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Abstract

Semantic segmentation of eyes has long been a vi-

tal pre-processing step in many biometric applications.

Majority of the works focus only on high resolution eye

images, while little has been done to segment the eyes

from low quality images in the wild. However, this is a

particularly interesting and meaningful topic, as eyes play

a crucial role in conveying the emotional state and mental

well-being of a person. In this work, we take two steps

toward solving this problem: (1) We collect and annotate a

challenging eye segmentation dataset containing 8882 eye

patches from 4461 facial images of different resolutions,

illumination conditions and head poses; (2) We develop

a novel eye segmentation method, Shape Constrained

Network (SCN), that incorporates shape prior into the

segmentation network training procedure. Specifically, we

learn the shape prior from our dataset using VAE-GAN,

and leverage the pre-trained encoder and discriminator to

regularise the training of SegNet. To improve the accuracy

and quality of predicted masks, we replace the loss of Seg-

Net with three new losses: Intersection-over-Union (IoU)

loss, shape discriminator loss and shape embedding loss.

Extensive experiments shows that our method outperforms

state-of-the-art segmentation and landmark detection

methods in terms of mean IoU (mIoU) accuracy and the

quality of segmentation masks. The dataset is available

at https://ibug.doc.ic.ac.uk/resources/

ibug-eye-segmentation-dataset/

1. Introduction

Eyes not only are the most vital sensory organ but also

play a crucial role in conveying a person’s emotion state

and mental well-being [16]. Recently, considering facial
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segmentation has gained good performacne, as [39], eye

segmentation task is gradually highlighted. Although there

have been numerous works on blink detection [29, 5, 38],

we argue that accurate segmentation of sclera and iris can

provide much more information than blinks alone, thus al-

lowing us to study the finer details of eye movement such

as saccade, fixation, and other gaze patterns. As a pre-

processing step in iris recognition, iris segmentation in high

resolution expression-less frontal face images have been

well studied by the biometric community. However, the

commonly used Hough-transform-based method does not

work well on low-resolution images captured under normal

Human-Computer Interaction (HCI) and/or video-chat sce-

narios. This is particularly evident when the boundary of

eyes and iris are blurry, and the shape of the eye can dif-

fer greatly due to pose variation and facial expression. To

our knowledge, this work presents the first effort in solv-

ing the eye segmentation problem under such challenging

conditions.

To investigate the topic of eye segmentation in the wild,

the first problem we need to address is the lack of data. Al-

beit both biometric community and facial analysis commu-

nity published an abundance of eye datasets over the years,

none can be used as is for our purpose, because the former

category only contains high resolution eye scans while the

latter category lacks annotation of segmentation masks for

sclera and iris. In fact, existing databases were collected

in controlled environment (and mainly in high resolution),

while there is no in-the-wild eye database that contains eye

images in a wide range of resolutions. As a step towards

the solution, we create a sizable eye segmentation dataset

of 8882 eye patches by manually annotating 4461 face im-

ages selected from HELEN [23], 300VW [35], 300W [33],

CVL [28], IMDB [32], Utdallas Face database [26], and

Columbia Gaze database [37].

To solve the segmentation problem, we propose a novel

method, Shape Constrained Network (SCN), that incorpo-
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rates shape prior into the segmentation model. Specifically,

we first pre-train a VAE-GAN [22] on the ground truth

segmentation masks to learn the latent distribution of eye

shapes. The encoder and discriminator are then utilised

to regularise the training of the base segmentation network

through the introduction of shape embedding loss and shape

discriminator loss. This approach not only enables the

model to produce accurate eye segmentation masks, but also

helps it suppress artifacts, especially on low-quality images

where the fine details are missing. In addition, since the reg-

ularisation is applied during the training, SCN does not in-

cur additional computational cost to the base segmentation

network during inference. Through extensive experiments,

we demonstrate that SCN outperforms state-of-the-art seg-

mentation and landmark localisation methods in terms of

mean mIoU metric.

The main contribution of this work are as follows:

• We collect and annotate a large eye segmentation

dataset consisting of 8882 eye patches from 4461 face

images in the wild, this is the first of its kind and a sig-

nificant step towards solving the problem of eye seg-

mentation.

• We propose Shape Constrained Network (SCN), a

novel segmentation method that utilises shape prior to

increase accuracy on low quality images and to sup-

press artifacts.

• We redesign the objective function of SegNet with

three new losses: Intersection-over-Union (IoU) loss,

shape discriminator loss and shape embedding loss.

2. Related Works

Eyes localisation. Early methods [12, 11] often rely on

edge information of the original image or handcrafted fea-

ture map when locating eyes and iris. In [11], the eye can be

modelled as two parabolic curves (lids) and an ellipse (iris)

respectively, whose parameters are determined by Hough

transformation. Even though this method has been widely

used in many iris recognition systems, it is very sensitive to

image noises and pose changes. On a separate note, these

algorithms are designed to work on eye scans of high quality

(i.e. minimum of 70 pixels in iris radius), whereas for an in-

the-wild image captured with consumer-grade camera, they

do not perform well.

Everingham and Zisserman [15] attempted to solve this

problem with 3 different approaches: (a) ridge regression

that minimizes errors in the predicted eye positions; (b) a

Bayesian model of eye and non-eye appearance; (c) a dis-

criminative detector trained using AdaBoost. This is one of

the earliest detectors that achieved some degrees of success

in detecting eyes from the low resolution images. How-

ever, it still felt short of detecting eyes in extreme poses and

illumination conditions, partly because it utilized image in-

tensities rather than robust image feature (e.g., HoG [10]).

Needless to say, they merely detected two landmarks, which

were not sufficient for dense segmentation.

As a matter of fact, many existing 2D/3D facial land-

marks detection methods [40, 19, 4, 1, 2] are able to pro-

vide significantly better localisation of eyes than the afore-

mentioned methods, owing to the tremendous efforts in col-

lecting and annotating large facial image databases [33, 35,

23, 13]. Unfortunately, the majority of these works only

provide a small number of landmarks for one single eye

(e.g., 6 landmarks in 68-point markup [33]), which is barely

enough for describing the full structure of eye (i.e., iris,

pupil and sclera) in a 2D image. Moreover, a significant

portion of those annotated images do not display clear struc-

ture of eyes. To the best of our knowledge, there is no large

scale database for dense eye landmarks localisation or eye

segmentation. In this paper, we take a step forward by col-

lecting the first in-the-wild eye database that is annotated

with landmarks and fine-grained segmentation mask.

Deep semantic segmentation of image. The above meth-

ods are all condition-sensitive algorithms, as they are metic-

ulously designed based on the predefined setting (e.g., the

number of points, shapes or curves), thus may not suit

our specific purpose. More recently, various deep learn-

ing techniques have achieved impressive results in seman-

tic segmentation of images. Fully Convolutional Net-

works (FCN) [24] is one of the most influential deep learn-

ing methods for image segmentation. FCN is indeed an

encoder-decoder network that predicts the segmentation

mask in an end-to-end manner. It adopts VGG-16 [36] as

the backbone of encoder, and utilises the transposed con-

volution for upsampling and generating the mask. Seg-

Net [3] also adopted VGG-16 in the encoder network, how-

ever, comparing with FCN, it removed the fully connected

layers and led to a more light-weight model. Additionally,

inspired by unsupervised feature learning [17], the decoder

of SegNet employed the max-unpooling layers, which reuse

indices of the corresponding max-pooling operations of the

encoder. The reuse of indices not only improves bound-

ary delineation but also helps reduce the number of training

parameters. DeepLab [7] proposed to use Atrous Convolu-

tional Neural Network (Atrous-CNN) to generate the seg-

mentation mask directly from the input image. The mask

is further refined by a fully-connected Conditional Random

Field (CRF) layer with mean-field approximation for fast

inference.

One drawback of these methods is that they need to learn

the shape prior from input image from scratch, which is of-

ten an inefficient procedure. Since the shapes of sclera and

iris are highly regular, shape information can be exploited

for eye segmentation. On the other hand, in low resolution

images that do not display many details (such as prominent
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edges), neglecting a shape prior can lead to sub-optimal per-

formance for this task because the pixel intensity alone does

not provide sufficient contextual information.

Deep generative models with shape constraint. Sev-

eral deep generative models that take advantage of shape

prior have been developed. Shape Boltzmann Machine

(ShapeBM) [14] provided a good way to construct a strong

model of binary shape using Deep Boltzmann Machines

(DBMs) [34]. ShapeBM is an inference-based generative

model that can generate realistic and different examples

from the training data. Nonetheless, ShapeBM is quite sen-

sitive to the appearance changes of object in different views,

thus it is less appealing for the task of eye segmentation in-

the-wild. More recently, Anatomically Constrained Neu-

ral Networks (ACNN) [31] incorporated shape prior knowl-

edge into semantic segmentation or super-resolution mod-

els. Since the shape prior of ACNN were learned by auto-

encoder, the reconstructed segmentation masks were often

blurry and lack sharp edges. Shape prior can also be mod-

elled in Variational Auto-Encoder (VAE) [21]. VAE tries

to learn latent representation of training examples by map-

ping them to a posterior distribution. Unfortunately, VAE

still fails to produce clear and sharp segmentation mask.

To address this problem, Larsen et al. [22] presented VAE-

GAN that combined VAE and GAN with a shared generator.

The element-wise reconstruction error of VAE is replaced

by feature-wise errors to better capture data distributions.

VAE-GAN can optimally balance the similarity and varia-

tion between the inputs and outputs.

3. Dataset

Due to the lack of available data for eye segmentation in-

the-wild, we create a new dataset by annotating 4461 facial

images found in HELEN [23], 300VW [35], 300W [33],

CVL [28], IMDB-WIki [32], Utdallas Face database [26],

and Columbia Gaze database [37]. The particular images

were selected to ensure a variety of head poses, image qual-

ities, resolutions, eye shapes and gaze directions are repre-

sented in this dataset.

Once the facial images are collected, we use an facial

landmark detector [19] to find an approximate location of

the eyes in each image. For each eye patch, we manually

annotate the segmentation mask. Each pixel in the patch

is labelled as either background, sclera, or iris. Based on

the annotated segmentation mask, the bounding box of the

eye patch is then adjusted accordingly so that it is always

centred on the eye with a fixed aspect ratio of 2:1. Some

examples of the eye patches and their corresponding seg-

mentation masks are illustrated in Figure 1.

Each eye patch is further tagged with 3 discrete at-

tributes: head pose (near-frontal or non-frontal), resolution

(high resolution or low resolution), and occlusion. The head

pose attribute is manually annotated following the guideline

Name Value

Total number of faces 4461

Total number of eye patches 8882

Non-frontal faces proportion 18.35%

Low-resolution eye patches proportion 57.58%

Proportion of images with occlusions 16.05%

Table 1. Dataset statistics.

that a head-yaw within 30 degree is considered near-frontal

while the rest being considered non-frontal. The resolu-

tion tag is derived by comparing the eye patch’s area to a

fixed threshold of 4900 pixels, which is typically the num-

ber of pixels one can expect from a face image captured by

720P HD webcam during video chat. Distribution of the eye

patch size in our dataset is shown in Figure 2. The occlusion

attribute labels whether the image contains hairs, glasses, or

profile view of the face (namely, self-occlusion). Detailed

statistics of the dataset is given in Table 1.

4. Shape Constrained Network

In this section, we illustrate the proposed Shape Con-

strained Network (SCN). SCN mainly contains a segmenta-

tion network and a shape regularization network, we design

the loss functions for each part of network and explain the

training of SCN in details.

4.1. Overview

We adapt SegNet [3] for our front-end segmentation net-

work, and employ VAE-GAN [22] to regularise the pre-

dicted shape as well as to discriminate between real and

fake examples. Our network is depicted in Figure 3. The

training of SCN is divided into two steps: (1) First, we pre-

train shape regularisation network (i.e., VAE-GAN) using

the ground truth eye segmentation masks; (2) We borrow its

encoder E(.) and discriminator D(.) for training our main

segmentation network S(.). The inference of SCN is indeed

the same as that of SegNet, as we do not alter its encoder-

decoder structure, we mainly reformulate the losses and im-

prove the training by adding shape regularization.

4.2. Modeling shape prior

We utilise VAE-GAN [22] to learn the shape prior

from ground truth segmentation masks. Simply put, VAE-

GAN is a combination of Variational Auto-Encoder (VAE)

and Generative Adversarial Networks (GANs), where they

share a common decoder/generator. Specifically, in VAE,

encoder tries to learn the parameters that map segmentation

masks to the latent space of N (0, I), while the generator

decodes the latent vector z ∼ N (µ, σ) to synthesise seg-

mentation mask. In the part of GANs, the discriminator

takes the generated mask and ground truth mask, and learns
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Figure 1. Examples of the eye patches (top row) and their corresponding segmentation masks (bottom row). Control points used to generate

the segmentation masks are also made visible.

Figure 2. Distribution of eye-patch size (measured by the square

root of area) in our dataset. The shaded part at the lower-end of

the histogram indicates the samples tagged as ’low resolution’.

to judge between real and fake. Given a training example y,

the training losses of VAE-GAN can be written as:

Lprior = DKL(q(z|y)‖p(z)),
Lrec = Eq(z|y)[log p(Dl(y)‖z))]
Lgan = D(y) + log(1−D(ŷ)) + log(1−D(ŷp))

Ltotal = Lprior + Lrec + Lgan,

(1)

where ŷ and ŷp are the masks generated from the feature

embedding z of ground truth data and randomly sample la-

tent vector zp ∼ N (0, I) correspondingly. q(z|y) presents

the distribution of latent vector z given the input y, p(z) is

the normal distribution; DKL(.) is the KL divergence, and

Lprior constrains the latent distribution to Gaussian. D(.)
and Dl(.) denotes the discriminator and its feature from the

lth hidden layer respectively. Lrec is the reconstruction loss

measuring the Euclidean distance of lth hidden layer’s out-

put in the discriminator between the original image and the

image reconstructed by auto-encoder. In VAE-GAN, the

similarity of the ground truth and the reconstructed image is

not evaluated directly. Instead, they are first fed into the dis-

criminator and the distance between their lth feature maps

is used to measure the similarity. Lgan is an adversarial

loss to play the minimax game between three candidates:

original images, reconstructed images and images randomly

sampled from latent space. The original images provide the

discriminator with real examples, while the other two candi-

dates aim at fooling the discriminator. The authors of VAE-

GAN did not indicate any method to choose the lth hidden

layer. Theoretically, l can be any hidden convolutional layer

in the discriminator. In this paper, we empirically chose l=1.

4.3. Eye segmentation network

We borrow the architecture of SegNet [3] for our eye seg-

mentation network, but reformulate the loss function to im-

prove the segmentation accuracy and robustness. As men-

tioned previously, SegNet is indeed an encoder-decoder net-

work without fully connected layers, this is achieved by

reusing pooling indices calculated in the max-pooling step

of the encoder to perform non-linear upsampling in the

corresponding decoder. Owing to this, our segmentation

network has less trainable parameters while maintaining a

good performance.

4.3.1 Network loss design

Shape reconstruction loss. Based on VGG-16 [36], Seg-

Net employs softmax cross entropy as the loss function,

however, as Intersection-over-Union (IoU) is more effec-

tive in evaluating the segmentation accuracy, we replace the

original loss with the differentiable IoU loss [30]. More-

over, comparing with cross entropy loss, IoU loss can better

balance the contribution from different regions, thus avoid-

ing the domination of one particular category (i.e., the back-

ground pixels, especially when the eye is nearly closed).

This loss is defined as:

Liou =
ŷ ∗ y

ŷ + y − ŷ ∗ y + ǫ
, (2)

where ŷ and y indicate reconstructed mask and ground truth

mask respectively, both variables are in the region of [0, 1].
ǫ is a very small number to avoid division by zero.

Shape embedding loss. Regularisation of the eye shape

is important for producing a good segmentation mask. In-

spired by ACNN [27], we regularise the shape prediction

in the latent space of pre-trained VAE-GAN. Given a train-

ing image I , the segmentation network predicts the mask Ĝ,

which can be encoded to ẑ such that ẑ ∼ N (µ̂, σ̂) by VAE.
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Figure 3. Overview of proposed Shape Constrained Network. SCN is constructed by VGG-16 based SegNet and VAE-GAN. We first use

ground truth segmentation masks to train a VAE-GAN and reuse its encoder and discriminator. After that, we use a segmentation network

to predict the segmentation mask (i.e., S(x)). which is fed into the pre-trained encoder to obtain the latent code, z. Meanwhile, the ground

truth segmentation mask is also encoded into the latent space to obtain a ground truth latent code, ẑ. Therefore, we can use these two latent

representations to formulate a shape embedding loss (see Eq. 3). We use the pre-trained discriminator to judge the realness of the predicted

mask. A differentiable IoU loss is also employed to ensure the accuracy of reconstruction.

Similarly, the ground truth mask G can also be encoded,

i.e., z ∼ N (µ, σ). Assume the distance between two latent

vectors is d = z − ẑ, where d ∼ N (µ − µ̂,
√
σ2 + σ̂2), to

ensure that feature embedding of predicted mask lies close

to that of ground truth, we need to minimise the expectation

E[d2] of error distance d in terms of L2-norm. Therefore,

the latent loss can be computed as:

Lz = E[d2] = E
2[d] + Cov[d] = (µ− µ̂)2 + σ2 + σ̂2,

since the variance σ of ground truth mask feature embed-

ding is not related to any segmentation model parameters,

it can be left out. Our shape embedding loss function be-

comes:

Lz = (µ− µ̂)2 + λzσ̂
2, (3)

where λz is used to balance the precision and error toler-

ance.

Shape discriminator loss. The discriminative power of

VAE is usually not strong enough to single out hard neg-

ative examples, hence, we propose a discriminator loss to

further regularise the generated mask. This loss is defined

as follows:

Ldisc = E[log(1−D(ŷ))]. (4)

Although the discriminator loss can improve the quality of

the segmentation result, it might also prolong the conver-

gence of training. Therefore, it is important to weight the

contribution of this loss.

4.3.2 Objective function

Combining Eq. 2, 3 and 4, we formulate the final objective

function as follows:

L = Liou + λ1Lz + λ2Ldisc, (5)

where λ1 and λ2 are two hyper parameters for trade-off be-

tween two shape regularisation losses, viz. shape embed-

ding loss and shape discriminator loss.

4.4. Training of Shape Constrained Network

The segmentation network and shape regularisation net-

work need to be trained separately. First, we train the VAE-
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Algorithm 1 Training of Shape Constrained Network

Require: θs, θe, θg , θd ← initialise network parameters.

repeat

y ← sample mini-batch from ground truth masks.

z ← E(y)
zp ← N (0, I)
Lprior ← DKL(q(z|y)‖p(z))
ŷp ← G(zp)
ŷ ← G(z)
Lrec ← −(Dl(y)−Dl(ŷ))

2

Lgan ← D(y) + log(1−D(ŷ)) + log(1−D(ŷp))
Updating parameters:

θe ← θe −∇θe(Lprior + Lrec)
θg ← θg −∇θg (αLrec − Lgan)
θd ← θd −∇θdLgan

until Converged

Freeze θe and θd.

repeat

x, y ← sample mini-batch from the dataset.

ŷ ← S(x)
ẑ ∼ N (µ̂, σ̂)← E(ŷ)
z ∼ N (µ, σ)← E(y)
Lz ← (µ− µ̂)2 + λzσ̂

2

Liou ← ŷ∗y
ŷ+y−ŷ∗y+ǫ

, ǫ = 1e−8

Ldisc ← log(1−D(ŷ))
Updating parameters:

θs ← θs −∇θs(Liou + λ1Lz + λ2Ldisc)
until Converged

GAN using only ground truth segmentation masks. Our ob-

jective is to obtain a discriminative latent space to represent

the underlying shape distribution p(s|z; θe, θg, θd), where s

indicates the shape, θe denotes the parameters of encoder,

θg describes the parameters of generator, θd are discrimina-

tor parameters and z is the latent vector.

Next, we freeze all the parameters of VAE-GAN, and

connect the encoder and discriminator to the end of an un-

trained segmentation network. These two modules are only

used to compute the shape embedding and discriminator

losses as defined in Eq. 3 and 4, whilst their parameters will

not be altered. Last, we train the segmentation network us-

ing the loss function Eq. 5.

Algorithm 1 shows the step-by-step training procedure

of SCN. In that, S(.) describes the segmentation network,

E(.) is the encoder, and G(.) is the generator. θs indicates

the parameters of segmentation network.

5. Experiments

All experiments were performed on the aforementioned

eye dataset, which is further divided into separate train, val-

idation, and test sets with the ratio of 8:1:1. The three sub-

sets were constructed in a subject-independent manner such

that images of the same subject (as extracted from the meta

data) are always put into the same subset.

During the experiments, mean IoU metric is used to to

evaluate segmentation accuracy on sclera (S-mIoU), iris (I-

mIoU), and the combined foreground classes (Mean mIoU).

To ensure a fair comparison, all methods under comparison

were re-trained on the same training set as ours using their

publicly available implementation. Paired T-test with Bon-

ferroni correction were applied to all results to test whether

the performance difference between our proposed approach

and the compared method is statistically significant.

5.1. Implementation details

Our method is implemented using TensorFlow. Batch

normalization [18] is used before each weight layer in

the network. During training, data augmentation was per-

formed by random horizontal flipping of the images. Adam

optimizer [20] with a learning rate of 0.0002 was used for

training the networks. For the shape regulariser, since it is

difficult to test the convergence of GAN [9], the network

was trained Figfor a fixed number of 100 epochs. For the

segmentation network, early stopping [6] was used to pre-

vent over-fitting, with the number of tolerance steps set to

50. The weights λ1 and λ2 for the two shape loss terms

were both set to 0.3.

5.2. Ablation study

An ablation study was performed to verify that both

the shape embedding loss and the shape discriminator loss

helped to significantly improve segmentation accuracy in

terms of Mean mIoU. The results are shown in Table 2.

As can be seen, adding shape embedding loss increased the

Mean mIoU by 2%, while further adding the shape discrim-

inator loss brought an additional 1.5% improvement.

Method S-mIoU I-mIoU Mean mIoU

SCN (full loss) 71.86% 86.18% 79.02%

SCN (only with Lz) 70.26% 84.69% 77.47%†
SegNet[3] 66.06% 82.92% 74.49%†

Table 2. mIoU accuracy of the baseline segmentation network as

compared to SCN with full loss and SCN with only the shape em-

bedding loss. † indicates significant difference (0.95 confidence)

between the performance of our method and that of the compared

method.

5.3. Comparison with stateofthearts

We compared SCN to a number of state-of-the-art seg-

mentation method [41, 42, 25, 8, 3, 7], as well as three

landmark localisation methods [4, 40, 19]. All compared

methods were re-trained on the same training set during

this experiment. The segmentation methods were trained

1957



Method S-mIoU I-mIoU Mean mIoU Inference Time

SCN(ours) 71.86% 86.18% 79.02% 0.033s

FAN [4] 71.41% 85.95% 78.68%† 0.111s

PSPNet [42] 70.44% 85.40% 77.92%† 0.070s

DeepLab V3+ [8] 69.78% 85.46% 77.62%† 0.041s

DenseASPP [41] 68.34% 83.94% 76.14%† 0.137s

ERT1 [19] 66.42% 83.57% 74.99%† 0.003s

SegNet [3] 66.06% 82.92% 74.49%† 0.033s

FCN [24] 63.91% 82.79% 73.35%† 0.033s

DeepLab V2 [7] 63.41% 82.01% 72.71%† 0.110s

SDM2 [40] 61.37% 78.70% 70.03%† 0.037s

Table 3. mIoU and average inference speed achieved by SCN and other segmentation and landmark detection methods. The rows are

sorted in descending order with respect to Mean mIoU. † indicates significant difference (0.95 confidence) between the performance of our

method and that of the compared method. The experiment was performed on a machine with Intel Core(R) i7-6700 3.4GHz CPU, 32GB

memory, and a single Nvidia GeForce GTX 1080 Ti GPU. Inference time is recorded for a single prediction.

and tested in the same setting as SCN. For the landmark

localisation methods, the control points created during the

annotation process were used as the training targets. During

testing, we interpolated (cubic-spline for eyelids and ellipse

for iris) the predicted landmark positions to create the seg-

mentation mask for comparison. Result of this experiment

is shown in Table 3. SCN achieved higher Mean mIoU

than all other methods. Through paired T-test with Bon-

ferroni correction, we further found that the differences are

all statistically significant (95% confidence). Visualisation

of some random examples for the best-performing methods

are shown in Figure 4. It can be clearly seen that SCN is

quite robust and less likely to produce artifacts, which is

attributed to the shape constraint.

In addition to accuracy, we also report the inference time

of each method in Table 3. Although ERT [19] has the

shortest inference time, it is less accurate than most deep

methods. Among all deep methods, SCN runs the fastest

(0.033s per image), achieving the same speed as that of Seg-

Net [3]. This is because the VAE-GAN is only used during

training, thus does not incur additional computational cost

during inference.

5.4. Crossresolution comparison

In this experiments, we wanted to investigate how the

change of image resolution might affect segmentation per-

formance of our method. Different from previous exper-

iments, we ensure that the train set only contains high-

resolution images (
√
seye > 70, where seye is the area of

eye patch in pixels), while the test set only contains low-

resolution images. The ratio is roughly 5:1. All samples are

resized to 160 × 80 for training and testing. We compared

with six state-of-the-art segmentation methods in this exper-

iment, the result is shown on Table 4. It is clear that SCN

is consistently better than the other methods in S-mIoU and

I-mIoU (at least 0.7% better in Mean mIoU), despite of the

Method S-mIoU I-mIoU Mean mIoU

Ours 63.91% 80.95% 72.46%

PSPNet [42] 63.31% 80.20% 71.76%†
DenseASPP [41] 61.09% 79.03% 70.06%†
DeepLab v3+ [8] 61.59% 78.54% 70.07%†
DeepLab V2 [7] 57.57% 76.79% 67.18%†

SegNet [3] 59.47% 76.62% 68.05%†
FCN [24] 57.71% 76.04% 66.88%†

Table 4. Model accuracy of cross-resolution comparism. SCN is

significantly better than the other models’ performance. The ta-

ble shows SCN can be robust to adapt different image resolution

conditions. † indicates significant difference (0.95 confidence) be-

tween the performance of our method and that of the compared

method.

fact that fewer details are presented in the low-resolution

image. Thereinto, S-mIoU and I-mIoU denote the intersec-

tion over union metric for sclera and iris, respectively. We

attribute this to show that the shape prior knowledge learnt

by VAE-GAN from only high-resolution data can also ben-

efit low-resolution eye segmentation.

6. Conclusion

In this paper, we aimed at solving the problem of low-

resolution eye segmentation. First, we proposed an in-the-

wild eye dataset that includes 8882 eye patches from frontal

and profile faces, the majority of which are captured in

low resolution. We collected a significant number of sam-

ples that exhibit occlusion, weak/strong illumination and

glasses. Then, we developed the Shape Constrained Net-

work (SCN) that employs SegNet as the backend segmen-

1Using the implementation available at https://github.com/

davisking/dlib
2Using the implementation available at https://github.com/

FengZhenhua/Supervised-Descent-Method
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Figure 4. Qualitative visualisation of segmentation results based the eye segmentation dataset from SCN, SCNDeepLab V3SegNet,

DenseASPP, PSPNET and FAN. Please check our supplementary materials for the visualisation results of Deeplab V2, FCN, SDM and

ERT.

tation network, and we introduced shape prior to the train-

ing of SegNet by integrating the pre-trained encoder and

discriminator from VAE-GAN. Based on the new training

paradigm, we design three new losses: Intersection-over-

Union (IoU) loss, shape discriminator loss and shape em-

bedding loss.

We demonstrated in ablation studies that adding shape

prior information is beneficial in training segmentation net-

work. We outperformed several state-of-the-art segmen-

tation methods as well as landmark alignment methods in

subject-independent experiments. Last, we evaluate SCNs

performance in low-resolution images, with a cross dataset

experiment in which the model is trained on high-resolution

data and tested on low-resolution data. The results show

that SCN can generalise well to variations in image resolu-

tion.
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