probability of a landmark being aligned. To
fit the model they propose a novel non-uniform regularized
landmark mean-shift optimization technique which takes into
account the reliabilities of each patch expert.

• Hasan et al. [42] first apply a nearest neighbor search using
global descriptors and, then, aim to align local neighbors by
dynamically fitting a locally linear model to the global key-
point configurations of the returned neighbors. Neighbors are
also used to define restricted areas of the input image in which

they apply local discriminative classifiers. Finally, an energy
minimization approach is applied in order to combine the
local classifier predictions with the dynamically estimated joint
keypoint configuration model.

• Jaiswal et al. [43] use Local Evidence Aggregated Regres-
sion [44], in which local patches provide evidence of the loca-
tion of the target facial point using Support Vector Regressors.

• Milborrow et al. [45] approach the problem with Active Shape
Models (ASMs) that incorporate a modified version of SIFT
descriptors [46]. They employ multiple ASMs and utilize the
one that best estimates the face’s yaw pose.

• Yan et al. [47] employ a cascade regression framework, where
a series of regressors are utilized to progressively refine the
shape initialized by the face detector. In order to handle inac-
curate initializations from the face detector, they generate
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multiple hypotheses and learn to rank or combine them in
order to get the final results. They estimate the parameters in
both “learn to rank” and “learn to combine” using a structural
Support Vector Machine framework.

• Zhou et al. [48] propose a four-level Convolutional Network
Cascade, where each level is trained to locally refine the out-
puts of the previous network levels. Moreover, each level
predicts an explicit geometric constraint (face region and com-
ponent position) to rectify the inputs of the next levels, which
improves the accuracy and robustness of the whole network
structure.

4.2.4. Results
The performance of the submitted systems was assessed based

on both the 68 and 51 points. As shown in Fig. 6, the 51 points
are a subset of the 68 points after removing the 17 points of the
face’s boundary. Fig. 7 shows the Cumulative Error Distribution (CED)
curves using the error metric of Eq. (8). The plots are divided based
on the number of points (68 and 51) as well as the image subsets
(Indoor, Outdoor and Indoor + Outdoor). Table 3 reports the median
absolute deviation of the results and Fig. 10 shows some indicative
fitting shapes.

All methodologies demonstrated a lower performance on Outdoor
scenes. The main reason for this is the illumination condition vari-
ance which is much smaller within an Indoor environment. However,
another factor affecting the performance is that the Outdoor images
have larger variation in facial expressions compared to the Indoor
ones. This is because we picked specific keywords for the selection
of Outdoor images, such as “sports” and “protest”, which ended up in
a big number of images with various expressions, such as “surprise”
and “scream”, that are much more challenging than the expressions
that are commonly seen in the Indoor ones, such as “smile” and “neu-
tral”. We decided to announce two winners: one from an academic
institution and one from industry. Based on the results, the win-
ners were (a) Yan et al. [47] from The National Laboratory of Pattern
Recognition at the Institute of Automation of the Chinese Academy
of Sciences, and (b) Zhou et al. [48] from Megvii company. It is worth
to mention that all groups achieved better results in the case of 51
points.

In order to show whether there is any room for further improve-
ment on the performance, we also report an Oracle curve. We built
a statistical shape model using the shapes of the training databases,
as explained in Eq. (1), and kept the first 25 components. Using this
model, we compute and plot the reconstruction error for each shape
of the 300-W database. The reconstruction of a shape s is achieved
by first projecting as pr = UT

S (s − s̄), and then reconstructing as sr =
s̄ + USpr . The resulting curve shows that the 300-W dataset is not
saturated and there is considerable room for further improvement.

4.3. 300-W challenge: second conduct (2015)

The second conduct of the 300-W challenge was completed in the
beginning of 2015. The biggest difference compared to the previous
conduct is that we were no longer providing the bounding boxes of
the images to the fitting methods. On the contrary, the participants
were required to submit systems that perform both face detection
and landmark localization. The three main reasons that led us to this
change are:

1. Various techniques perform differently when initialized with
bounding boxes that cover different facial regions. For example,
DPMs [18] tend to return bounding boxes that only include
facial texture and not any of the subject’s hair, as usually done
by the Viola–Jones detector [49].

Table 3
Median absolute deviation of the fitting results of the first conduct of 300-W challenge
in 2013, reported for both 68 and 51 points.

Participant 68 points 51 points

Baltrusaitis et al. [41] 0.0486 0.0388
Hasan et al. [42] 0.0543 0.0551
Jaiswal et al. [43] 0.0527 0.0506
Milborrow et al. [45] 0.1126 0.1145
Yan et al. [47] 0.0211 0.0199
Zhou et al. [48] 0.0205 0.0182
Oracle 0.0038 0.0040

2. There are methods, like DPMs [18] and Pictorial Struc-
tures [11,12], that do not require any initialization.

3. There are algorithms for which the training is coupled with the
face detector, such as SDM [19].

Of course, this change made the task even more challenging than
before, since the search region of each image became much larger
with a lot of background information.

4.3.1. 300-W images cropping
As mentioned in Section 4.1, many of the 300-W images contain

more than one faces, which are not necessarily annotated. Conse-
quently, we cropped the images so that they all included only one
face. The cropping was performed in such a way to ensure that
(1) only a single face is included in each image and (2) DPMs [18] and
Viola–Jones [49] achieve the best true positive rate that they possibly
can. Table 4 reports the characteristics of the cropped images. Natu-
rally, the only thing that changes compared to the ones of the initial
images in Table 2 is the image size (resolution). The mean size of the
cropped images is 0.4 M pixels, which is much smaller than the 3.3
M pixels of the non-cropped images. Fig. 8 shows some representa-
tive examples of the way that the images were cropped. Note that
the cropped images are provided along with the original images of
the 300-W database4.

4.3.2. Training
The training instructions were the same as in the previous con-

duct. The authors were encouraged, but not restricted, to use LFPW,
AFW, HELEN, IBUG, FRGC-V2 and XM2VTS databases with the pro-
vided annotations.

4.3.3. Testing
The testing procedure followed the same rules as in the pre-

vious version of the challenge. The participants were required to
submit compiled pre-trained systems, the performance of which
was evaluated using the metric of Eq. (8). The submitted systems
could return nothing in case no face was detected or the detected
face was estimated to be a false positive. Consequently, in order to
facilitate the participants and make the competition less dependent
to a face detector’s performance, we suggested them to use one of
the face detection methods that took part in the Face Detection Data
Set and Benchmark (FDDB) [50]. Finally, in this conduct of the com-
petition, the submitted methods were also assessed with respect to
their computational costs and a maximum limit of 2 min per image
was typically set.

Table 4
Overview of the characteristics of the cropped images of the 300-W database.

Indoor Outdoor

# of faces 300 300
# of images 300 300
Image size (range in pixels) [16.2k, 3.3M] [11.2k, 4.5M]
Face size (range in pixels) [5.0k, 0.8M] [4.7k, 2.0M]
Interoccular distance (range in pixels) [42, 477] [39, 805]
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Fig. 8. Indicative examples of the way the images were cropped for the second conduct of the 300-W challenge.

4.3.4. Participants
In total, there were five participants in this version of the chal-

lenge. Below is a brief description of the submitted methods:

• Čech et al. [51] propose an algorithm where the sum of
individual landmark scoring functions, that are trained by a
structured output SVM classifier, is maximized with respect
to the camera pose by fitting a parametric 3D shape model.
They explicitly handle self-occlusions by excluding the cor-
responding contributions from the data term, which allows
their algorithm to operate correctly for a large range of view-
ing angles. Their landmark localization procedure is initialized
with a manually-engineered framework that involves a com-
mercial face detector and the estimation of the initial 3D pose.

• Deng et al. [52] use a multi-view, multi-scale and multi-
component cascade shape regression model. Their model
learns view-specific cascaded shape regressors using multi-
scale HOG features as shape-index features and is optimized
with a multi-scale strategy that eliminates the risk of getting
stuck on local minima.

• Fan et al. [53] approach the problem by proposing a deep learn-
ing system that consists of a cascade of multiple Convolutional
Neural Networks (CNNs) that are optimized in a coarse-to-fine
strategy in order to improve accuracy. Their fitting procedure
is initialized with their implementation of the Viola–Jones face
detector [49].

• Martinez et al. [54] employ a cascaded regression method
that makes use of the L2,1 norm in order to increase the
robustness to poor initializations or partial occlusions com-
pared to the commonly used least-squares regressor. They also
attempt to improve the results by using multiple initializations
with different spatial translations and four different head pose
rotations.

• Uřičář et al. [55] propose a real-time multi-view methodology
based on DPMs. They utilize different view-specific models in
order to deal with the problem of self-occlusions and cover a
large range of head poses. The model parameters are learned
through structured output SVM. The dynamic programming
optimization is performed in a coarse-to-fine search strategy
that allows real-time performance.

4.3.5. Results
The number of participants in this version of the competition

was 5. Fig. 9 shows the CED curves of the submitted methodolo-
gies. Table 5 reports the number of images for which an estimation
of the landmarks was returned, the mean absolute deviation of the
results, as well as the mean computational costs. The common sub-
set of images for which all methods returned a detection consists of
519 images. Fig. 11 shows some indicative fitting results.

Similar to the first conduct of the competition, we selected to
announce two winners: one from academia and one from industry.
Based on the results, the winners of the second conduct of the com-
petition are (a) Deng et al. [52] from the B-DAT Laboratory at the
Nanjing University of Information and Technology, and (b) Fan et
al. [53] from Megvii company. Even though the technique of Fan et
al. [53] is slightly more accurate, it returns results for 526 images, as
opposed to the one of Deng et al. [52] that detects the landmarks in
599 images and has a small mean absolute deviation. It is worth to
notice that some systems employed an unreliable face detector. This
seems to be the case with Čech et al. [51] and Uřičář et al. [55]. Their
systems returned an output for about 98.5% of the images, however
about 50% of the images resulted with very high fitting error partially
because of false positive face detections. This is the reason why their
mean absolute deviation is high. Moreover, only the submission by
Martinez et al. [54] managed to return a detection for all 600 images
and the results indicate that even though their methodologies are
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(a) Indoor + Outdoor, 68 points (b) Indoor + Outdoor, 51 points

(c) Indoor, 68 points (d) Indoor, 51 points

(e) Outdoor, 68 points (f) Outdoor, 51 points

Fig. 9. Fitting results of the second conduct of the 300-W challenge in 2015. The plots show the Cumulative Error Distribution (CED) curves with respect to the landmarks (68 and
51 points) and the conditions (indoor, outdoor or both).

not the most accurate ones, they are very robust with small mean
absolute deviations. Finally, the systems of Deng et al. [52] and Fan
et al. [53] were also the fastest ones.

5. Discussion and conclusions

The results of both conducts of the 300-W challenge shown in
Figs. 7 and 9 clearly prove that, even though much progress has
been made during the last years, the research community is still
far from accurately solving the problem of face alignment and that
there is much room for further improvement. This is indicated by
the gap between the participants’ curves and the Oracle, which is
the minimum error that can be achieved using the specific training
databases. Table 6 reports the percentage of images with error less

than {0.02, 0.03, 0.04, 0.05, 0.06} for the top techniques of both com-
petitions as well as the Oracle and makes it obvious that the gap is
still huge, especially for small error values.

Table 6 also shows that there was a small improvement on
the state-of-the-art performance between the first and the second
conduct of the challenge. The top performing methodologies have
relatively small differences and are close to each other. One of the
main reasons behind this progress is the plethora of training data
from which discriminative methods can greatly benefit. For example,
techniques like Yan et al. [47] (cascade regression framework) and
Zhou et al. [48] (convolutional network framework), can continually
achieve better results with continuous rise in the amount of training
data.

Additionally, the 300-W challenge was only focused on the task
of sparse facial landmark points detection. Alignment using dense
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(a) Baltrusaitis et al. [41]

(b) Hasan et al. [42]

(c) Jaiswal et al. [43]

(d) Milborrow et al. [45]

(e) Yan et al. [47]

(f) Zhou et al. [48]

(g) Ground truth

Fig. 10. Fitting examples of the first conduct of the 300-W challenge in 2013. Each row shows the fitted landmarks for each participating method.

landmark mark-ups is much more difficult and the performance
would get worse. This is because the more landmarks exist in the
shape, there is more ambiguity about the semantic locations at which
they are located. Consider for example the 41 boundary landmark
points of the HELEN mark-up in Fig. 1f. Their locations have no spe-
cial semantic discrimination. On the contrary they are just located
with an approximately equal distance between them. Consequently,
it is very hard to accurately detect such points since there is no

discriminative texture information that describes them and which
could drive the fitting procedure. This highlights the need to further
research how to select a relatively high number of landmark points
that are capable to describe all the characteristic areas of an object.

Moreover, another factor that contributed towards creating more
accurate and efficient alignment techniques is the great progress in
the task of face detection. Most landmark localization methodolo-
gies are very sensitive to the initialization, thus the face detection
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Table 5
Second conduct of the 300-W challenge. 2nd column: Number of images for which
an estimation of the landmarks was returned. 3rd and 4th columns: The mean abso-
lute deviation of the fitting results for both 68 and 51 points. 5th column: Mean
computational cost per method.

Participant # of images
with detection

mad Timings (secs)

68 points 51 points

Čech et al. [51] 591 (98.5%) 0.1047 0.0998 4.05
Deng et al. [52] 599 (99.8%) 0.0226 0.0213 1.97
Fan et al. [53] 526 (87.7%) 0.0309 0.0294 1.29
Martinez et al. [54] 600 (100%) 0.0514 0.0497 42.5
Uřičář et al. [55] 592 (98.7%) 0.0970 0.0945 3.46
Oracle – 0.0038 0.0040 −

performance. The results presented in the Face Detection Data Set
and Benchmark (FDDB) [50] show that current state-of-the-art tech-
niques achieve very good true positive rates. However, there is still

Table 6
Percentage of images with fitting error less than the specified values for the winners
of the first (Yan et al. [47], Zhou et al. [48]) and second (Deng et al. [52], Fan et al. [53])
300-W challenges, and Oracle. The error is based on 68 points using both indoor and
oudoor images.

Method <0.02 <0.03 <0.04 <0.05 <0.06

Yan et al. [47] 0.17% 4.17% 25.8% 54.0% 71.0%
Zhou et al. [48] 0% 2.50% 20.7% 47.7% 69.2%
Deng et al. [52] 0.17% 4.33% 26.8% 55.5% 74.3%
Fan et al. [53] 0.33% 14.3% 38.2% 62.0% 75.2%
Oracle 72.8% 97.2% 99.7% 99.8% 100%

room for further improvement especially on images with in-the-wild
conditions.

Finally, most current research effort focuses on detecting the
facial landmarks and not tracking them within video sequences. We
strongly believe that more attention should be given towards devel-
oping techniques that can track facial points in a robust manner,

(a) Cech et al. [51]

(b) Deng et al. [52]

(c) Fan et al. [53]

(d) Martinez et al. [54]

]55[.lateracirU)e(

(f) Ground truth

Fig. 11. Fitting examples of the second conduct of the 300-W challenge in 2015. Each row shows the fitted landmarks for each participating method.
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even under difficult conditions such as camera movement, disap-
pearance and re-appearance of the face, challenging background
and lighting, etc. Consequently, we believe that one promising step
towards this direction would be the organization of a challenge,
similar to the 300-W one, that focuses on facial landmark points
tracking. The biggest difficulty of such a competition would be the
annotation of the thousands of frames of the videos. However, using
semi-automatic annotation tools as the one proposed in this paper,
the task would be simplified and annotations could be efficiently
generated.
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