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Low-dimensional structures in high-dimensional data

frequency (kilohertz)

time

Images

High-dimensional audio-visual data exhibit low-dimensional (low-rank,
sparse, manifold, etc.) structures due to:

* local regularities,

e global symmetries,

* repetitive patterns,

e orredundant sampling.



Principal Component Analysis (PCA)

X=A+N

X & R"™*™ . Observations matrix.
* A ¢ R™MX" :Llow-rank matrix, 7 = rank(A) < m,
* NN & R™X" :Gaussian noise of small variance.

* Optimal estimate of the low- rank matrix under iid Gaussian noise.
e Efficient and scalable computation via SVD.
* Huge impact in image processing, vision, web search, etc.
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* Optimal estimate of the low- rank matrix under iid Gaussian noise.
e Efficient and scalable computation via SVD.
 Huge impact in image processing, vision, web search, etc.

 PCA breaks down under even a single corrupted observation.



Real World Data

Real application data often contain:
* missing observations,

e corruptions,

* unknown deformation,

* misalignment.

* Classical methods (e.g., PCA, least square regression) break down.



Low-Rank Models

* The data matrix should be low-rank:

A e R"™*" r =rank(A) <m

* but some of the observations are grossly corrupted:

A +E,

e;j|arbitrarily large, but most of them are zero.

* and some of them can be missing too:

Po(X) = Pa(A + E)
() C [m] x |n] is the set of observed entries.

e orthe data can be drawn from a union of independent
subspaces:

X =XZ+E




Robust PCA (?)
X

+

Problem: Given X = A + I recover A and

* Various approaches in the literature:

. Multivariate trimming [Gnanadesikan and Kettering ‘72]

. Power Factorization [Wieber’70s]

. Random sampling [Fischler and Bolles ‘81]

. Alternating minimization [Shum & lkeuchi’96, Ke and Kanade ‘03]
. Influence functions [de la Torre and Black ‘03]

* Key question: can guarantee correctness with an efficient algorithm?



Robust PCA

minrank(A) + A [Efp st X=A+E

* Seek the lowest rank matrix that agrees with the data up to some sparse error.
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* Seek the lowest rank matrix that agrees with the data up to some sparse error.
* NP-hard!
* Convex relaxation:
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e Solvable in polynomial time!

UL ) from errors

log=n

 Convex optimization recovers almost any matrix of rank O(
corrupting O(rmn) of the observations!

[Candes, Li, Ma, and Wright, Journal of the ACM, May 2011.]



Applications of RPCA



Repairing multiple correlated images

58 images of one person under
varying lighting:

[Candes, Li, Ma, and Wright, Journal of the ACM, May 2011.]



Background modelling from video

* Surveillance video, 200 frames,
144 x 172 pixels.

[Candes, Li, Ma, and Wright, Journal of the ACM, May 2011.]



Singing voice and music separation

Song (STFT) Low-rank (music) Sparse (voices)

sgnal —H STFT — BrA —

Evaluation | ISTFT Frequency |«<—

[Huang, Chen, Smaragdis, Hasegawa-Johnson, ICASSP 2012.]



Robust Matrix Completion

X A
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Problem: GivenP(,(X) = P (A + E) recover A and

* Recover low-dimensional structures from a fraction of missing measurements with
structured support.



Robust Matrix Completion

X A

+

Problem: GivenP(,(X) = P (A + E) recover A and

* Recover low-dimensional structures from a fraction of missing measurements with
structured support.

e Convex formulation:

l;ili]IEl ||¢A||>]< + A ||E||1 S.t. PQ_(X) = PQ_(A + E)

[Candes, Recht. Foundations of Computational Mathematics, 2009.]



Applications of RMC



Recommender systems

* Users (rows of the data matrix) are given the
opportunity to rate movies (columns of the data
matrix) but users typically rate only very few movies
so that there are very few scattered observed entries

of this data matrix. H H B H
* One would like to complete this matrix so that the ﬂ * | A e

vendor (.e.g., Netfli>f) rpight recomr.ne._'nd titles that ‘% B -5

any particular user is likely to be willing to order. % oy o s
* Assumption: the data matrix of all user-ratings may

be approximately low-rank because it is commonly
believed that only a few factors contribute to an
individual's tastes or preferences.

[Candes, Recht. Foundations of Computational Mathematics, 2009.]



Repairing of Low-rank Textures

[Liang, Ren, Zhang, Ma, ECCV 2012.]



Robust subspace recovery under deformations
XorT A

==

Problem: Given Xo7=A + recover, 7, A and

e Recover low-dimensional structures from deformed measurements.



Robust subspace recovery under deformations
XorT A

==

Problem: Given Xo7=A + recover, 7, A and

e Recover low-dimensional structures from deformed measurements.
e Optimization problem:

inén A« + A ||E|1 st. XoT=A+E

[Peng, Ganesh, Wright, Ma, CVPR 2010, TPAMI 2011.]



Robust alignment of multiple images

Corrupted & misaligned Aligned low-rank
observation signals

Sparse errors
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[Peng, Ganesh, Wright, Ma, CVPR 2010, TPAMI 2011.]




Robust temporal alignment

Original Sequences

Error-free common low-rank latent space Gross Errors

. Problem: Given two grossly corrupted temporally deformed sequences
recover a low-rank subspace where the sequences are aligned
in time.



Robust temporal alignment

Original Sequences

Error-free common low-rank latent space Gross Errors

* Problem: Given two grossly corrupted temporally deformed sequences
recover a low-rank subspace where the sequences are aligned
in time.
* Optimization problem:

argming , g 5 o o P AL +[P L +2 NE |l +4,[[E, [ + %H PXA -PYA [

X = P\X+EA7Y = PyY+Ey7 Ax = {0,1}Yj\-X7“,Ay c {O,l}r‘.XT,

[Panagakis, Nicolaou, Zafeiriou, Pantic, CVPR 2013.]



Recovery of multiple subspaces

X X7

Problem: Given X = XZ + recover 7, and

* 7 is a low-rank block diagonal matrix which reveals the subspace membership of
each column of the data matrix.



Recovery of multiple subspaces via low-rank
representation (LRR)

;i — In cHiL Y . % +

X XZ

Problem: Given X = XZ + recover 7, and

* 7 is a low-rank block diagonal matrix which reveals the subspace membership of
each column of the data matrix.

Convex formulation:

win [|Z[. + A [E[l; st X =XZ+E

[Liu, Lin, Yan, Sun, Yu, Ma, TPAMI 2013.]



Face Clustering via LRR

The dictionary (e.g., the face images of The symmetric lowe-
The face images of multiple subjects mattiple subjects) rank representatkon The error matrix

The final clustering results

The affinity graph matrix

[Liu, Lin, Yan, Sun, Yu, Ma, TPAMI 2013.]
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We will NOT discuss about algorithms today.



Thank youl



