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Abstract. Facial expressions depend greatly on facial morphology and expres-
siveness of the observed person. Recent studies have shown great improvement
of the personalized over non-personalized models in variety of facial expres-
sion related tasks, such as face and emotion recognition. However, in the con-
text of facial action unit (AU) intensity estimation, personalized modeling has
been scarcely investigated. In this paper, we propose a two-step approach for
personalized modeling of facial AU intensity from spontaneously displayed fa-
cial expressions. In the first step, we perform facial feature decomposition using
the proposed matrix decomposition algorithm that separates the person’s iden-
tity from facial expression. These two are then jointly modeled using the frame-
work of Conditional Ordinal Random Fields, resulting in a personalized model
for intensity estimation of AUs. Our experimental results show that the proposed
personalized model largely outperforms non-personalized models for intensity
estimation of AUs.

1 Introduction

Facial expressions communicate emotions, clarify and stress what is being said, and
signal comprehension, disagreement and intentions. Machine understanding of facial
expressions could revolutionize user interfaces for artifacts such as robots, mobile de-
vices, cars, and conversational agents [1]. The Facial Action Coding System (FACS) [2]
is the most comprehensive, anatomically-based system for encoding expression. FACS
defines 33 atomic facial muscle actions named Action Units (AUs), where the intensity
of each AU ranges from being absent to having maximal intensity on a six-point ordinal
scale. The AU intensity coding is usually carried out by trained human FACS coders.
Nevertheless, this process is tedious and error prone [3]. This is also true because the
facial AU intensity reflects large variability in persons’ facial morphology and their ex-
pressiveness, head-movements, illumination changes, and, to some extent, the coders’
bias. All this makes the automated estimation of the AU intensity highly challenging.

In this paper, we investigate the influence of individual differences on automated in-
tensity estimation of facial AUs. The changes in the intensity of AUs are reflected in
subtle variability in the person’s facial appearance. This can differ significantly among
persons mainly because the muscular contractions of the face are combined with their
individual physical characteristics [2]. Also, each person may have a different level of
expressiveness (e.g., extrovert vs. introvert). For example, persons gesticulate differ-
ently and while for some the appearance of cheek dimples is their most intense smile,
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for others that is just the slight intensity smile. This, in turn, makes it difficult to grasp
what constitutes the maximal level of appearance change for each person.

Most of existing works on automated analysis of facial expressions employ generic
(non-personalized) classifiers that do not explicitly account for individual differences
(e.g. [4,5,6,7]). These works are based on different facial features, obtained by attempt-
ing to remove the person’s identity information. This is typically done by applying de-
composable models to extract the expression specific variation from images [4,5], or by
subtracting the first frame in the image sequence from the remaining frames [6,7]. Then,
different generic classifiers are applied to such ‘un-personalized’ facial features. How-
ever, separating the identity from expression variation is not trivial, and often results
in a loss of expression-related information. This, in turn, adversely affects the models’
performance in the expression recognition tasks. To tackle this, various methods have
been proposed for personalized modeling of facial expressions.

The personalized models can be divided into three groups: the person-dependent
models ([8,9,10]), the person-adaptable models ([11,12,13,14]), and the models that use
personalized facial features ([15]). The first group uses data of both the training and test
persons during learning, and these models are typically tailored to each person (train-
ing and test). For instance, [8] proposed person-dependent models, based on template-
matching classifiers, for recognizing the facial expressions of six basic emotions and
neutral. Similarly, [9] used person-specific facial expression data to adapt the Support
Vector Machine (SVM) classifier to each individual, with the aim of predicting topical
relevance in the context of information search and retrieval. [10] proposed a person-
dependent graph-fitting method for facial feature tracking, the output of which was
used to derive person-dependent facial features for emotion recognition, based on the
matching of the personalized facial action graphs. All these approaches achieved better
performance in target tasks than generic models; however, separate models needed to
be trained for each person.

The second group is based on transfer learning/multi-task techniques, where the model
parameters are first learned using the expression data of training persons, and then
adapted to the test person during inference. For instance, [11] proposed an adaptable
non-linear model, based on functional analysis, for recognizing facial expressions of six
basic emotions and neutral. The authors first trained a generic classifier, and then during
inference used a small set of images of the test person displaying seven emotional states
to retrain the model parameters. In [12], the authors proposed transfer learning models
that capture commonalities across a set of training persons and also learn the way each
individual instantiates these commonalities. These models are based on optimization
problems that use regularizers on the task parameters, encoding the relationships among
the tasks (i.e., persons). By comparing the models on the pain expression recognition
task, the proposed adaptable models outperformed generic models based on the subtrac-
tive method. Similarly, [13] proposed two transfer learning algorithms: inductive and
transductive transfer learning for detection of pain and AUs, in both a semi-supervised
and unsupervised settings. [16] proposed a personalized model for AU detection that is
based on the Kernel Mean Matching technique. In this approach, an iterative minimiza-
tion procedure is proposed to adapt the hyperplanes of generic SVM, trained using the
labeled source data, to the target person. [14] proposed another approach for person-
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alizing models by first decoupling different factors (i.e., emotional states and identity)
using multi-task learning, under assumption that the emotion related tasks are orthogo-
nal to the identity tasks. Then, the identity tasks are used as auxiliary tasks to improve
learning of the principal tasks, i.e., emotion expressions.

The representative of the third group is the recently proposed Context-sensitive Con-
ditional Ordinal Random Field (cs-CORF) [15], where the authors modeled the person
identity as a context factor affecting the estimation of intensity of AUs. Specifically,
the authors defined the context covariate effects that encode the person’s characteris-
tics (extracted from the first neutral frame in an image sequence of the varying fa-
cial AU intensity), and context-free covariate effects (as those used in generic models
and obtained by subtracting the first frame in the sequence from the rest). These were
then jointly modeled in the cs-CORF model, outperforming generic CORF and other
generic classification models [3,17,18]. However, a downside of this approach is that
the identity features are derived from each sequence separately, thus, not capturing the
commonalities of target person among multiple sequences of the same person. Also,
decomposition of the identity and expression is performed in the common subspace ob-
tained by PCA. Yet, these two may better be represented by different subspaces, as they
represent different types of variation in the data.

To address some of the limitations mentioned above, we propose a latent factor anal-
ysis model for personalized estimation of the AU intensity. Specifically, we propose
an iterative matrix decomposition algorithm for learning the identity and AU-intensity-
specific latent factors which jointly generate the observed faces. The identity factor
represents the between-person variance in our data, and is constant for each person in
the dataset. On the other hand, the AU-intensity-related factor varies across sequences
of target persons, thus, accounting for the within-person variation due to the AU in-
tensity changes. Once learned, these two latent factors are jointly modeled using the
CORF framework for dynamic estimation of facial AU intensity [15]. The proposed
decomposition algorithm can easily handle a large number of image sequences, with
the fast convergence rate. We show in our experiments that by personalizing the CORF
model [7] via inclusion of the identity latent factors, we achieve better estimation of AU
intensity compared to generic CORF model that ignores the identity of target persons,
as well as of personalized CORF model that performs the feature decomposition in the
common subspace (i.e., the cs-CORF model [15]).

The remainder of the paper is organized as follows. Sec.2 describes the proposed
approach to personalized modeling of the facial AU intensity. Sec.3 shows the results
of the experimental evaluation, and Sec.4 concludes the paper.

2 Methodology

In this section, we propose our approach to personalized modeling of intensity of facial
AUs from image sequences. We first propose a matrix decomposition algorithm for sep-
arating the measurement features into two latent factors: the person’s identity and facial
expression. Then, we describe how these factors can be modeled within the CORF frame-
work, resulting in a personalized model for structured prediction of facial AU intensity.
In what follows, we assume we are given n image sequences D = {(xl,yl)}nl=1, where
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the observations, denoted by x, serve as input covariates for predicting y. Furthermore,
each observation in an image sequence is denoted as xijk , where i = 1 . . .Ns is the
person index and Ns is the number of persons in the dataset, j = 1 . . .Ni is the number
of sequences of the i-th person, and k = 1 . . . Tj is the time index for the observations
in the j-th sequence of the i-th person. The output variable y is structured in the same
way, and at each time step is assumed to take one of R different (ordinal) categories, i.e.,
the AU intensity levels, as yijk ∈ {1, . . . , R}.

2.1 Personalized Facial Feature Decomposition

Our goal is to decompose facial features extracted from image sequences of differ-
ent persons with varying facial AU intensity levels into person-specific characteristics,
which are assumed to be constant across sequences of target person, and AU-intensity-
specific characteristics, which are assumed to vary across image sequences of that per-
son. In other words, we seek to find two low-dimensional spaces: the identity space
and the AU-intensity-specific space, which, together, generate the observed facial fea-
tures. Various approaches that address this task have been proposed [19,4,20,21]. These
are based on the tensor representation of different factors (i.e., identity, pose, illumi-
nation, and expression), decoupling of which is attained by means of multilinear gen-
eralizations of Singular Value Decomposition (SVD). These approaches subsume as
special cases the simple linear (1-factor) analysis such as principal components anal-
ysis (PCA), as well as bilinear (2-factor) analysis [5]. In particular, a representation
named TensorFaces has firstly been introduced for learning multilinear models of fa-
cial image ensembles resulting from interaction of any number of underlying factors
(e.g., pose and expression). This multilinear representation yields superior facial recog-
nition rates compared to the standard linear approaches (e.g., PCA/eigenfaces [22]).
Although such approaches may seem a suitable choice for our task, decomposition of
tensors into different factors becomes inefficient or even intractable when dealing with
high-dimensional input features, and, in particular, with image sequences.

Instead of using tensors, some authors employ the additive factor analysis approach,
where the observed data is represented as a linear sum of different latent factors. For
instance, [5] proposed a two-factor model for decoupling the identity and facial expres-
sion for 3D facial expression recognition. For the task of face recognition, [23] proposed
the probabilistic Linear Discriminant Analysis (pLDA) model, a latent factor analysis
model for learning identity latent variables and those not related to the identity. The
main assumption behind this approach is that the observed faces can be generated from
the latent identity variables by a noisy process. The learning of the latent variables (the
identity and other identity-unrelated factors such as expression, illumination, etc.) is
performed via an Expectation-Maximization algorithm. Again, although this algorithm
is computationally efficient for the face recognition tasks, as there are usually only a
few examples of target persons available during training, it becomes computationally
intractable when dealing with large number of data, as in the case of image sequences.

To address the limitations mentioned above, we propose a latent factor model for per-
sonalized facial feature decomposition that can deal efficiently with image sequences.
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Formally, we decompose the observed facial features within an image sequence into the
person-specific characteristics (identity) and facial AU intensity characteristic as:

xijk = μ+ Fhi +Gwijk, (1)

where we assumed the noise-free case. We also set the mean of the data, μ, to zero.F is a
factor matrix with the basis vectors of the between individual subspace in its columns,
and hi is the latent identity variable that is constant across all image sequences j =
1, . . . , Ni of person i. Likewise, the matrix G contains a basis for the within-individual
subspace, and wijk is the latent variable accounting for variation due to changes in
the AU intensity levels at each time step k within a sequence. Both variables h and
w are assumed to live in a low-dimensional space of size Dh and Dw, defined by the
projection matrices F and G, respectively.

To perform the decomposition in (1), we need to estimate (F,G), and for each xijk

find the corresponding values of the latent variables (hi, wijk). To this end, we propose
an iterative algorithm, which is described in Alg.1. We briefly explain the algorithm.
In the first step, we compute the data clusters, where the centroid of each cluster mi,
i = 1 . . .Ns, represents the average of the facial features for person i in the dataset. This
is followed by the eigen decomposition (eig) of the covariance matrix computed from
the mean-normalized centroids of each person. This gives us a closed-form solution for
the person identity matrix F, computed using the obtained eigenvectors UF and eigen-
values, stored in the diagonal matrix SF . The latent identity factors for each person are
then determined by projecting the person centroids onto the first Dh eigenvectors from
F. Once we estimated the identity component, we next seek to find the latent factor re-
sponsible for changes in the AU intensity levels. Thus, in the second step, we estimate
(G, wijk) in a similar way, but this time by applying eig to the covariance matrix of
the data residuals obtained after subtracting the identity component (F1:Dh

· hi) from
the observed facial features. By projecting the AU intensity residuals onto the first Dw

eigenvectors in G, we obtain intensity-related latent factors wijk . Finally, we compute
the identity residuals by subtracting the AU intensity component from the observed fa-
cial features, and then apply Step 1 to these residuals. We alternate between Steps 1 and
2 until convergence of the reconstruction error. Intuitively, the algorithm searches for
a decomposition that jointly best explains the observed facial features, while trying to
maximally separate the between-person variance (the identity component) from within-
person variance (the AU intensity component). For the data that we used in this paper,
the algorithm typically converges in less than 150 iterations.

2.2 Personalized Conditional Ordinal Random Fields (p-CORF)

In this section, we personalize the CORF [7,15] model for dynamic estimation of fa-
cial AU intensity levels. The CORF model is adaptation of the linear-chain CRF [24]
model attained by setting CRF’s node features using the modeling framework of ordi-
nal regression [25]. In this way, the monotonicity constraints are imposed on the or-
dinal labels (i.e., intensity levels of AUs). Formally, given the j-th image sequence of
person i, xij = {xij1, . . . , xijTj }, and the corresponding AU intensity labels, yij =
{yij1, . . . , yijTj }, we write the conditional distribution P (yij |xij) of the CORF model
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Algorithm 1. Personalized Facial Feature Decomposition

Learning
Inputs: xijk, i = 1...Ns, j = 1...Ni, k = 1...Tj , Dh, Dw .
Initialize: ∀ijk : Δxijk = xijk .
repeat

Step 1: Compute (F, h)

∀i : mi = 1
N

i

Ni∑

j=1

1
T
j

Tj∑

k=1

Δxijk , m̂ = 1
Ns

Ns∑

i=1

mi,M = [m1 − m̂, ...,mNs − m̂]

[UF , SF ] = eig(MT M),F = MUFS−1
F , ∀i : hi = FT

1:Dh
(mi − m̂)

Step 2: Compute (G, w)
∀ijk : qijk = Δxijk−F1:Dh

hi−m̂, q̂ = 1
N

∑

ijk

qijk , Q = [q111− q̂, ..., qNsNNs
TNNs

− q̂]

[G, SG] = eig(QQT ), ∀ijk : wijk = GT
1:Dw

(qijk − q̂),Δxijk = xijk − G1:Dwwijk − q̂,

until err = 1
N

∑

ijk

||xijk − F1:Dh
hi − m̂ − G1:Dwwijk − q̂||2 converges.

Outputs: F,G, ∀ijk : hi, wijk .

as the Gibbs form clamped on the observations xij :

P (yij |xij , θ) =
1

Z(xij ; θ)
es(xij ,yij ;θ), (2)

where Z(xij ; θ) =
∑

yij∈Y es(xij,yij ;θ) is the normalizing partition function (Y is a set
of all possible output configurations), and θ are the parameters of the score function (or
the negative energy)1. By assuming the linear-chain model with node cliques (r ∈ V )
and edge cliques (e = (r, s) ∈ E), the score function s(xij ,yij ; θ) can be expressed as
the sum:

s(xij ,yij ; θ) =
∑

r∈V

v�Ψ (V )
r (xij , yijr) +

∑

e=(r,s)∈E

u�Ψ (E)
e (xij , yijr, yijs), (3)

where θ = {v,u} are parameters of node features, Ψ (V )
r (xij , yijr)

2, and edge fea-
tures, Ψ (E)

e (xij , yijr , yijs), respectively. The score function in (3) has a great modeling
flexibility, allowing the node and edge features to be chosen depending on target task.

Node Features. In the CORF model [7], the node features are defined using the ho-
moscedastic ordinal regression model [25] (i.e., with the constant variance σ) as:

vTΨ(V )
r (xij , yijr)

→
R∑

c=1

I(yijr = c) ·
[

Φ

(
byijr

− f(xijr)

σ

)

− Φ

(
byijr−1 − f(xijr)

σ

)]

, (4)

where Φ (·) is the cumulative distribution function (CDF) of the standard normal dis-
tribution, I(·) is the indicator function that returns 1(0) if the argument is true (false),

1 For simplicity, we often drop the dependency on θ in notations.
2 Unless stated otherwise, we also sometimes drop the time index r = 1, . . . Tj in xijr and yijr
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and σ is usually set to 1 for the model identification purpose. In ordinal regression, the
difference between the CDFs in (4) is the probability of the observed features, given
by xijr , belonging to class yijr = c ∈ {1, ..., R} iff bc−1 < f(xijr) ≤ bc, where
b0 = −∞ ≤ · · · ≤ bR = ∞ are (strictly increasing) thresholds or cut points.

In the standard CORF model [7], f(xijr) = βxijr , where β is the (linear) ordinal
projection. In our personalized CORF model, instead of modeling the observed features
xijr , we define this functional form on the identity and AU-intensity spaces, resulting in

f(xijr) ≈ βFhi + βGwijr , (5)

where (hi, wijr) are obtained by applying the proposed personalized facial feature al-
gorithm to xijr , and βF and βG are the person- and AU-intensity-specific ordinal pro-
jections. By setting βF = 0, we obtain the generic CORF model. We use this setting
in our experiments for comparisons with the personalized CORF model. Note also that
the two-factor functional form in (5) is similar to that in the context-sensitive CORF
(cs-CORF) model [15]. However, the key difference is that we define the ordinal pro-
jections on different subspaces (the identity and facial AU intensity subspace), while
cs-CORF defines the ordinal projections on the single subspace obtained by PCA.

Edge Features. The edge features are defined using the transition model as in the stan-
dard CRF:

Ψ(E)
e (yijr , yijs) =

[
I(yijr = k ∧ yijs = l)

]

R×R
, (6)

enforcing the smoothness of the predicted AU intensity levels along the sequence.

Learning and Inference. Using the node and edge features defined above, we arrive at
the regularized objective function of the personalized CORF model:

argmin
θ

∑

i=1..Ns,j=1..Ni

− lnP (yij |f(xij), θ) +Ω(θ), (7)

where θ = {b1, . . . , bR−1,u, βF , βG} are the model parameters, and Ω(θ) = ρ1‖u‖2+
ρ2‖βF ‖2+ρ3‖βG‖2, is the L2 regularization used to avoid overfitting of the model pa-
rameters. The weights for each term in the regulizer are found using a cross-validation
procedure based on a grid search. To ensure that the threshold parameters b satisfy
the ordinal constraints, the displacement variables δl are introduced, where bl = b1 +∑l−1

n=1 δ
2
n for l = 2, . . . , R − 1. The quasi-Newton limited-memory BFGS method can

then be used to find new (unconstrained) parameters θ = {b1, δ1, . . . , δR−2,u, βF , βG}.
Once the model parameters are estimated, inference of test sequences is carried out us-
ing Viterbi decoding. For more details about learning and inference in CORF, see [7].

3 Experiments

Evaluation of the proposed approach is performed on the Denver Intensity of Sponta-
neous Facial Actions (DISFA) dataset [26], the recently published dataset of naturalistic
facial AUs that are FACS coded in terms of their intensity using the ordinal scores: 0
(not present) to 5 (maximum intensity). This dataset consists of video recordings of
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Fig. 1. Distribution of the processed intensity levels for AUs from the DISFA dataset

27 persons while watching short video clips from ‘YouTube’, resulting in 4845 frames
per person. Each image frame was intensity coded in terms of 12 AUs (1, 2, 4, 5, 6,
9, 12, 15, 17, 20, 25 and 26). Since most sequences are dominated by the ‘neutral’ in-
tensity (i.e., 0 level) of AUs, they were pre-segmented per AU. This was attained by
pre-segmenting parts of the sequences containing non-neutral intensity by adding the
surrounding neutral-intensity frames at the tails of the non-neutral intensity segments.
The number of the‘neutral’ frames was balanced with the second most frequent in-
tensity level of target AUs. Even after this, the coded AU intensity levels were highly
imbalanced in the number of their examples, so we grouped the labels of some intensity
levels in order to balance the dataset. This is depicted in Fig.1.

As input features we used locations of 66 facial landmarks (see Fig.2) provided by
the database creators, and obtained using a 2D Active Appearance Model (2D-AAM)
[27]. In the pre-processing step, the facial points were aligned to the corresponding ref-
erence face (the average face from the dataset) by applying an affine transform. This is
in order to reduce effects of out-of-plane head-rotations. For comparisons of the person-
alized vs. generic modeling, we formed the following feature sets. First, we processed
the aligned facial points by applying PCA to examples of each AU. This resulted, on
average, in 20-dimensional feature vectors (preserving 98% of the variance). Follow-
ing the approach in cs-CORF[15], we subtracted the features of the first frame in each
training sequence (with the neutral intensity) from the rest in the sequence, resulting
in the feature set denoted as F1=[xpca

ijk − xpca
ij1 ] (aka the context-free covariates [15]),

and the personalized features, denoted as PF1=[xpca
ijk −xpca

ij1 ;x
pca
ij1 ], obtained by concate-

nating the features of the first frame (aka the context covariates [15]) to F1. We then
computed the facial features by applying our personalized facial feature decomposition
approach to the aligned facial points. For this, the size of the identity space Dh and the
AU-intensity-related spaceDw varied from 5-15 and 20-25, respectively. These were se-
lected for each AU separately using a validation procedure on the training dataset. The
features composed of both the identity and AU-intensity-related spaces are denoted as
PF2=[hi;wijk ], and only of the latter as F2=[wijk]. These features were then used as
input to the personalized (using PF1 and PF2, i.e., βF , βG 	= 0) and generic (using F1
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Table 1. The performance of the personalized (PF1/PF2) and generic (F1/F2) CORF models on
the task of facial AU intensity estimation using the DISFA dataset. The numbers in bold indicate
that the personalized CORF (p-CORF) with the proposed PF2 features outperforms the other
models on most AUs.

Upper Face AUs Lower Face AUs
AU1 AU2 AU4 AU5 AU6 AU9 AU12 AU15 AU17 AU20 AU25 AU26 Average

F-1

F1 (CORF[7]) 31.7 23.5 29.7 43.8 34.3 31.0 38.4 38.9 39.6 35.8 47.4 31.7 35.5
PF1 (cs-CORF[15]) 33.8 24.9 30.2 45.4 40.8 38.6 44.2 41.5 40.6 33.0 52.1 37.5 38.5

F2 (CORF[7]) 30.0 23.4 31.2 41.7 37.5 31.4 41.5 42.4 42.0 38.7 53.1 39.2 37.7
PF2 (p-CORF) 30.4 26.9 33.4 46.4 44.2 33.6 46.7 45.0 44.3 41.6 54.6 40.4 40.6

MAE

F1 (CORF[7]) 1.01 1.08 0.97 0.72 0.80 0.96 0.72 0.77 0.82 0.85 0.63 0.87 0.85
PF1 (cs-CORF[15]) 0.97 1.02 0.96 0.66 0.73 0.89 0.65 0.72 0.80 0.90 0.58 0.81 0.81

F2 (CORF[7]) 1.14 1.11 0.98 0.74 0.76 0.96 0.72 0.73 0.75 0.84 0.54 0.77 0.83
PF2 (p-CORF) 1.13 1.07 0.95 0.64 0.71 0.92 0.64 0.64 0.71 0.82 0.53 0.74 0.79

ICC

F1 (CORF[7]) 46.2 44.8 44.8 48.3 36.6 40.1 69.7 44.9 34.1 42.1 68.5 24.7 45.4
PF1 (cs-CORF[15]) 49.5 48.1 45.5 50.9 44.1 47.7 72.9 47.8 42.2 36.9 74.0 30.8 49.2

F2 (CORF[7]) 33.8 46.3 41.1 47.6 35.6 42.6 70.4 45.2 46.8 44.4 77.0 36.1 47.2
PF2 (p-CORF) 41.8 49.6 45.1 53.0 45.5 47.1 71.6 50.3 52.6 44.7 78.7 41.2 51.8

and F2, i.e., βF = 0, βG 	= 0) CORF model3 described in Sec. 2.2. The regularization
parameters of the model were selected by a 5-fold cross validation on the training set
using a grid-search in the range ρ =

{
10−4, 10−3, ..., 1, 2, 5

}
. If not stated otherwise,

in all our experiments we applied a 5-fold cross validation procedure, with each fold
containing sequences of different persons. We report accuracy of the models using the
average of F-1 scores computed for each intensity level, the mean absolute error (MAE),
and Intra-Class Correlation (ICC(3,1)), as reported in [15].

Table 1 shows average results obtained by personalized (PF1/PF2) and generic
(F1/F2) CORF models on 12 AUs. We observe that the personalizing CORF model re-
sults in an improvement over generic CORF models across all three evaluation scores,
evidencing the benefits of using the identity factor for the intensity estimation. We further
observe that the personalized CORF (p-CORF) model that uses the proposed facial fea-
ture decomposition outperforms the features used in the cs-CORF model. Although this
improvement is ∼ 2% for average F-1 score, looking into the results per AU, we see that
for some AUs this improvement is considerably larger. For instance, in the case of AU20
(lip stretcher), which involves horizontal motion (elongating the mouth), we achieve an
improvement of 8% (F-1). Note that this AU typically occurs in combination with other
AUs (e.g., 10+20+25 or 20+26). So, since the identity features in cs-CORF (PF1) are
extracted from the first frame in target sequence, the identity component can easily con-
tain the variation due to the co-occurring AUs in that particular sequence. This, in turn,
can confuse the model when trying to generalize from such features to other sequences.
On the other hand, the personalized features based on the proposed decomposition ap-
proach (PF2) include the identity component that is shared across all sequences of target
person, thus clearly separating the effects of the identity and AU intensity variation. This
is the main reason for better performance attained by the proposed p-CORF. However,
there are still some cases when PF1 outperforms the PF2 features, as in the case of AU9
(nose wrinkle). By comparing all three scores, we see that the improvement of PF2 over

3 In this work, we evaluate the effect of personalizing the base CORF model only [7]. PF1
features correspond to those modeled in cs-CORF[15], however, we do not model the changes
in the variance nor we use the weighted max-margin learning as in cs-CORF.
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(a) (c)

(b) (d)

Fig. 2. The results for AU25(lips part). a) Convergence of the personalized features decompo-
sition. b) Resulting personalized facial features (PF2). The intensity estimation of an example
sequence using c) generic CORF (F1), and d) personalized CORF (PF2).

PF1 in F-1 score is more pronounced than in MAE and ICC. This reveals that the model
with PF1 missclassifies the neighboring intensity levels more often than when PF2 are
used. Again, this indicates that the proposed facial feature decomposition finds the iden-
tity component that allows the CORF model to better adapt to each target person.

To further demonstrate the model’s performance, in Fig.2 we show learning and in-
ference results for AU25 (lips part). From Fig.2 a), we see that the proposed decomposi-
tion algorithm converges in less than 150 iterations. The resulting personalized features
(PF2) are depicted in Fig.2 b) using gray-scale. Note that the identity component for
the person, the AU intensity of whom we estimate in this example, is constant along the
sequence (the upper 10D), while the AU-intensity-specific component varies in time
(the lower 20D). From the latter, the change in the features is obvious for the segment
covering the time interval from ∼ 45-270, in which the AU intensity reaches its peak,
as can be seen from the ground truth intensity labels in Fig.2 c),d). By comparing the
intensity estimation by generic and personalized CORF, we observe that generic CORF
fails to faithfully represent the intensity levels due to over/underestimating of target la-
bels. On the other hand, the personalized CORF almost perfectly fits the target labels,
which demonstrates clearly the importance of modeling the identity component.

Finally, Table 2 shows the performance of different generic and personalized models,
where the personalization of the models is attained by using the personalized features
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Table 2. The average performance of different models on 12 AUs from the DISFA dataset, before
and after personalizing the models via the proposed facial features

F-1 MAE ICC
F1 PF1 F2 PF2 F1 PF1 F2 PF2 F1 PF1 F2 PF2

CORF 35.5 38.5 37.7 40.6 0.85 0.81 0.83 0.79 45.4 49.2 47.2 51.8
CRF 37.3 36.8 37.8 35.7 0.84 0.89 0.87 0.89 41.1 43.1 44.3 37.6

SVM-linear 23.0 23.9 24.4 23.7 0.96 0.99 0.97 1.01 39.2 36.7 36.8 35.3
SVM-RBF 24.7 24.0 23.6 22.1 0.95 0.99 1.00 1.07 41.8 41.4 37.2 33.3

(PF1/PF2). We see from Table 2 that inclusion of the identity component into the tra-
ditional classification approaches (CRF and SVM) does not necessarily improve their
performance, compared to their generic counterparts (i.e, when F1/F2 are used). Simi-
lar observations were also made in [15]. We attribute this to overfitting of the identity
component by these models, as its inclusion in both the models, increases the number
of parameters to be learned since each class projection is learned independently. This
is in contrast to the CORF model, where the ordinal projection is learned jointly for all
classes, i.e., intensity levels. Also, the identity component has the central role in adap-
tation of the model’s ordinal thresholds that separate different intensity levels. Thus, for
CRF and SVM to take the full benefit of the identity component, these models would
need to be formulated so that it is shared among the classes. We plan to investigate this
in our future work.

4 Conclusions

In this paper, we proposed an approach for personalized modeling of facial AU inten-
sity. We showed that personalizing the CORF model using the features derived by the
proposed personalized facial feature decomposition improves estimation of the AU in-
tensity obtained with generic CORF and other traditional classification models. In our
future work, we plan to extend this approach so that it can perform feature decomposi-
tion from previously unseen subjects. We also plan to further assess the performance of
our approach by comparing it to personalized models based on transfer learning (e.g.,
[16]) as well as investigate its generalization to high-dimensional facial features (i.e.,
appearance-based features).
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