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Abstract-The goal of an Evolutionary Algorithm 
(EA) is to find the global optimum in a state space 
of potential solutions. But these systems can become 
trapped in local optima due to the EA having only 
generational information. Using the Scouting Algorithm 
(SA) it is suggested that a cross-generation memory 
mechanism can be added to modulate fitness relative to 
how well a region has previously heen sampled. Thus, 
the goal is to allow the Scouting-inspired EA (SEA) to 
leave well explore regions to find the global optimum 
more quickly. It will he shown that the SEA does 
achieve this goal for the problem domain of nonlinear 
programming (NLP). 

I. INTRODUCTION 
An Evolutionary Algorithm (EA) in its most basic 

form generates a population of potential solutions 
for a given task that are ranked, selected based on 
rank, and varied to produce a new population of 
potential solutions. Over time this system converges 
on a solution that can be the global optimum, but 
the system can also become trapped in one of many 
different local optima. One solution to this issue is 
to add a cross-generational memory mechanism for 
regulating how future populations search the state 
space based on previous experience. Thus, over time 
the system will accumulate domain knowledge that 
can be used for a more effective search. 

This idea has been previously explored by 
Reynold's with Cultural Algorithms (CAS), where 
an anthropological view is taken on EAs 11, 21. 
CAS maintain both population and cultural knowl- 
edge, with the population knowledge contributing to 
the cultural knowledge that is available for future 
generations. CAS use cultural knowledge to form 
generalizations about previously encountered phe- 
nomena, providing a belief space for facilitating a 
population's exploration of the state space. CAS were 
initially created to explore archaeological findings of 

developing cultures [3]. CAS have also been used to 
solve nonlinear constrained parameter optimization 
problems [4], which is the same problem domain used 
for these explorations. 

The work presented here takes inspiration from 
the Scouting Algorithm (SA) to introduce a cross- 
generational memory mechanism to an Evolutionary 
Algorithm, creating the Scouting-inspired EA (or 
SEA). But unlike the CA's belief space, the SA 
confers the ability to determine what regions have 
already been explored and to what degree. This will 
allow the SEA to avoid being trapped in local optima 
and free the system to pursue the global optimum. 
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Figure I .  Surprise is [he difference between actual and estimated 
behavior. 

The SA was originally developed to perform au- 
tomatic experimentation [5 ]  where the resources to 
conduct experiments are limited or the system being 
examined is too complex for an exhaustive search 
to be performed. Thus, initially it was the SAS goal 
to efficiently search the state space by looking for 
interesting behavior that the experimentalist can later 
examine. It should be emphasized that this explo- 
ration is not to find optimal behavior, but instead to 
find interesting or "surprising" behavior. 

To determine surprising behavior, the SA builds 
an experience database from previously performed 

0-7803-851 5-2/04/$20.00 02004 IEEE 1706 

mailto:pfaffmaj@cs.lafayette.edu
mailto:bousmalk@cs.lafayette.edu
mailto:scolombano@mail.arc.nasa.gov


experiments to calculate an estimated result for a 
yet unperformed experiment. The estimate is com- 
pared to the actual result, with the difference being 
the surprise value. Thus, an experiment where the 
difference between actual and estimated behavior is 
quite large will generate a great surprise. To calculate 
the estimate value, the k-nearest neighbors in the 
experimental space are averaged together, with each 
neighbor weighted by its distance to the current 
point being estimated relative to all other averaged 
neighbors. 

The SA uses the surprise value in two ways, 
as the fitness value and to modulate the mutation 
operator. Allowing individuals with a great surprise 
to be predominately selected and mutated to remain 
in the region of previously great surprise. As a region 
becomes well sampled the surprise value will be- 
come smaller, allowing newly generated individuals 
to move farther from the current region until a new 
surprising result is located and the system focus 
moves appropriately. 

The SA has been applied to variety of experimental 
systems [6, 71 where it has been shown to perform 
well. In the initial SA, population size and mutation 
strength was specified by parameters, while for auto- 
matic experimentation it would be more advantageous 
to allow these parameters be set dynamically based on 
the previous system behavior. Recently, the modula- 
tion of both aspeckare explored in the Self-adaptive 
Scouting implementation [SI, by modifying the initial 
SA in two ways. The first modification modulates 
the mutation operator so that the average surprise up 
to that point is used to scale the mutation strength 
relative to the difference between averaged and cur- 
rent surprise. The second modification regulates the 
number of offspring a parent has according to the 
performance of theoffspring. It should be noted that 
this is an unusual concept, as typically parent fitness 
will influence the number of generated children. 

Using Self-adaptive Scouting as inspiration, the 
SEA creates a mapping from the current surprise 
value to the normal distribution parameter ci for a 
gaussian distribution. The mapping is a simple inverse 
relationship, so that a high surprise value will produce 
a low ci to generate variates near zero. When the 
surprise value is low a high ci is generated and will 
produce a more even distribution of random variates. 
Thus, the enhancement will regulate the randomness 
exhibited by the EA, allowing the system to focus on 

a specific region when the underlying state space is 
poorly understood, and become more random when 
that local region is well understood. 

11. THE PROBLEM DOMAIN 
The goal of the presented work is not to solve a 

specific problem, rather it is to determine the potential 
for enhanced performance by incorporating surprise, 
from the SA, into a traditional EA. Thus, a test-case 
generator was chosen that could produce a variety 
of problems of sufficient complexity to challenge 
both the EA and SEA. Additionally, two other de- 
sirable traits were looked for: the ability to generate 
problems with specified levels of complexity and 
the capability to change the problem dimensionality. 
These qualities were found in the TCG-2 package by 
Schmidt and Michalewicz 191, which is a C++ class 
for generating nonlinear constrained parameter opti- 
mization tasks (also known as nonlinear programming 
(NLP) problems). 

Briefly, NLP problems are n-dimensional real- 
valued tasks consisting of an objective function that 
is constrained to produce a feasible solution space. 
Potential solutions are specified 'as a n-dimensional 
vector X = ( ~ 1 , .  . . , xn )  E YZn, which is bounded by a 
specified search space. For the TCG-2 package the 
search space is contained to 0 _<.xi _< 1, where 1 5 
i 5 n. For a more detailed account of NLP problems 
and their relationship to the TCG-2 see [9]. 

The fitness function used here follows Schmidt 
and Michalewicz's suggestion of a static penalty 
approach, as follows: 

Fit@) = G(X) - W x CV(?), (1)  
where the objective function G(X) is penalized 
with the constraint violation function CV(X) value 
weighted by the penalty constant W. The given fitness 
function requires that W > 0, which is fixed to W = 10 
for all experiments. 

Different NLP problems were examined by ma- 
nipulating the TCG-2 parameters and examining the 
resulting objective landscape. This process was fa- 
cilitated by the capability of the TCG-2 package to 
provide the different landscapes as files containing the 
numerical information that later can be visualized. 

The goal while manipulating the TCG-2 package 
parameters was to find a very rugged landscape with 
many regions of local optima that have a similar mag- 
nitude as the global optimum. The final parameter 
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TABLE I 
TCG-2 PARAMETER SET 

problem dimensionality 
feasible components 
search space feasibility 
search space complexity 
active constraints at global optimum 
objective function peak count 
peak width 
peak decay 
component min. distance 

choices are given in Table I producing the follow- 
ing landscapes for the objective function (Figure 2), 
constraint violation (Figure 3), and fitness function 
(Figure 4). 

Figure 2. Objective function landscape G(?) 

Figure 3. 

Schmidt and Michalewicz's paper provide a de- 
tailed description of the listed parameters (in Table I) 
and their effect on the resulting NLP problem. One 
notable parameter is the peak count count that directly 
translates into the number of peaks in the actual 
objective function. The global optimum peak was 
generated by the TCG-2 package near the center of 
the search space, X8 = (0.480704,0.495582), with a 

Consoaint Violation function landscape CV(E) 

peak height of 1. Within the search space there are 
5 local optima with a peak height of 0.9 and greater, 
with the greatest peak within this group at 0.982. For 
peaks that range: from 0.8 to 0.9 there are 5 and from 
0.7 to 0.8 there are 6. The active constraints on the 
parameters at the global optimum specify whether the 
global fitness point is placed in a feasible area of the 
fitness landscape or near the edge of such an area. For 
the problem used here, the global optimum is placed 
in a feasible area and not on the edge such an area. 

Figure 4. Fimess function landscape Fit(?). 

111. SCOUTING-INSPIRED EVOLUTIONARY 
ALGORITHM 

As indicated previously the design of the EA 
took a traditional approach, capturing the essence of 
the evolutionary optimization technique. An initial 
population of vectors are generated, each vector is 
evaluated using the fitness function (Equation I ) ,  
these individuals are selected using roulette wheel 
sampling, and each selected individual is mutated by 
varying a single gene within the vector that repre- 
sents the individual. Individuals are mutated using 
a gaussian distribution with the standard deviation 
parameter U set to provide a specific range of random 
variates biased. around a median of 0. The process 
of variation and selection continues until a specific 
generation is reached. 

From one generation to the next there is a total 
population turnover, allowing the EA the maximum 
number of new samples each generation. To ensure 
that convergence is achieved, in the presence of a new 
population each generation, roulette wheel sampling 
is used. This type of sampling will in general retain 
the best performing individuals to contribute their 
genetic material to the next generation while still 
allowing for lesser performers to also contribute. 
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Pseudocode for the Scouting-inspired EA is given 
below with the first part indicating the parameters and 
the second part providing the code. 

PARAMETERS: 
Pop = population size 
n = problem dimensinnnliry: number ql‘genes 
om, = minimum standard deviation 
om, = maximum standard deviation 
gen,, = maximum numbrr of grnarotions 

BODY: 
01 initialize random number generatar. 
0 2  initialize scouting database. 
03 generate initial population : X p  = {?E,. . . ,?pop} 
04 gen = 0 
05 repeat 
06  
07 
08 
09 
l o  
11 end far 
12 
13  Select Z,, using roularle selection 
14 select gene to mutate : 
15 calculate mutation modulator : 

16 
17  end for 
18 increment gen by 1 
19 unlil gen = gen,, 

for i = I to Pop do 
calculate fimess : .fit, =Fir(?!)  
calculate eslimate : f i t (  = FiI‘(Yj) 
calculate surprise : supi = //it; -/?til 
store fitness value in experience database 

for i = 1 to Pop do 

for g = I to n 

5” = 5“““ - (SUPP x (5- - 5,””)) 
mutate gene : xP4 = ~ ~ , ~ + g l l ~ . ~ ~ i ( m R ~ n d ( u ~ :  

Conceptually, the surprise calculation processes in 
parallel to the EA by looking over the EA’S shoulder 
and helping to guide the search behavior without 
changing the basic EA functionality. Examining the 
previous pseudocode the parallel functionality is con- 
tained in lines 8-10. 15, and 16. The first for-loop 
(starting line 6) calculates the fitness, evaluates the 
current population by determining surprise from pre- 
vious fitness values, and stores the actual behavior in 
the scouting database. The calculation of the surprise 
value (supi) uses the actual (fit,) and estimated (fit:) 
fitness, with the estimate generated by the weighted 
k-nearest neighbor technique described previously for 
the SA. 

Once the fitness ( f i t i )  and surprise (supi) val- 
ues have been generated for each individual of 
the current generation, the algorithm enters the 
variatiodselection-loop (lines 12-17). In the second 
for-loop the EA enhancement is seen only on lines 15 
and 16 where the standard deviation (up) is calculated 
and applied for each parent to be mutated. 

Integrating the surprise calculation in this way 

the fitness space, providing a finer granularity of 
control. Thus, not only is the fitness used to select 
an individual to be varied, the information from all 
previous samples can be used to further refine the 
search mechanism by regulating the variation. So a 
high surprise value indicates an unexplored region 
where children should be varied only slightly. While 
a low surprise value indicates a well explored region 
and the resulting children should be varied greatly 
so that new regions can be searched out. It should be 
noted, variates producing a mutation that falls outside 
of the range 0 5 xP,* 5 1 are rejected and a new 
variate is generated as a replacement. This has the 
effect of rejecting a larger number of variates when 
U is high. In future implementations the variate can 
be scaled to reduce the rejection frequency, which 
will also reduce the quantity of calls to the random 
number generator. 

IV. S Y S T E M  P E R F O R M A N C E  

Since the focus of the presented work is to per- 
form a comparison of an EA with and without 
the surprise modulated variation enhancement, the 
choice of random generators was critical. Thus, an 
established numerical package was selected, the GNU 
Scientific Library (gsl) [lo], and from that three 
high quality random number generators were chosen. 
The first generator was Matsumoto and Nishimura’s 
“Mersenne Twister” [ll],  which is known to generate 
long periods with law correlation. The second and 
third generators use Liischer’s ranlux algorithm, or 
the “luxury random number generator”. [12]. The first 
of these generators is the original implementation, 
while the second is a double precision variant that 
runs a quarter times slower. Like the first generator, 
the ranlux generators create very long periods and 
produce provably de-correlated numbers at different 
levels of randomness. For the three generators SO 
different random seeds were generated using dice, 
further ensuring a high level of randomness, to pro- 
duce 150 different random sequences for experimen- 
tation. This is to indicate that during an experiment 
only one of the three different generators is used as 
part of the gaussianRand(0,) function (see line 16 
of the previous algorithm). The goal of using the 
three random generators is to eliminate any biases 
that might occur from the different techniques and 
implementations. 

allows the EA to have an additional perspective on To determine what population size should be used, 
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again the work by Schmidt and Michalewicz was 
referred to. The TCG-2 package was initially eval- 
uated using an evolutionary algorithm to empirically 
explore arbitrarily derived problem spaces generated 
by the package for given parameter sets. In this work, 
Schmidt and Michalewicz used a population size of 
100 individuals with a very high problem dimen- 
sionality (n = 30). Additionally, their evolutionary 
algorithm used a crossover mutation operator, which 
is not true of the EA used here. 

From Schmidt and Michalewicz's studies, it was 
determined that the three most important parameters 
were dimensionality, number of peaks, and peak 
width (affecting the peak slope). The work here uses 
both a large number of peaks and a small peak width 
or 50 peaks with a width of 0.1. In general, Schmidt 
and Michalewicz used 30 peaks at a width of 0.5, 
while varying a single parameter to examine the sys- 
tem behavior along that dimension in the parameter 
space. In this regard, our chosen problem is more 
complex than theirs, where our task is less complex in 
the dimensionality. As mentioned above, Schmidt and 
Michalewicz used 30 dimensions compared to our 2 
dimensions, with the motivation being the ability to 
visualize the system on the landscape. In future work 
the dimensionality will be increased to determine if 
the SEA functionality similarly scales. 

Since the problem here is less complex, in terms 
of dimensionality, the size of our populations were 
chosen to be smaller for the majority of the experi- 
ments, using population sizes of IO. 20, 30, and 100. 
As seen in Figure 5-A the averaged EA fitness values 
over 150 experiments for 5000 generations produces 
high levels of fitness that scale as the number of 
individuals increase. But when compared to the SEA 
(Figure 5-B) the EA (Figure 5-A) performs poorly, as 
the SEA consistently achieves higher fitnesses more 
quickly. Given 5000 generations all SEA experiments 
reached a fitness level of 0.99 or greater, seen in 
Figure 5-B. 

Figure 6 plots the number of individual experi- 
ments to reach a level of 0.99 or higher at a given 
generation out of a total 150 experiments, for both 
the EA (Figure 6-A) and SEA (Figure 6-B). The 
fitness level of .99 is significant because it indicates 
that the regions containing the global optimum fitness 
has been reached (as the next highest peak is 0.982). 
Figure 6-B shows the SEA achieved a fitness of 
0.99 or greater within 5000 generations for all 150 
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Figure 5. Average fimess of 150 experimenb for different 
population sizes, showing the: A. EA and B. SEA. Note, only 
IWO generations of the SEA re~ults were ploned for increased 
graph clarity. 

experiments, indicating that the region containing the 
global optimum was always reached. While Figure 6- 
A indicates a lesser but still significant number of EA 
experiments reached this region. This advantageous 
behavior can be attributed to the ability of the SEA 
to perform a much broader search of all possible local 
optima. 

TABLE II 
EXPERIMENTS THAT FOUND GLOBAL OPTIMUM. 

20 6 1 
3 1 10 

But as can be seen in Table I1 that shows the num- 
ber of experiments that found the global optimum, 
the EA exceeded the capability of the SEA to find 
the optimum solution. This indicates that the SEA 
has lost its ability to converge, which is an important 
aspect of evolutionary algorithms. This convergence 
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loss is due to the effect of surprise always pushing the 
system from a well explored region to another less 
explored region, based on an estimate, and will rarely 
find the optimum.?However. the SEA always finds the 
region near optimum for the system explored here. 

This behavior can he visualized by plotting how 
the EA and SEA" sample their state space over the 
5M)O generations, shown in Figure 7. The EA' i s  
an inherent local. search mechanism that examines 
where it currently is, and thus more slowly explores 
the larger state space with the possibility of well 
explored regions. to continued to be explored. The 
SEA also retains this local search aspect, hut the 
local search is modulated by the effects of surprise 
that is continuously pushing the system into more 
interesting regions. Figure 7-A shows a single EA 
experimental state space 'sampling, which is clearly 
localized to specific regions due to the issue of local 
optima trapping:.While the SEA (Figure 7-B) can 
more freely move throughout the space, paying the 
price of losing the ability to converge. 

V. CONCLUSION 
Often when Evolutionary Algorithms (EAs) are 

discussed in relation to a random search it is in terms 

of performance, in other words, can the EA outper- 
form a purely random search. In the case of this work 
it is better to think of the EA as a constrained random 
search, with the two search mechanisms forming a 
continuum. Obviously, a purely random search is 
a waste of resources, hut so is examining regions 
of the fitness landscape that have been throughly 
explored particularly if that region only contains a 
local optimum and the EA is trapped. The question 
becomes how can the EA he made less constrained, 
or can the level of constraint be modulated, allowing 
for the more effective use of randomness. 

Presented is a potential solution to how the level of 
randomness can be modulated by taking inspiration 
from the Scouting Algorithm (SA) to enhance an EA, 
producing the SEA. This enhancement exists purely 
to determine when the SEA has explored a space to 
such a level that there is little new, or surprising, 
information to discover. This information is derived 
from previously generated samples to  compute an 
estimate about a given location in the state space. 
This estimate is compared to the actual behavior to 
determine a level of surprise, using the difference. 
Great differences produce large surprises, indicating 
that the system should remain in that region. The 
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surprise level is used to modulate the gaussian ran- 
dom variate distribution so that when the SEA is in 
a region that little is known about a high surprise 
is generated, causing the variate to more likely be 
generated near 0. If the surprise is low, this causes 
a more even variate distribution, allowing children to 
be mutated so they are more likely to leave a well 
understood region. 

It has been shown that this enhancement both 
quickly and consistently moves the SEA into regions 
containing solutions that are near the global optimum, 
while at the same time sacrificing convergence. The 
traditional EA retains the ability to converge, at the 
cost of possibly being trapped in local optima. Both 
systems have their advantages and clearly the next 
step in this work is to resolve this issue by modulating 
the effects of the scouting surprise value in relation 
to the current fitness level. The idea is to reduce the 
effect of surprise if fitness is high. The opposite will 
be performed if the fitness is low. Another avenue of 
exploration is the mapping from the surprise value 
to the standard deviation parameter. Here a simple 
mapping is used, hut due to the nature of the gaussian 
distribution the effect of changing the standard devi- 
ation parameter is a non-linear relationship and it is 
not clear that this is the most effective mapping. The 
third and most challenging avenue of exploration is 
to see whether the behavior of the SEA can be scaled 
to solve high dimensional problems. 

Overall, this work shows initial steps to providing 
an enhancement to many evolutionary algorithms that 
does not drastically change the essential spirit of this 
optimization technique. 
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