PREDICTION-BASED AUDIOVISUAL FUSION

Stavros Petridis

London 12/1/2015

Audiovisual Fusion

- Goal: Combine information carried by audio and visual modalities.
- In most applications the audio modality is the most informative. The video modality contains information which is:
 - Redundant
 - Complementary
- Research in:
 - Psychology
 - Neuroscience
 - Computer Science

Types of Fusion

Feature Level

Decision Level

Model/Classifier/Mid-Level
 e.g., Coupled HMMs,
 Multistream HMMs
 Multistream Fused HMMs

Feature-Level Fusion

- Takes into account the spatiotemporal relationship between the audio and visual features, i.e., it models the co-evolution of the audio/visual features
- Requires synchronisation (usually audio/visual features are extracted at different frame rates)
- Increases the dimensionality
- After training the relative weights of each stream cannot change as they are determined internally by the classifier.

Decision-Level Fusion

- Modalities are processed independently
- Requires training of multiple classifiers
- Does not require synchronisation
- Dimensionality does not increase
- Relative weights of each stream can easily change by adjusting the weights.

Research in Psychology

- Speech becomes more audible when facial movements are visible
 - Visual signal -> 6 18 dB gain in SNR
 [W.H. Sumby, I. Pollack (1954), Visual contribution to speech intelligibility in noise,]

Research in Psychology

Laughter becomes more audible when facial movements are visible

[T. R. Jordan, L. Abedipour, (2010), The importance of laughing in your face: Influences of visual laughter on auditory laughter perception]

Research in Psychology

- McGurk Effect
 - The auditory component of one sound is paired with the visual component of another sound, leading to the perception of a third sound
 - Interaction between vision and hearing
 - Vision can alter the perception of sounds

[McGurk, H & MacDonald, J (1976); Hearing lips and seeing voices]

Research in Psychology

- Sound-induced flash illusion
 - Hearing can alter visual perception

[L. Shams, Y. Kamitani, S. Shimojo (2002); Visual illusion induced by sound]

http://www.cns.atr.jp/~kmtn/soundInducedIllusoryFlash2/

Prediction-based Fusion - Motivation

- Memory-Prediction Framework [J. Hawkins (2004), On Intelligence]
 - Predict what we will hear / see based on what we see / hear

Prediction-based Fusion - Motivation

- Relationship between acoustic and visual features (speech)
 A->V mapping: correlation 0.7 0.85
- Reasonable to assume that:
 - 1) Relationship between audio and visual features is different in speech and laughter (or other non-linguistic vocalisations)
 - 2) Time evolution of audio and visual features is different in speech and laughter (or other non-linguistic vocalisations)
- We can learn the AV relationship (i.e., learn the mapping between A and V) for each class. Classify an example based on which mapping better describes a new example.

Prediction-Based Fusion – Cross Prediction Component

2271

2271.5

2272

2272.5

2273

2273.5

 For each class c learn the mapping f between audio and visual features

$$f^c_{A \to V}(A^c[t - k^c_{AV}, t]) = \hat{V}^c_{A \to V}[t] \approx V^c[t]$$

$$f^c_{V \to A}(V^c[t - k^c_{VA}, t]) = \hat{A}^c_{V \to A}[t] \approx A^c[t]$$

 This corresponds to feature-level fusion where concatenation is replaced by the AV mapping functions

Prediction-Based Fusion – Cross Prediction Component

 Classification: The audio/visual features are fed to the AV mapping functions already learned (one set of functions for each class)

$$f^c_{A \to V}(A^c[t - k^c_{AV}, t]) = \hat{V}^c_{A \to V}[t]$$

$$f_{V \to A}^c \left(V^c [t - k_{VA}^c, t] \right) = \hat{A}_{V \to A}^c [t]$$

• The prediction error over the entire sequence is computed.

$$\begin{split} e^c_{A \rightarrow V} &= \sum_{i=1}^N Err(\hat{V}^c_{A \rightarrow V}[i], V[i]) \\ e^c_{V \rightarrow A} &= \sum_{i=1}^N Err(\hat{A}^c_{V \rightarrow A}[i], A[i]) \end{split}$$

• Error: MSE, MAE, L2

Prediction-Based Fusion

Prediction-Based Fusion – Cross Prediction Component

 The prediction errors for each class can be combined

$$e^c_{CP} = w^c_{AV} \times e^c_{A \rightarrow V} + w^c_{VA} \times e^c_{V \rightarrow A}$$

 $w_{AV}^c + w_{VA}^c = 1$

• The sequence is labelled based on the predictor which corresponds to the lowest prediction error, i.e., class-specific predictor that best explains the AV relationship.

```
PredictedClass = \underset{c=1...C}{\arg\min} e^{c}
```

 The main idea is that the predictors which have been trained on the correct class will produce a lower prediction error.

Prediction-Based Fusion – Intra-Prediction Component

- For each class c learn the mapping f
 This corres between past audio / visual and future audio / visual features.
 - This corresponds to decisionlevel fusion.

$$f^{c}_{A \to A}(A^{c}[t - k^{c}_{AA}, t - 1]) = A^{c}_{A \to A}[t] \approx A^{c}[t]$$
$$f^{c}_{V \to V}(V^{c}[t - k^{c}_{VV}, t - 1]) = \hat{V}^{c}_{V \to V}[t] \approx V^{c}[t]$$

Prediction-Based Fusion – Intra-Prediction Component

Visual Features $V[t - k_{VV}, t - 1]$

$$\hat{V}_{v \to v}[t] \approx V[t]$$

 Classification: The audio/visual features are fed to the AV mapping functions already learned (one set of functions for each class)

$$f^{c}_{A \to A}(A^{c}[t - k^{c}_{AA}, t - 1]) = \hat{A}^{c}_{A \to A}[t]$$

$$f_{V \to V}^{c}(V^{c}[t - k_{VV}^{c}, t - 1]) = \hat{V}_{V \to V}^{c}[t]$$

• The prediction error over the entire sequence is computed.

$$e_{A \to A}^{c} = \sum_{i=1}^{N} Err(\hat{A}_{A \to A}^{c}[i], A[i])$$

$$e_{V \rightarrow V}^{c} = \sum_{i=1}^{N} Err(\hat{V}_{V \rightarrow V}^{c}[i], V[i])$$

Prediction-Based Fusion – Intra-Prediction Component

Audio-to-Audio Mapping

Prediction-Based Fusion – Intra-Prediction Component

 The prediction errors for each class can be combined

$$e^c_{IP} = w^c_{AA} \times e^c_{A \rightarrow A} + w^c_{VV} \times e^c_{V \rightarrow V}$$

$$w_{AA}^c + w_{VV}^c = 1$$

 The sequence is labelled based on the predictor which corresponds to the lowest prediction error, i.e., class-specific predictor that best explains the AV relationship.

Prediction-Based Fusion – Final System

• The cross-prediction and intra-prediction modules can also be combined

 $e^c = w^c_{CP} \times e^c_{CP} + w^c_{IP} \times e^c_{IP}$

 $w^c_{CP}+w^c_{IP}=1$

• The sequence is labelled based on the predictor which corresponds to the lowest prediction error, i.e., class-specific predictor that best explains the AV relationship.

 $PredictedClass = \underset{c=1...C}{\arg\min} e^{c}$

• The main idea is that the predictors which have been trained on the correct class will produce a lower prediction error .

Prediction-based Fusion

Weights Normalisation

- Errors are in different scale.
- Weights do not reflect only the relative importance but also take into account scaling differences.
- Errors can be normalised, e.g. softmax

Datasets

- AMI, SAL, MAHNOB: Laughter/Speech
- AVIC: Laughter, Hesitation, Consent, Garbage
- Cross-database experiments for laughter/speech
 - Train: SAL (10 subjects)
 - Val: SAL (5 subjects)
 - Test: MAHNOB
- AVIC is divided into training/validation/test sets (8 subj. each)
- Visual features: PCA on points
- Audio features: MFCCs

Example

(f) Output of DF + FF. The caption shows the total score. The example is misclassified as speech since the total score is negative.

(g) MAE of the laughter and speech models. The caption shows the total MAE over the entire episode. The example is classified as laughter since this model leads to the lowest error.

Example

(f) Output of DF + FF. The caption shows the total score. The example is misclassified as speech since the speech output leads to the highest score.

(g) MSE of the laughter and speech models. The caption shows the total MSE over the entire episode. The example is classified as laughter since this model leads to the lowest error.

Results

Classifica Syster Test -	ation m →	F1 Laughter	F1 Speech	F1 Mean AMI	CR	UAR	F1 Laughter	F1 Speech	F1 Mean MAHNOB	CR	UAR
A V		73.7 (3.4) 58.5 (5.2)	85.3 (1.4) 76.1 (1.0)	79.5 (2.4) 67.3 (2.8)	81.1 (2.0) 69.8 (1.7)	79.0 (2.2) 67.7 (2.2)	76.2 (3.3) 55.0 (5.6)	88.2 (1.1) 78.0 (1.0)	82.2 (2.2) 66.5 (3.0)	84.2 (1.7) 70.5 (1.8)	80.8 (2.2) 66.3 (2.9)
A + V (P) $A + V (P)$ $A + V (D)$	F - S) F - N) F + FF)	76.6 (1.9) [†] 7 9.4 (2.2) [†] 73.5 (2.9)	86.2 (0.7) [†] 87.6 (1.0) [†] 85.4 (1.1)	81.4 (1.3) [†] 83.5 (1.6) [†] 79.5 (2.0)	82.6 (1.1) [†] 84.5 (1.4) [†] 81.2 (1.7)	80.8 (1.2) [†] 82.9 (1.5) [†] 79.0 (1.8)	83.5 (1.2) [†] 84.7 (2.2) [†] 76.5 (3.2)	90.4 (0.5) [†] 91.1 (0.9) [†] 88.4 (1.1)	86.9 (0.8) [†] 87.9 (1.6) [†] 82.5 (2.1)	87.8 (0.7) [†] 88.7 (1.3) [†] 84.5 (1.7)	86.0 (1.0) [†] 87.0 (1.7) [†] 81.0 (2.1)
-	Classi Sys Tes	fication stem st →	F1 Garbage	F1 Laughter	F1 Consent A	F1 Hesitation VIC	F1 Mean	CR	UAR	_	
-	1	A V	51.1 (3.8) 44.4 (4.1)	58.3 (2.6) 38.9 (2.6)	40.0 (5.2) 35.5 (3.4)	67.2 (2.8) 57.1 (3.7)	54.1 (2.2) 44.0 (2.0)	58.8 (2.4) 48.5 (2.6)	58.7 (2.4) 48.9 (2.5)		
_	A + V $A + V$ $A + V (I$	(PF - S) (PF - N) DF + FF)	56.9 (2.9) [†] 57.7 (2.2) 54.3 (4.0)	71.0 (2.6) [†] 67.2 (2.5) 60.5 (2.5)	44.0 (3.3) 46.2 (4.2) 44.8 (5.1)	75.9 (1.8) [†] 74.9 (1.0) 68.4 (2.7)	62.0 (1.6) [†] 61.5 (1.6) 57.0 (2.2)	67.7 (1.8) [†] 67.0 (1.2) 61.1 (2.4)	64.0 (1.9) 64.2 (2.0) 61.8 (2.2)		

Example

High Noise

Low Noise

Low Noise

High Noise

Example

- Laughter example from the MAHNOB DB
- It does not matter if the absolute prediction error increases, what matters is the relative position of the two errors.

Prediction-based Fusion - Extensions

- Time series clustering
- Segmentation
- Deep NNs

Time Series Clustering

- Cluster examples based on subject
- Train one set of predictors per class for each subject
 - Total No Predictors = NoSubjects x NoClasses
- Label a sequence based on the set of predictors which lead to the lowest prediction error

Performance Measure	Laughter	Speech	Overall
Precision	91.59%	84.80%	88.19%
Recall	79.03%	94.16%	86 59%
F_1 score	84.85%	89.23%	87.04%
Classification Rate	-	-	87.41%

Table 3.25: Performance measures computed for classification of sequences on the AMI test set

Best on entire Dataset, mean F1: 80.6

using minimum error method.

Table 3.27: Performance measures computed for classification of sequences on the MAHNOB test set using minimum error method.

Performance Measure	Laughter	Speech	Overall
Precision	84.14%	88.06%	86.10%
Recall	81.41%	89.94%	85.67%
F ₁ score	82.75%	88.99%	85.87%
Classification Rate	-	-	86.56%

Best on entire Dataset, mean F1: 83.8

Time Series Clustering

- Cluster examples based laughter type, i.e., voiced / unvoiced laughter
- Train one set of predictors per class
- Label a sequence based on the set of predictors which lead to the lowest prediction error. If voiced / unvoiced laughter -> laughter

Table	3.35:	Performance	measures	computed	on	the	AMI	test	set.
-------	-------	-------------	----------	----------	----	-----	-----	------	------

Performance Measure	Laughter	Speech	Overall
Precision	94.34%	86.05%	90.19%
Recall	80.65%	96.10%	88.37%
F_1 score	86.96%	90.80%	88.880
Classification Rate	-	-	89.21%

Best on entire Dataset, mean F1: 80.6

Table 3.37:	Performance	measures	computed	on	the	MAHNOB	test	set.
-------------	-------------	----------	----------	----	-----	--------	------	------

Performance Measure	Laughter	Speech	Overall
Precision	91.01%	92.14%	91.57%
Recall	87.73%	94.32%	91.02%
F_1 score	89.34%	93.22%	91.28%
Classification Rate	-	-	91.71%

Best on entire Dataset, mean F1: 83.8

Segmentation – Example 1

Segmentation – Example 2

Prediction-based Fusion - Extensions

- It has been found that visual speech recognition benefits when features are extracted from a deep AE which learns to reconstruct audio features as well.
- Train a DNN to predict Audio Features and future Visual features
- Use bottleneck features for classification, they should model the audiovisual relationship

Ngiam, Jiquan, et al. "Multimodal deep learning." Proceedings of the 28th International Conference on Machine Learning, 2011.

THANK YOU! ③

Datasets

• Elicited Laughter (MAHNOB)

Dyadic Interaction (AVIC, SAL)

•Meeting Scenario (AMI)

Prediction-based Fusion - Variants

- Comparison of single network-vs-multiple networks
 - Performance is similar
- Comparison of different predictors
 - Prediction-based fusion outperforms DF/FF when NNs, LSTMs, GPs
 - Performance is similar for SVMs, RVMs
- Comparison of different audio feature sets
 - MFCCs, DeltaMFCCs, Pitch, Energy, ZCR
 - Performance is similar